浏览全部资源
扫码关注微信
1.中国科学院化学研究所 北京分子科学国家研究中心 中国科学院工程塑料重点实验室 北京 100190
2.中国科学院大学 北京 100049
Yu Wang, E-mail: ywang@iccas.ac.cn
Wei You, E-mail: weiyou@iccas.ac.cn
Received:02 November 2024,
Accepted:13 December 2024,
Published Online:26 February 2025,
Published:20 May 2025
移动端阅览
钟冰, 王煜, 尤伟. 苯并三氮唑取代基含量对聚乙烯介电性能的影响. 高分子学报, 2025, 56(5), 677-689
Zhong, B.; Wang, Y.; You, W. The influence of benzotriazole substituent content on the dielectric properties of polyethylene. Acta Polymerica Sinica, 2025, 56(5), 677-689
钟冰, 王煜, 尤伟. 苯并三氮唑取代基含量对聚乙烯介电性能的影响. 高分子学报, 2025, 56(5), 677-689 DOI: 10.11777/j.issn1000-3304.2024.24270. CSTR: 32057.14.GFZXB.2024.7333.
Zhong, B.; Wang, Y.; You, W. The influence of benzotriazole substituent content on the dielectric properties of polyethylene. Acta Polymerica Sinica, 2025, 56(5), 677-689 DOI: 10.11777/j.issn1000-3304.2024.24270. CSTR: 32057.14.GFZXB.2024.7333.
以商品化的乙烯-醋酸乙烯酯共聚物(EVA)为原料,采用Mitsunobu衍生化反应成功合成了一系列含有不同苯并三氮唑含量的聚乙烯(PE)衍生物. 通过红外光谱和核磁共振技术对合成的苯并三氮唑修饰聚乙烯衍生物进行表征,确认其分子结构. 研究结果表明,随着官能团含量的增加,材料的热稳定性降低,乙烯链段的结晶度也呈现下降趋势,但介电常数得到了显著提升. 此外,基于PE衍生物与线性低密度聚乙烯(LLDPE)基体的相容性,成功制备了两者的共混材料. 在固定取代基总含量的情况下,比较PE衍生物的官能化程度和PE衍生物在共混材料中含量两个因素对共混物介电常数的影响,发现增加PE衍生物官能化程度是提高介电常数的重要方式. 这些发现为聚合物介电材料的分子设计提供了新的借鉴.
This study utilizes commercial ethylene-vinyl acetate copolymer (EVA) as the starting material and successfully synthesized a series of polyethylene (PE) derivatives containing varying amounts of benzotriazole groups through Mitsunobu derivatization reactions. The synthesized polyethylene benzotriazole derivatives were characterized using infrared spectroscopy and nuclear magnetic resonance techniques to confirm their molecular structures. The results indicated that as the functional group content increased
the thermal stability of the material decreased
and the crystallinity of the ethylene segments also showed a declining trend
while the dielectric constant was significantly enhanced. Furthermore
based on the compatibility of the PE derivatives with the linear low-density polyethylene (LLDPE) matrix
blended materials of the two were successfully prepared. By fixing the total content of the substituent groups
the study compared the effects of the functionalization degree of the PE derivatives and their content in the blend on the dielectric constant of the blend. It was found that increasing the functionalization degree of the PE derivatives more effectively improves the dielectric constant. These findings provide new insights for the molecular design of polymer dielectric materials.
Friedrich K. ; Andreas S. Broadband dielectric spectroscopy . J. Am. Chem. Soc. , 2003 , 125 ( 25 ), 7748 .
Huan T. D. ; Boggs S. ; Teyssedre G. ; Laurent C. ; Cakmak M. ; Kumar S. ; Ramprasad R. Advanced polymeric dielectrics for high energy density applications . Prog. Mater. Sci. , 2016 , 83 , 236 - 269 . doi: 10.1016/j.pmatsci.2016.05.001 http://dx.doi.org/10.1016/j.pmatsci.2016.05.001
van Krevelen D. W. ; Te Nijenhuis K. Mechanical properties of solid polymers . Properties of Polymers. Amsterdam : Elsevier , 2009 . 383 - 503 . doi: 10.1016/b978-0-08-054819-7.00013-3 http://dx.doi.org/10.1016/b978-0-08-054819-7.00013-3
Zhu L. Exploring strategies for high dielectric constant and low loss polymer dielectrics . J. Phys. Chem. Lett. , 2014 , 5 ( 21 ), 3677 - 3687 . doi: 10.1021/jz501831q http://dx.doi.org/10.1021/jz501831q
Wang S. ; Yang C. ; Li X. M. ; Jia H. Y. ; Liu S. R. ; Liu X. Y. ; Minari T. ; Sun Q. Q. Polymer-based dielectrics with high permittivity and low dielectric loss for flexible electronics . J. Mater. Chem. C , 2022 , 10 ( 16 ), 6196 - 6221 . doi: 10.1039/d2tc00193d http://dx.doi.org/10.1039/d2tc00193d
Cheng R. ; Wang Y. F. ; Men R. J. ; Lei Z. P. ; Song J. C. ; Li Y. Y. ; Guo M. Q. High-energy-density polymer dielectrics via compositional and structural tailoring for electrical energy storage . iScience , 2022 , 25 ( 8 ), 104837 . doi: 10.1016/j.isci.2022.104837 http://dx.doi.org/10.1016/j.isci.2022.104837
Lorenzini R. G. ; Kline W. M. ; Wang C. C. ; Ramprasad R. ; Sotzing G. A. The rational design of polyurea & polyurethane dielectric materials . Polymer , 2013 , 54 ( 14 ), 3529 - 3533 . doi: 10.1016/j.polymer.2013.05.003 http://dx.doi.org/10.1016/j.polymer.2013.05.003
Barber P. ; Balasubramanian S. ; Anguchamy Y. ; Gong S. S. ; Wibowo A. ; Gao H. S. ; Ploehn H. J. ; zur Loye H. C. Polymer composite and nanocomposite dielectric materials for pulse power energy storage . Materials , 2009 , 2 ( 4 ), 1697 - 1733 . doi: 10.3390/ma2041697 http://dx.doi.org/10.3390/ma2041697
Prateek ; Thakur V. K. ; Gupta R. K. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects . Chem. Rev. , 2016 , 116 ( 7 ), 4260 - 4317 . doi: 10.1021/acs.chemrev.5b00495 http://dx.doi.org/10.1021/acs.chemrev.5b00495
Zhang M. ; Li B. ; Wang J. J. ; Huang H. B. ; Zhang L. ; Chen L. Q. Polymer dielectrics with simultaneous ultrahigh energy density and low loss . Adv. Mater. , 2021 , 33 ( 22 ), 2008198 . doi: 10.1002/adma.202008198 http://dx.doi.org/10.1002/adma.202008198
Liu X. J. ; Zheng M. S. ; Chen G. ; Dang Z. M. ; Zha J. W. High-temperature polyimide dielectric materials for energy storage: theory, design, preparation and properties . Energy Environ. Sci. , 2022 , 15 ( 1 ), 56 - 81 . doi: 10.1039/d1ee03186d http://dx.doi.org/10.1039/d1ee03186d
Zhu Z. W. ; Rui G. C. ; Li R. P. ; He H. Z. ; Zhu L. Effect of dipole mobility in secondary crystals on piezoelectricity of a poly(vinylidene fluoride- co -trifluoroethylene) 52/48 mol% random copolymer with an extended-chain crystal structure . Macromolecules , 2021 , 54 ( 21 ), 9879 - 9887 . doi: 10.1021/acs.macromol.1c01655 http://dx.doi.org/10.1021/acs.macromol.1c01655
Ren J. Y. ; Ouyang Q. F. ; Ma G. Q. ; Li Y. ; Lei J. ; Huang H. D. ; Jia L. C. ; Lin H. ; Zhong G. J. ; Li Z. M. Enhanced dielectric and ferroelectric properties of poly(vinylidene fluoride) through annealing oriented crystallites under high pressure . Macromolecules , 2022 , 55 ( 6 ), 2014 - 2027 . doi: 10.1021/acs.macromol.1c02436 http://dx.doi.org/10.1021/acs.macromol.1c02436
Baer E. ; Zhu L. 50 th Anniversary perspective: dielectric phenomena in polymers and multilayered dielectric films . Macromolecules , 2017 , 50 ( 6 ), 2239 - 2256 . doi: 10.1021/acs.macromol.6b02669 http://dx.doi.org/10.1021/acs.macromol.6b02669
Chen Y. ; Chen X. Y. ; Wang Y. ; Nie Z. ; Wang X. ; Tan J. X. ; Zhuang Y. B. ; Liu X. Y. ; Wang X. Increasing twist rigidity to prepare polyimides with low dielectric constants and dissipation factors over a wide temperature range . Macromolecules , 2023 , 56 ( 23 ), 9379 - 9388 . doi: 10.1021/acs.macromol.3c01690 http://dx.doi.org/10.1021/acs.macromol.3c01690
Liu C. Y. ; Li D. L. ; Li Y. ; Xu L. ; Meng X. ; Zhong G. J. ; Huang H. D. ; Li Z. M. Enhanced quasilinear dielectric behavior of polyvinylidene fluoride via confined crystallization and aligned dipole polarization . Macromolecules , 2022 , 55 ( 21 ), 9680 - 9689 . doi: 10.1021/acs.macromol.2c01783 http://dx.doi.org/10.1021/acs.macromol.2c01783
Yanaka A. ; Sakai W. ; Kinashi K. ; Tsutsumi N. Ferroelectric performance of nylons 6-12, 10-12, 11-12, and 12-12 . RSC Adv. , 2020 , 10 ( 27 ), 15740 - 15750 . doi: 10.1039/d0ra02310h http://dx.doi.org/10.1039/d0ra02310h
Chen G. L. ; Liang Y. R. ; Xiang D. ; Wen S. P. ; Liu L. Relationship between microstructure and dielectric property of hydroxyl-terminated butadiene—acrylonitrile copolymer-based polyurethanes . J. Mater. Sci. , 2017 , 52 ( 17 ), 10321 - 10330 . doi: 10.1007/s10853-017-1170-y http://dx.doi.org/10.1007/s10853-017-1170-y
Luo H. ; Wang F. ; Guo R. ; Zhang D. ; He G. H. ; Chen S. ; Wang Q. Progress on polymer dielectrics for electrostatic capacitors application . Adv. Sci. , 2022 , 9 ( 29 ), 2202438 . doi: 10.1002/advs.202202438 http://dx.doi.org/10.1002/advs.202202438
Wei J. J. ; Zhang Z. B. ; Tseng J. K. ; Treufeld I. ; Liu X. B. ; Litt M. H. ; Zhu L. Achieving high dielectric constant and low loss property in a dipolar glass polymer containing strongly dipolar and small-sized sulfone groups . ACS Appl. Mater. Interfaces , 2015 , 7 ( 9 ), 5248 - 5257 . doi: 10.1021/am508488w http://dx.doi.org/10.1021/am508488w
Feng Q. K. ; Zhong S. L. ; Pei J. Y. ; Zhao Y. ; Zhang D. L. ; Liu D. F. ; Zhang Y. X. ; Dang Z. M. Recent progress and future prospects on all-organic polymer dielectrics for energy storage capacitors . Chem. Rev. , 2022 , 122 ( 3 ), 3820 - 3878 . doi: 10.1021/acs.chemrev.1c00793 http://dx.doi.org/10.1021/acs.chemrev.1c00793
成桑 , 李雨抒 , 梁家杰 , 李琦 . 介电高分子及其纳米复合材料的电容储能应用 . 高分子学报 , 2020 , 51 ( 5 ): 469 - 483 . doi: 10.11777/j.issn1000-3304.2020.20001 http://dx.doi.org/10.11777/j.issn1000-3304.2020.20001
Zhang Z. B. ; Wang D. D. H. ; Litt P. M. H. ; Tan D. L. ; Zhu P. L. High-temperature and high-energy-density dipolar glass polymers based on sulfonylated poly ( 2 , 6 -dimethyl-1,4 -phenylene oxide) . Angew. Chem. Int. Ed., 2018, 57 ( 6 ), 1528 - 1531 . doi: 10.1002/anie.201710474 http://dx.doi.org/10.1002/anie.201710474
Omote K. ; Ohigashi H. ; Koga K. Temperature dependence of elastic, dielectric, and piezoelectric properties of "single crystalline" films of vinylidene fluoride trifluoroethylene copolymer . J. Appl. Phys. , 1997 , 81 ( 6 ), 2760 - 2769 . doi: 10.1063/1.364300 http://dx.doi.org/10.1063/1.364300
Chen X. ; Qin H. ; Qian X. ; Zhu W. ; Li B. ; Zhang B. ; Lu W. ; Li R. ; Zhang S. ; Zhu L. ; Domingues Dos Santos F. ; Bernholc J. ; Zhang Q. M. Relaxor ferroelectric polymer exhibits ultrahigh electromechanical coupling at low electric field . Science , 2022 , 375 ( 6587 ), 1418 - 1422 . doi: 10.1126/science.abn0936 http://dx.doi.org/10.1126/science.abn0936
Mao J. L. ; Wang S. ; Cheng Y. H. ; Xiao B. ; Zhang L. ; Ai D. ; Chen Y. ; Sun W. J. ; Luo J. M. High energy storage density and efficiency achieved in dielectric films functionalized with strong electronegative asymmetric halogen-phenyl groups . Chem. Eng. J. , 2022 , 444 , 136331 . doi: 10.1016/j.cej.2022.136331 http://dx.doi.org/10.1016/j.cej.2022.136331
Deshmukh A. A. ; Wu C. ; Yassin O. ; Mishra A. ; Chen L. H. ; Alamri A. ; Li Z. Z. ; Zhou J. R. ; Mutlu Z. ; Sotzing M. ; Rajak P. ; Shukla S. ; Vellek J. ; Baferani M. A. ; Cakmak M. ; Vashishta P. ; Ramprasad R. ; Cao Y. ; Sotzing G. Flexible polyolefin dielectric by strategic design of organic modules for harsh condition electrification . Energy Environ. Sci. , 2022 , 15 ( 3 ), 1307 - 1314 . doi: 10.1039/d1ee02630e http://dx.doi.org/10.1039/d1ee02630e
Fan B. H. ; Zhou M. Y. ; Zhang C. ; He D. L. ; Bai J. B. Polymer-based materials for achieving high energy density film capacitors . Prog. Polym. Sci. , 2019 , 97 , 101143 . doi: 10.1016/j.progpolymsci.2019.06.003 http://dx.doi.org/10.1016/j.progpolymsci.2019.06.003
Zhang Y. ; Wang T. ; Bai J. ; You W. Repurposing mitsunobu reactions as a generic approach toward polyethylene derivatives . ACS Macro Lett. , 2022 , 11 ( 1 ), 33 - 38 . doi: 10.1021/acsmacrolett.1c00689 http://dx.doi.org/10.1021/acsmacrolett.1c00689
张银 , 王煜 , 尤伟 . 聚乙烯接枝香豆素衍生物作为多功能助剂的应用探究 . 高分子学报 , 2023 , 54 ( 12 ), 1836 - 1843 .
Zhang Y. ; Wang Y. ; You W. Application of ferrocene-grafted polyethylene as UV-absorbers . J. Appl. Polym. Sci. , 2023 , 140 ( 47 ), e 54711 . doi: 10.1002/app.54711 http://dx.doi.org/10.1002/app.54711
Zhong B. ; Zhang Y. ; You W. ; Wang Y. Investigation of the influence of substituents on the dielectric properties of polyethylene derivatives . RSC Appl. Polym. , 2024 , 10.1039/d4lp00117f . doi: 10.1039/d4lp00117f http://dx.doi.org/10.1039/d4lp00117f
Liu X. Z. ; Wei Y. N. ; Zhang X. ; Qin L. Q. ; Wei Z. X. ; Huang H. An A-D-a′-D-a type unfused nonfullerene acceptor for organic solar cells with approaching 14% efficiency . Sci. China Chem. , 2021 , 64 ( 2 ), 228 - 231 . doi: 10.1007/s11426-020-9868-8 http://dx.doi.org/10.1007/s11426-020-9868-8
Zhang Y. ; Li H. Y. ; Luo Z. ; Li M. R. ; Liu T. T. ; Liu W. W. ; Li Q. ; Hu Y. L. Synthesis of polyethylene-grafted phosphite antioxidant and its antioxidant behavior in polypropylene . Macromol. Chem. Phys. , 2020 , 221 ( 7 ), 1900540 . doi: 10.1002/macp.201900540 http://dx.doi.org/10.1002/macp.201900540
Zhang Y. ; Li H. Y. ; Li M. R. ; Liu W. W. ; Li Q. ; Hu Y. L. Synthesis and properties of novel polyethylene-based antioxidants with hindered phenols as side groups . Macromol. Chem. Phys. , 2020 , 221 ( 3 ), 1900410 . doi: 10.1002/macp.201900410 http://dx.doi.org/10.1002/macp.201900410
Tan C. ; Chen M. ; Zou C. ; Chen C. L. Potentially practical catalytic systems for olefin-polar monomer coordination copolymerization . CCS Chem. , 2024 , 6 ( 4 ), 882 - 897 . doi: 10.31635/ccschem.023.202303322 http://dx.doi.org/10.31635/ccschem.023.202303322
Chen D. J. ; Gao D. Y. ; Marks P. T. J. Early transition metal catalysis for olefin-polar monomer copolymerization . Angew. Chem. Int. Ed. , 2020 , 59 ( 35 ), 14726 - 14735 . doi: 10.1002/anie.202000060 http://dx.doi.org/10.1002/anie.202000060
Mu H. L. ; Zhou G. L. ; Hu X. Q. ; Jian Z. B. Recent advances in nickel mediated copolymerization of olefin with polar monomers . Coord. Chem. Rev. , 2021 , 435 , 213802 . doi: 10.1016/j.ccr.2021.213802 http://dx.doi.org/10.1016/j.ccr.2021.213802
Nakamura A. ; Ito S. ; Nozaki K. Coordination-insertion copolymerization of fundamental polar monomers . Chem. Rev. , 2009 , 109 ( 11 ), 5215 - 5244 . doi: 10.1021/cr900079r http://dx.doi.org/10.1021/cr900079r
Na Y. N. ; Chen P. C. Catechol-functionalized polyolefins . Angew. Chem. Int. Ed. , 2020 , 59 ( 20 ), 7953 - 7959 . doi: 10.1002/anie.202000848 http://dx.doi.org/10.1002/anie.202000848
Tammann G. ; Hesse W. Die abhängigkeit der viscosität von der temperatur Bie unterkühlten Flüssigkeiten . Z. Für Anorg. Und Allg. Chem. , 1926 , 156 ( 1 ), 245 - 257 . doi: 10.1002/zaac.19261560121 http://dx.doi.org/10.1002/zaac.19261560121
Krupa I. ; Luyt A. S. Thermal and mechanical properties of extruded LLDPE/wax blends . Polym. Degrad. Stab. , 2001 , 73 ( 1 ), 157 - 161 . doi: 10.1016/s0141-3910(01)00082-9 http://dx.doi.org/10.1016/s0141-3910(01)00082-9
0
Views
257
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution