浏览全部资源
扫码关注微信
中国科学院长春应用化学研究所 中国科学院生态环境高分子材料重点实验室 长春 130022
Received:04 November 2024,
Accepted:2024-12-19,
Published Online:23 January 2025,
Published:20 March 2025
移动端阅览
李茂盛, 陶友华. 从O-羧基环内酸酐的开环聚合到阴离子结合催化聚合方法的发现. 高分子学报, 2025, 56(3), 361-376
Li, M. S.; Tao, Y. H. From ring-opening polymerization of O-carboxyanhydride to the discovery of anion-binding catalytic polymerization. Acta Polymerica Sinica, 2025, 56(3), 361-376
李茂盛, 陶友华. 从O-羧基环内酸酐的开环聚合到阴离子结合催化聚合方法的发现. 高分子学报, 2025, 56(3), 361-376 DOI: 10.11777/j.issn1000-3304.2024.24271. CSTR: 32057.14.GFZXB.2024.7335.
Li, M. S.; Tao, Y. H. From ring-opening polymerization of O-carboxyanhydride to the discovery of anion-binding catalytic polymerization. Acta Polymerica Sinica, 2025, 56(3), 361-376 DOI: 10.11777/j.issn1000-3304.2024.24271. CSTR: 32057.14.GFZXB.2024.7335.
随着全球社会对可持续发展的日益重视,探索高效、绿色、安全及经济的可持续聚合新方法,实现高分子材料的精准合成,已成为高分子合成化学的研究重点. 近年来,我们突破链式聚合主要依赖金属催化剂调控链末端的局限,创新性地提出阴离子结合催化聚合理念,旨在通过氢键给体与阴离子物种之间的非共价相互作用来动态结合、识别与活化链末端,从而实现聚合活性和选择性的统一. 本文首先从
O
-羧基环内酸酐单体的开环聚合研究出发,综述了该领域的发展脉络和代表性研究进展. 接着,回顾和梳理了我们针对该领域的关键挑战而开展的系列研究工作,重点介绍了阴离子结合催化聚合方法的提出背景与建立过程. 最后,展望了这种新兴催化聚合方法的未来发展趋势. 我们相信,利用非共价相互作用来催化挑战性的离子聚合,代表了一个前景广阔的聚合催化研究新方向,必将在推动高分子科学及其产业的可持续发展中发挥重要作用.
With the increasingly emphasizes on sustainable development
exploring efficient
green
safe
and economical new sustainable polymerization methodologies has become a central focus in polymer synthesis. To address the limitations of chain polymerization primarily relying on metal catalysts to regulate chain ends
we have recently developed an innovative concept of anion-binding catalytic polymerization
where the hydrogen bond donors could leverage non-covalent anion-binding interactions to dynamically bind
recognize and activate propagating species
thereby achieving ideal polymerization activity and selectivity. This article begins by reviewing the development and representative research progress in ring-opening p
olymerization (ROP) of
O
-carboxyanhydrides (OCA). It then revisits and organizes our series of research efforts for addressing key challenges in this area
with a particular focus on the background and establishment of the anion-binding catalytic polymerization method. Finally
we discuss the future development trends of this emerging catalytic polymerization approach. We believe that utilizing non-covalent interactions to catalyze challenging ionic polymerization represents a promising new direction in polymerization catalysis
which will significantly contribute to the sustainable development of polymer science and its associated industries.
Staudinger, H. Über polymerisation . Ber. Dtsch. Chem. Ges. A/B , 1920 , 53 ( 6 ), 1073 - 1085 . doi: 10.1002/cber.19200530627 http://dx.doi.org/10.1002/cber.19200530627
安泽胜 , 陈昶乐 , 何军坡 , 洪春雁 , 李志波 , 李子臣 , 刘超 , 吕小兵 , 秦安军 , 曲程科 , 唐本忠 , 陶友华 , 宛新华 , 王国伟 , 王佳 , 郑轲 , 邹文凯 . 中国高分子合成化学的研究与发展动态 . 高分子学报 , 2019 , 50 ( 10 ), 1083 - 1132 . doi: 10.11777/j.issn1000-3304.2019.19136 http://dx.doi.org/10.11777/j.issn1000-3304.2019.19136
陈学思 , 陈国强 , 陶友华 , 王玉忠 , 吕小兵 , 张立群 , 朱锦 , 张军 , 王献红 . 生态环境高分子的研究进展 . 高分子学报 , 2019 , 50 ( 10 ), 1068 - 1082 . doi: 10.11777/j.issn1000-3304.2019.19124 http://dx.doi.org/10.11777/j.issn1000-3304.2019.19124
张留乔 , 黄智豪 , 张正彪 , 朱秀林 . 序列可控高分子的合成及应用 . 高分子学报 , 2018 , ( 9 ), 1144 - 1154 . doi: 10.11777/j.issn1000-3304.2018.18101 http://dx.doi.org/10.11777/j.issn1000-3304.2018.18101
Kato M. ; Kamigaito M. ; Sawamoto M. ; Higashimura T. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine)ruthenium(II)/methylaluminum bis ( 2 , 6 -di-tert-butylphenoxide) initiating system: possibility of living radical polymerization . Macromolecules, 1995, 28 ( 5 ), 1721 - 1723 . doi: 10.1021/ma00109a056 http://dx.doi.org/10.1021/ma00109a056
Wang J. S. ; Matyjaszewski K. Controlled/"living" radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes . J. Am. Chem. Soc. , 1995 , 117 ( 20 ), 5614 - 5615 . doi: 10.1021/ja00125a035 http://dx.doi.org/10.1021/ja00125a035
Grubbs R. H. ; Tumas W. Polymer synthesis and organotransition metal chemistry . Science , 1989 , 243 ( 4893 ), 907 - 915 . doi: 10.1126/science.2645643 http://dx.doi.org/10.1126/science.2645643
Lund H. ; Hanngren Å. ; Theander O. ; Zackrisson M. ; Ernster L. ; Diczfalusy E. Infrared spectra properties of hydrogen bonding systems containing anions . Acta Chem. Scand. , 1958 , 12 , 298 - 302 . doi: 10.3891/acta.chem.scand.12-0298 http://dx.doi.org/10.3891/acta.chem.scand.12-0298
Hedstrom L. Serine protease mechanism and specificity . Chem. Rev. , 2002 , 102 ( 12 ), 4501 - 4524 . doi: 10.1021/cr000033x http://dx.doi.org/10.1021/cr000033x
Dutzler R. ; Campbell E. B. ; Cadene M. ; Chait B. T. ; MacKinnon R. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity . Nature , 2002 , 415 ( 6869 ), 287 - 294 . doi: 10.1038/415287a http://dx.doi.org/10.1038/415287a
Dutzler R. ; Campbell E. B. ; MacKinnon R. Gating the selectivity filter in ClC chloride channels . Science , 2003 , 300 ( 5616 ), 108 - 112 . doi: 10.1126/science.1082708 http://dx.doi.org/10.1126/science.1082708
Davis A. P. ; Sheppard D. N. ; Smith B. D. Development of synthetic membrane transporters for anions . Chem. Soc. Rev. , 2007 , 36 ( 2 ), 348 - 357 . doi: 10.1039/b512651g http://dx.doi.org/10.1039/b512651g
Dressler F. ; Schreiner, P. From anion recognition to organocatalytic chemical reactions . In: Anion‐Binding Catalysis , 2022 . 1 - 77 . doi: 10.1002/9783527830664.ch1 http://dx.doi.org/10.1002/9783527830664.ch1
Beer P. D. ; Gale P. A. Anion recognition and sensing: the state of the art and future perspectives . Angew. Chem. Int. Ed. , 2001 , 40 ( 3 ), 486 - 516 . doi: 10.1002/1521-3773(20010202)40:3<486::aid-anie486>3.0.co;2-p http://dx.doi.org/10.1002/1521-3773(20010202)40:3<486::aid-anie486>3.0.co;2-p
Caltagirone C. ; Gale P. A. Anion receptor chemistry: highlights from 2007 . Chem. Soc. Rev. , 2009 , 38 ( 2 ), 520 - 563 . doi: 10.1039/b806422a http://dx.doi.org/10.1039/b806422a
Gale P. A. ; Busschaert N. ; Haynes C. J. E. ; Karagiannidis L. E. ; Kirby I. L. Anion receptor chemistry: highlights from 2011 and 2012 . Chem. Soc. Rev. , 2014 , 43 ( 1 ), 205 - 241 . doi: 10.1039/c3cs60316d http://dx.doi.org/10.1039/c3cs60316d
Busschaert N. ; Caltagirone C. ; van Rossom W. ; Gale P. A. Applications of supramolecular anion recognition . Chem. Rev. , 2015 , 115 ( 15 ), 8038 - 8155 . doi: 10.1021/acs.chemrev.5b00099 http://dx.doi.org/10.1021/acs.chemrev.5b00099
Chen L. J. ; Berry S. N. ; Wu X. ; Howe E. N. W. ; Gale P. A. Advances in anion receptor chemistry . Chem , 2020 , 6 ( 1 ), 61 - 141 . doi: 10.1016/j.chempr.2019.12.002 http://dx.doi.org/10.1016/j.chempr.2019.12.002
McNaughton D. A. ; Ryder W. G. ; Gilchrist A. M. ; Wang P. ; Fares M. ; Wu X. ; Gale P. A. New insights and discoveries in anion receptor chemistry . Chem , 2023 , 9 ( 11 ), 3045 - 3112 . doi: 10.1016/j.chempr.2023.07.006 http://dx.doi.org/10.1016/j.chempr.2023.07.006
Wang Q. Q. Anion recognition-directed supramolecular catalysis with functional macrocycles and molecular cages . Acc. Chem. Res. , 2024 , 57 ( 21 ), 3227 - 3240 . doi: 10.1021/acs.accounts.4c00583 http://dx.doi.org/10.1021/acs.accounts.4c00583
Mahlau M. ; List B. Asymmetric counteranion-directed catalysis: concept, definition, and applications . Angew. Chem. Int. Ed. , 2013 , 52 ( 2 ), 518 - 533 . doi: 10.1002/anie.201205343 http://dx.doi.org/10.1002/anie.201205343
Brak K. ; Jacobsen E. N. Asymmetric ion-pairing catalysis . Angew. Chem. Int. Ed. , 2013 , 52 ( 2 ), 534 - 561 . doi: 10.1002/anie.201205449 http://dx.doi.org/10.1002/anie.201205449
Zhang, Z. G.; Schreiner, P. R. (Thio)urea organocatalysis: what can be learnt from anion recognition? Chem. Soc. Rev. , 2009 , 38 ( 4 ), 1187 - 1198 . doi: 10.1039/b801793j http://dx.doi.org/10.1039/b801793j
Knowles R. R. ; Jacobsen E. N. Attractive noncovalent interactions in asymmetric catalysis: links between enzymes and small molecule catalysts . Proc. Natl. Acad. Sci. USA , 2010 , 107 ( 48 ), 20678 - 20685 . doi: 10.1073/pnas.1006402107 http://dx.doi.org/10.1073/pnas.1006402107
Phipps R. J. ; Hamilton G. L. ; Toste F. D. The progression of chiral anions from concepts to applications in asymmetric catalysis . Nat. Chem. , 2012 , 4 , 603 - 614 . doi: 10.1038/nchem.1405 http://dx.doi.org/10.1038/nchem.1405
Neel A. J. ; Hilton M. J. ; Sigman M. S. ; Toste F. D. Exploiting non-covalent π interactions for catalyst design . Nature , 2017 , 543 ( 7647 ), 637 - 646 . doi: 10.1038/nature21701 http://dx.doi.org/10.1038/nature21701
Macheño O. G. , ed. , Anion-Binding Catalysis , Wiley-VCH GmbH . 2022
Olivo G. ; Capocasa G. ; Del Giudice D. ; Lanzalunga O. ; Di Stefano S. New horizons for catalysis disclosed by supramolecular chemistry . Chem. Soc. Rev. , 2021 , 50 ( 13 ), 7681 - 7724 . doi: 10.1039/d1cs00175b http://dx.doi.org/10.1039/d1cs00175b
Min C. ; Seidel D. Asymmetric Brønsted acid catalysis with chiral carboxylic acids . Chem. Soc. Rev. , 2017 , 46 ( 19 ), 5889 - 5902 . doi: 10.1039/c6cs00239k http://dx.doi.org/10.1039/c6cs00239k
Kiesewetter M. K. ; Shin E. J. ; Hedrick J. L. ; Waymouth R. M. Organocatalysis: opportunities and challenges for polymer synthesis . Macromolecules , 2010 , 43 ( 5 ), 2093 - 2107 . doi: 10.1021/ma9025948 http://dx.doi.org/10.1021/ma9025948
Ottou W. N. ; Sardon H. ; Mecerreyes D. ; Vignolle J. ; Taton D. Update and challenges in organo-mediated polymerization reactions . Prog. Polym. Sci. , 2016 , 56 , 64 - 115 . doi: 10.1016/j.progpolymsci.2015.12.001 http://dx.doi.org/10.1016/j.progpolymsci.2015.12.001
Lin B. H. ; Waymouth R. M. Organic ring-opening polymerization catalysts: reactivity control by balancing acidity . Macromolecules , 2018 , 51 ( 8 ), 2932 - 2938 . doi: 10.1021/acs.macromol.8b00540 http://dx.doi.org/10.1021/acs.macromol.8b00540
Dharmaratne N. U. ; Pothupitiya J. U. ; Kiesewetter M. K. The mechanistic duality of (thio)urea organocatalysts for ring-opening polymerization . Org. Biomol. Chem. , 2019 , 17 ( 13 ), 3305 - 3313 . doi: 10.1039/c8ob03174f http://dx.doi.org/10.1039/c8ob03174f
Li M. S. ; Zhang S. ; Zhang X. Y. ; Wang Y. C. ; Chen J. L. ; Tao Y. H. ; Wang X. H. Unimolecular anion-binding catalysts for selective ring-opening polymerization of O-carboxyanhydrides . Angew. Chem. Int. Ed. , 2021 , 60 ( 11 ), 6003 - 6012 . doi: 10.1002/anie.202011352 http://dx.doi.org/10.1002/anie.202011352
Lv W. X. ; Wang Y. C. ; Li M. S. ; Wang X. H. ; Tao Y. H. Precision synthesis of polypeptides via living anionic ring-opening polymerization of N -carboxyanhydrides by tri-thiourea catalysts . J. Am. Chem. Soc. , 2022 , 144 ( 51 ), 23622 - 23632 . doi: 10.1021/jacs.2c10950 http://dx.doi.org/10.1021/jacs.2c10950
Miyamoto M. ; Sawamoto M. ; Higashimura T. Living polymerization of isobutyl vinyl ether with hydrogen iodide/iodine initiating system . Macromolecules , 1984 , 17 ( 3 ), 265 - 268 . doi: 10.1021/ma00133a001 http://dx.doi.org/10.1021/ma00133a001
Faust R. ; Kennedy J. P. Living carbocationic polymerization . Polym. Bull. , 1986 , 15 ( 4 ), 317 - 323 . doi: 10.1007/bf00254850 http://dx.doi.org/10.1007/bf00254850
Sawamoto M. Modern cationic vinyl polymerization . Prog. Polym. Sci. , 1991 , 16 ( 1 ), 111 - 172 . doi: 10.1016/0079-6700(91)90008-9 http://dx.doi.org/10.1016/0079-6700(91)90008-9
Matyjaszewski K. ; Sigwalt P. Unified approach to living and non-living cationic polymerization of alkenes . Polym. Int. , 1994 , 35 ( 1 ), 1 - 26 . doi: 10.1002/pi.1994.210350101 http://dx.doi.org/10.1002/pi.1994.210350101
Li M. S. ; Zhang Z. ; Yan Y. ; Lv W. X. ; Li Z. K. ; Wang X. H. ; Tao Y. H. Anion-binding catalysis enables living cationic polymerization . Nat. Synth. , 2022 , 1 , 815 - 823 . doi: 10.1038/s44160-022-00142-0 http://dx.doi.org/10.1038/s44160-022-00142-0
Li M. S. ; Li H. Y. ; Zhang X. Y. ; Wang X. H. ; Tao Y. H. Mechanistic insight into anion-binding catalytic living cationic polymerization . Angew. Chem. Int. Ed. , 2023 , 62 ( 26 ), e 202303237 . doi: 10.1002/anie.202303237 http://dx.doi.org/10.1002/anie.202303237
Davies W. H. 302. Anhydrocarboxy-derivatives of hydroxy- and mercapto-acids . J. Chem. Soc. , 1951 , 1357 . doi: 10.1039/jr9510001357 http://dx.doi.org/10.1039/jr9510001357
Farthing A. C. ; Reynolds R. J. W. Anhydro- N -carboxy- DL - β -phenylalanine . Nature , 1950 , 165 , 647 . doi: 10.1038/165647a0 http://dx.doi.org/10.1038/165647a0
Tighe B. J. Ring opening reactions of 5 , 5 -dimethyl-1,3-dioxolan-2,4 -dione . Chem. Ind. 1969, ( 51 ), 1837 .
Smith I. J. ; Tighe B. J. Studies in ring-opening polymerization. IV. Thermal polymerization of phenyl-substituted 1,3-dioxolan-2,4-diones . J. Polym. Sci. Polym. Chem. Ed. , 1976 , 14 ( 4 ), 949 - 960 . doi: 10.1002/pol.1976.170140415 http://dx.doi.org/10.1002/pol.1976.170140415
Smith I. J. ; Tighe B. J. S tudies in ring opening polymerisation, 6. Tertiary base initiated polymerisation of 5-phenyl-1,3-dioxolan-2,4-dione . Makromol. Chem. , 1981 , 182 ( 2 ), 313 - 324 . doi: 10.1002/macp.1981.021820204 http://dx.doi.org/10.1002/macp.1981.021820204
Kricheldorf H. ; Jonté J. New polymer syntheses . Polym. Bull. , 1983 , 9 , 276 - 283 .
Thillaye du Boullay O. ; Marchal E. ; Martin-Vaca B. ; Cossío F. P. ; Bourissou D. An activated equivalent of lactide toward organocatalytic ring-opening polymerization . J. Am. Chem. Soc. , 2006 , 128 ( 51 ), 16442 - 16443 . doi: 10.1021/ja067046y http://dx.doi.org/10.1021/ja067046y
Hillmyer M. A. ; Tolman W. B. Aliphatic polyester block polymers: renewable, degradable, and sustainable . Acc. Chem. Res. , 2014 , 47 ( 8 ), 2390 - 2396 . doi: 10.1021/ar500121d http://dx.doi.org/10.1021/ar500121d
Schneiderman D. K. ; Hillmyer M. A. 50 th Anniversary perspective: There is a great future in sustainable polymers . Macromolecules , 2017 , 50 ( 10 ), 3733 - 3749 . doi: 10.1021/acs.macromol.7b00293 http://dx.doi.org/10.1021/acs.macromol.7b00293
Haque F. M. ; Ishibashi J. S. A. ; Lidston C. A. L. ; Shao H. L. ; Bates F. S. ; Chang A. B. ; Coates G. W. ; Cramer C. J. ; Dauenhauer P. J. ; Dichtel W. R. ; Ellison C. J. ; Gormong E. A. ; Hamachi L. S. ; Hoye T. R. ; Jin M. Y. ; Kalow J. A. ; Kim H. J. ; Kumar G. ; LaSalle C. J. ; Liffland S. ; Lipinski B. M. ; Pang Y. T. ; Parveen R. ; Peng X. Y. ; Popowski Y. ; Prebihalo E. A. ; Reddi Y. ; Reineke T. M. ; Sheppard D. T. ; Swartz J. L. ; Tolman W. B. ; Vlaisavljevich B. ; Wissinger J. ; Xu S. ; Hillmyer M. A. Defining the macromolecules of tomorrow through synergistic sustainable polymer research . Chem. Rev. , 2022 , 122 ( 6 ), 6322 - 6373 . doi: 10.1021/acs.chemrev.1c00173 http://dx.doi.org/10.1021/acs.chemrev.1c00173
Dechy-Cabaret O. ; Martin-Vaca B. ; Bourissou D. Controlled ring-opening polymerization of lactide and glycolide . Chem. Rev. , 2004 , 104 ( 12 ), 6147 - 6176 . doi: 10.1021/cr040002s http://dx.doi.org/10.1021/cr040002s
Ovitt T. M. ; Coates G. W. Stereochemistry of lactide polymerization with chiral catalysts: new opportunities for stereocontrol using polymer exchange mechanisms . J. Am. Chem. Soc. , 2002 , 124 ( 7 ), 1316 - 1326 . doi: 10.1021/ja012052+ http://dx.doi.org/10.1021/ja012052+
Liao X. ; Su Y. ; Tang X. Y. Stereoselective synthesis of biodegradable polymers by salen-type metal catalysts . Sci. China Chem. , 2022 , 65 ( 11 ), 2096 - 2121 . doi: 10.1007/s11426-022-1377-5 http://dx.doi.org/10.1007/s11426-022-1377-5
Kamber N. E. ; Jeong W. ; Waymouth R. M. ; Pratt R. C. ; Lohmeijer B. G. G. ; Hedrick J. L. Organocatalytic ring-opening polymerization . Chem. Rev. , 2007 , 107 ( 12 ), 5813 - 5840 . doi: 10.1021/cr068415b http://dx.doi.org/10.1021/cr068415b
Martin Vaca B. ; Bourissou D. O-carboxyanhydrides: useful tools for the preparation of well-defined functionalized polyesters . ACS Macro Lett. , 2015 , 4 ( 7 ), 792 - 798 . doi: 10.1021/acsmacrolett.5b00376 http://dx.doi.org/10.1021/acsmacrolett.5b00376
Xie L. H. ; Tong R. ; Feng Q. Y. ; Zhong Y. L. Recent advances in ring-opening polymerization of O-carboxyanhydrides . Synlett , 2017 , 28 ( 15 ), 1857 - 1866 . doi: 10.1055/s-0036-1590841 http://dx.doi.org/10.1055/s-0036-1590841
Tong R. New chemistry in functional aliphatic polyesters . Ind. Eng. Chem. Res. , 2017 , 56 ( 15 ), 4207 - 4219 . doi: 10.1021/acs.iecr.7b00524 http://dx.doi.org/10.1021/acs.iecr.7b00524
Zhong Y. L. ; Tong R. Living ring-opening polymerization of O -carboxyanhydrides: the search for catalysts . Front. Chem. , 2018 , 6 , 641 . doi: 10.3389/fchem.2018.00641 http://dx.doi.org/10.3389/fchem.2018.00641
Wang X. Q. ; Chin A. L. ; Tong R. Controlled ring-opening polymerization of O -carboxyanhydrides to synthesize functionalized poly( α -hydroxy acids) . Org. Mater. , 2021 , 3 ( 1 ), 41 - 50 .
Yin Q. ; Yin L. C. ; Wang H. ; Cheng J. J. Synthesis and biomedical applications of functional poly( α -hydroxy acids) via ring-opening polymerization of O -carboxyanhydrides . Acc. Chem. Res. , 2015 , 48 ( 7 ), 1777 - 1787 . doi: 10.1021/ar500455z http://dx.doi.org/10.1021/ar500455z
Wang J. Q. ; Tao Y. H. Synthesis of sustainable polyesters via organocatalytic ring-opening polymerization of o -carboxyanhydrides: advances and perspectives . Macromol. Rapid Commun. , 2021 , 42 ( 3 ), 2000535 . doi: 10.1002/marc.202000535 http://dx.doi.org/10.1002/marc.202000535
Liang J. P. ; Yang J. Sequence-controlled copolymerization of salicylic O -carboxyanhydrides by organocatalysts . Macromolecules , 2024 , 57 ( 8 ), 3623 - 3635 . doi: 10.1021/acs.macromol.4c00563 http://dx.doi.org/10.1021/acs.macromol.4c00563
Thillaye du Boullay O. ; Bonduelle C. ; Martin-Vaca B. ; Bourissou D. Functionalized polyesters from organocatalyzed ROP of gluOCA, the O -carboxyanhydride derived from glutamic acid . Chem. Commun. , 2008 , ( 15 ), 1786 - 1788 . doi: 10.1039/b800852c http://dx.doi.org/10.1039/b800852c
Lu Y. B. ; Yin L. C. ; Zhang Y. F. ; Zhang Z. H. ; Xu Y. X. ; Tong R. ; Cheng J. J. Synthesis of water-soluble poly( α - hydroxy acids) from living ring-opening polymerization of O-benzyl-l-serine carboxyanhydrides . ACS Macro Lett. , 2012 , 1 ( 4 ), 441 - 444 . doi: 10.1021/mz200165c http://dx.doi.org/10.1021/mz200165c
Chen X. Y. ; Lai H. W. ; Xiao C. S. ; Tian H. Y. ; Chen X. S. ; Tao Y. H. ; Wang X. H. New bio-renewable polyester with rich side amino groups from l-lysine via controlled ring-opening polymerization . Polym. Chem. , 2014 , 5 ( 22 ), 6495 - 6502 . doi: 10.1039/c4py00930d http://dx.doi.org/10.1039/c4py00930d
Bonduelle C. ; Martín-Vaca B. ; Cossío F. P. ; Bourissou D. Monomer versus alcohol activation in the 4-dimethylaminopyridine-catalyzed ring-opening polymerization of lactide and lactic O-carboxylic anhydride . Chemistry , 2008 , 14 ( 17 ), 5304 - 5312 . doi: 10.1002/chem.200800346 http://dx.doi.org/10.1002/chem.200800346
Pounder R. J. ; Fox D. J. ; Barker I. A. ; Bennison M. J. ; Dove A. P. Ring-opening polymerization of an O -carboxyanhydride monomer derived from l-malic acid . Polym. Chem. , 2011 , 2 ( 10 ), 2204 - 2212 . doi: 10.1039/c1py00254f http://dx.doi.org/10.1039/c1py00254f
Buchard A. ; Carbery D. R. ; Davidson M. G. ; Ivanova P. K. ; Jeffery B. J. ; Kociok-Köhn G. I. ; Lowe J. P. Preparation of stereoregular isotactic poly(mandelic acid) through organocatalytic ring-opening polymerization of a cyclic O -carboxyanhydride . Angew. Chem. Int. Ed , 2014 , 53 ( 50 ), 13858 - 13861 . doi: 10.1002/anie.201407525 http://dx.doi.org/10.1002/anie.201407525
Bexis P. ; De Winter J. ; Coulembier O. ; Dove A. P. Isotactic degradable polyesters derived from O-carboxyanhydrides of l-lactic and l-malic acid using a single organocatalyst/initiator system . Eur. Polym. J. , 2017 , 95 , 660 - 670 . doi: 10.1016/j.eurpolymj.2017.05.038 http://dx.doi.org/10.1016/j.eurpolymj.2017.05.038
Wang R. B. ; Zhang J. W. ; Yin Q. ; Xu Y. X. ; Cheng J. J. ; Tong R. Controlled ring-opening polymerization of O -carboxyanhydrides using a β -diiminate zinc catalyst . Angew. Chem. Int. Ed. , 2016 , 55 ( 42 ), 13010 - 13014 . doi: 10.1002/anie.201605508 http://dx.doi.org/10.1002/anie.201605508
Sun Y. Y. ; Jia Z. W. ; Chen C. J. ; Cong Y. ; Mao X. Y. ; Wu J. C. Alternating sequence controlled copolymer synthesis of α-hydroxy acids via syndioselective ring-opening polymerization of O -carboxyanhydrides using zirconium/hafnium alkoxide initiators . J. Am. Chem. Soc. , 2017 , 139 ( 31 ), 10723 - 10732 . doi: 10.1021/jacs.7b04712 http://dx.doi.org/10.1021/jacs.7b04712
Cui Y. Q. ; Jiang J. X. ; Pan X. B. ; Wu J. C. Highly isoselective ring-opening polymerization of rac- O -carboxyanhydrides using a zinc alkoxide initiator . Chem. Commun. , 2019 , 55 ( 86 ), 12948 - 12951 . doi: 10.1039/c9cc06108h http://dx.doi.org/10.1039/c9cc06108h
Jiang J. X. ; Cui Y. Q. ; Lu Y. G. ; Zhang B. ; Pan X. B. ; Wu J. C. Weak lewis pairs as catalysts for highly isoselective ring-opening polymerization of epimerically labile rac - O -carboxyanhydride of mandelic acid . Macromolecules , 2020 , 53 ( 3 ), 946 - 955 . doi: 10.1021/acs.macromol.9b02302 http://dx.doi.org/10.1021/acs.macromol.9b02302
Feng Q. Y. ; Tong R. Controlled photoredox ring-opening polymerization of O -carboxyanhydrides . J. Am. Chem. Soc. , 2017 , 139 ( 17 ), 6177 - 6182 . doi: 10.1021/jacs.7b01462 http://dx.doi.org/10.1021/jacs.7b01462
Feng Q. Y. ; Yang L. ; Zhong Y. L. ; Guo D. ; Liu G. L. ; Xie L. H. ; Huang W. ; Tong R. Stereoselective photoredox ring-opening polymerization of O -carboxyanhydrides . Nat. Commun. , 2018 , 9 ( 1 ), 1559 . doi: 10.1038/s41467-018-03879-5 http://dx.doi.org/10.1038/s41467-018-03879-5
Zhong Y. L. ; Feng Q. Y. ; Wang X. Q. ; Chen J. ; Cai W. J. ; Tong R. Functionalized polyesters via stereoselective electrochemical ring-opening polymerization of O -carboxyanhydrides . ACS Macro Lett. , 2020 , 9 ( 8 ), 1114 - 1118 . doi: 10.1021/acsmacrolett.0c00364 http://dx.doi.org/10.1021/acsmacrolett.0c00364
Wang X. Q. ; Chin A. L. ; Zhou J. Y. ; Wang H. ; Tong R. Resilient poly( α -hydroxy acids) with improved strength and ductility via scalable stereosequence-controlled polymerization . J. Am. Chem. Soc. , 2021 , 143 ( 40 ), 16813 - 16823 . doi: 10.1021/jacs.1c08802 http://dx.doi.org/10.1021/jacs.1c08802
MacMillan D. W. C. The advent and development of organocatalysis . Nature , 2008 , 455 ( 7211 ), 304 - 308 . doi: 10.1038/nature07367 http://dx.doi.org/10.1038/nature07367
Doyle A. G. ; Jacobsen E. N. Small-molecule H-bond donors in asymmetric catalysis . Chem. Rev. , 2007 , 107 ( 12 ), 5713 - 5743 . doi: 10.1021/cr068373r http://dx.doi.org/10.1021/cr068373r
Liu T. Q. ; Simmons T. L. ; Bohnsack D. A. ; MacKay M. E. ; Smith M. R. ; Baker G. L. Synthesis of polymandelide: a degradable polylactide derivative with polystyrene-like properties . Macromolecules , 2007 , 40 ( 17 ), 6040 - 6047 . doi: 10.1021/ma061839n http://dx.doi.org/10.1021/ma061839n
Taylor M. S. ; Jacobsen E. N. Asymmetric catalysis by chiral hydrogen-bond donors . Angew. Chem. Int. Ed. , 2006 , 45 ( 10 ), 1520 - 1543 . doi: 10.1002/anie.200503132 http://dx.doi.org/10.1002/anie.200503132
Miyabe H. ; Takemoto Y. Discovery and application of asymmetric reaction by multi-functional thioureas . Bull. Chem. Soc. Jpn. , 2008 , 81 ( 7 ), 785 - 795 . doi: 10.1246/bcsj.81.785 http://dx.doi.org/10.1246/bcsj.81.785
Chauhan P. ; Mahajan S. ; Kaya U. ; Hack D. ; Enders D. Bifunctional amine-squaramides: powerful hydrogen-bonding organocatalysts for asymmetric domino/cascade reactions . Adv. Synth. Catal. , 2015 , 357 ( 2-3 ), 253 - 281 . doi: 10.1002/adsc.201401003 http://dx.doi.org/10.1002/adsc.201401003
Takemoto Y. ; Yamaoka Y. ; Miyabe H. ; Yasui Y. Chiral-thiourea-catalyzed direct mannich reaction . Synthesis , 2007 , 2007( 16 ), 2571 - 2575 . doi: 10.1055/s-2007-983795 http://dx.doi.org/10.1055/s-2007-983795
Okino T. ; Hoashi Y. ; Takemoto Y. Enantioselective Michael reaction of malonates to nitroolefins catalyzed by bifunctional organocatalysts . J. Am. Chem. Soc. , 2003 , 125 ( 42 ), 12672 - 12673 . doi: 10.1021/ja036972z http://dx.doi.org/10.1021/ja036972z
Okino T. ; Hoashi Y. ; Furukawa T. ; Xu X. N. ; Takemoto Y. Enantio- and diastereoselective Michael reaction of 1 , 3 -dicarbonyl compounds to nitroolefins catalyzed by a bifunctional thiourea . J. Am. Chem. Soc., 2005, 127 ( 1 ), 119 - 125 . doi: 10.1021/ja044370p http://dx.doi.org/10.1021/ja044370p
Dove A. P. ; Pratt R. C. ; Lohmeijer B. G. G. ; Waymouth R. M. ; Hedrick J. L. Thiourea-based bifunctional organocatalysis: supramolecular recognition for living polymerization . J. Am. Chem. Soc. , 2005 , 127 ( 40 ), 13798 - 13799 . doi: 10.1021/ja0543346 http://dx.doi.org/10.1021/ja0543346
Zhu J. B. ; Chen E. Y. X. From meso-lactide to isotactic polylactide: epimerization by B/N lewis pairs and kinetic resolution by organic catalysts . J. Am. Chem. Soc. , 2015 , 137 ( 39 ), 12506 - 12509 . doi: 10.1021/jacs.5b08658 http://dx.doi.org/10.1021/jacs.5b08658
Geng X. W. ; Liu X. ; Yu Q. L. ; Zhang C. J. ; Zhang X. H. Advancing H-bonding organocatalysis for ring-opening polymerization: intramolecular activation of initiator/chain end . J. Am. Chem. Soc. , 2024 , 146 ( 37 ), 25852 - 25859 . doi: 10.1021/jacs.4c09394 http://dx.doi.org/10.1021/jacs.4c09394
Wang L. Y. ; Liu Y. Y. ; Shen Y. ; Li Z. B. Ring-opening polymerization of cyclic esters mediated by base/(thio)urea binary catalysts toward sustainable polyesters . Polym. Chem. , 2024 , 15 ( 38 ), 3832 - 3846 . doi: 10.1039/d4py00884g http://dx.doi.org/10.1039/d4py00884g
Zhang C. J. ; Wu H. L. ; Li Y. ; Yang J. L. ; Zhang X. H. Precise synthesis of sulfur-containing polymers via cooperative dual organocatalysts with high activity . Nat. Commun. , 2018 , 9 ( 1 ), 2137 . doi: 10.1038/s41467-018-04554-5 http://dx.doi.org/10.1038/s41467-018-04554-5
Zhang X. Y. ; Jones G. O. ; Hedrick J. L. ; Waymouth R. M. Fast and selective ring-opening polymerizations by alkoxides and thioureas . Nat. Chem. , 2016 , 8 ( 11 ), 1047 - 1053 . doi: 10.1038/nchem.2574 http://dx.doi.org/10.1038/nchem.2574
Zhang J. ; Lui K. H. ; Zunino R. ; Jia Y. ; Morodo R. ; Warlin N. ; Hedrick J. L. ; Talarico G. ; Waymouth R. M. Highly selective O -phenylene bisurea catalysts for ROP: stabilization of oxyanion transition state by a semiflexible hydrogen bond pocket . J. Am. Chem. Soc. , 2024 , 146 ( 32 ), 22295 - 22305 . doi: 10.1021/jacs.4c04740 http://dx.doi.org/10.1021/jacs.4c04740
Xia Y. N. ; Chen Y. ; Song Q. L. ; Hu S. Y. ; Zhao J. P. ; Zhang G. Z. Base-to-base organocatalytic approach for one-pot construction of poly(ethylene oxide)-based macromolecular structures . Macromolecules , 2016 , 49 ( 18 ), 6817 - 6825 . doi: 10.1021/acs.macromol.6b01542 http://dx.doi.org/10.1021/acs.macromol.6b01542
Jiang Z. L. ; Zhao J. P. ; Zhang G. Z. Ionic organocatalyst with a urea anion and tetra- n -butyl ammonium cation for rapid, selective, and versatile ring-opening polymerization of lactide . ACS Macro Lett. , 2019 , 8 ( 7 ), 759 - 765 . doi: 10.1021/acsmacrolett.9b00418 http://dx.doi.org/10.1021/acsmacrolett.9b00418
Li M. S. ; Tao Y. ; Tang J. D. ; Wang Y. C. ; Zhang X. Y. ; Tao Y. H. ; Wang X. H. Synergetic organocatalysis for eliminating epimerization in ring-opening polymerizations enables synthesis of stereoregular isotactic polyester . J. Am. Chem. Soc. , 2019 , 141 ( 1 ), 281 - 289 . doi: 10.1021/jacs.8b09739 http://dx.doi.org/10.1021/jacs.8b09739
Schreiner P. R. Metal-free organocatalysis through explicit hydrogen bonding interactions . Chem. Soc. Rev. , 2003 , 32 ( 5 ), 289 - 296 . doi: 10.1039/b107298f http://dx.doi.org/10.1039/b107298f
Aoshima S. ; Kanaoka S. A renaissance in living cationic polymerization . Chem. Rev. , 2009 , 109 ( 11 ), 5245 - 5287 . doi: 10.1021/cr900225g http://dx.doi.org/10.1021/cr900225g
Faust, R. Cationic polymerization of nonpolar vinyl monomers . In: Matyjaszewski, K.; Möller, M., eds. Polymer Science: A Comprehensive Reference . Amsterdam : Elsevier , 2012 . 501 - 526 . doi: 10.1016/b978-0-444-53349-4.00074-1 http://dx.doi.org/10.1016/b978-0-444-53349-4.00074-1
Uchiyama M. ; Satoh K. ; Kamigaito M. Cationic RAFT and DT polymerization . Prog. Polym. Sci. , 2022 , 124 , 101485 . doi: 10.1016/j.progpolymsci.2021.101485 http://dx.doi.org/10.1016/j.progpolymsci.2021.101485
Wu L. Q. ; Rondon B. ; Dym S. ; Wang W. Q. ; Chen K. R. ; Niu J. Regulating cationic polymerization: from structural control to life cycle management . Prog. Polym. Sci. , 2023 , 145 , 101736 . doi: 10.1016/j.progpolymsci.2023.101736 http://dx.doi.org/10.1016/j.progpolymsci.2023.101736
Chen Y. N. ; Zhang L. ; Jin Y. ; Lin X. R. ; Chen M. Recent advances in living cationic polymerization with emerging initiation/controlling systems . Macromol. Rapid Commun. , 2021 , 42 ( 13 ), e 2100148 . doi: 10.1002/marc.202100148 http://dx.doi.org/10.1002/marc.202100148
Singha S. ; Pan S. ; Tallury S. S. ; Nguyen G. ; Tripathy R. ; De P. Recent developments on cationic polymerization of vinyl ethers . ACS Polym. Au , 2024 , 4 ( 3 ), 189 - 207 . doi: 10.1021/acspolymersau.3c00055 http://dx.doi.org/10.1021/acspolymersau.3c00055
Zhu Y. ; Yu Z. P. ; Liu R. F. ; Jin Y. S. ; Shi Q. S. ; Wu Y. B. Recent advances in green cationic polymerization . J. Polym. Sci. , 2024 , 62 ( 11 ), 2549 - 2573 . doi: 10.1002/pol.20230971 http://dx.doi.org/10.1002/pol.20230971
0
Views
19
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution