浏览全部资源
扫码关注微信
华南理工大学 广东省高分子先进制造技术及装备重点实验室 微/纳成型与流变学研究室 广州 510640
Han-xiong Huang, E-mail: mmhuang@scut.edu.cn
Received:04 December 2024,
Accepted:31 December 2024,
Published Online:21 March 2025,
Published:20 May 2025
移动端阅览
张虎诚, 黄汉雄. 微褶皱吡咯层的聚合及提高互锁微柱阵列柔性压阻传感器的性能. 高分子学报, 2025, 56(5), 800-809
Zhang, H. C.; Huang, H. X. Polymerization of microwrinkled pyrrole layer and its enhancement on performances of flexible piezoresistive sensors with interlocked micropillar arrays. Acta Polymerica Sinica, 2025, 56(5), 800-809
张虎诚, 黄汉雄. 微褶皱吡咯层的聚合及提高互锁微柱阵列柔性压阻传感器的性能. 高分子学报, 2025, 56(5), 800-809 DOI: 10.11777/j.issn1000-3304.2024.24289. CSTR: 32057.14.GFZXB.2024.7340.
Zhang, H. C.; Huang, H. X. Polymerization of microwrinkled pyrrole layer and its enhancement on performances of flexible piezoresistive sensors with interlocked micropillar arrays. Acta Polymerica Sinica, 2025, 56(5), 800-809 DOI: 10.11777/j.issn1000-3304.2024.24289. CSTR: 32057.14.GFZXB.2024.7340.
采用化学氧化法,在模压成型的微柱阵列乙烯-辛烯共聚物(POE)薄片表面上聚合吡咯(Py)导电层,制得传感基片;将2片微柱阵列传感基片面对面封装成柔性互锁压阻传感器. 扫描电镜观察、红外光谱测试和表面电阻率测试的结果表明,对Py聚合时间30 min制备的传感基片,微柱和底部表面上形成了完整的聚吡咯导电层且其表面呈较明显的蠕虫状微褶皱结构. 所封装的互锁压阻传感器呈现较高的循环响应稳定性和重复性以及较宽的响应范围,这归因于互锁微柱较高的耐压性和相互支撑以及POE较高的回弹性. 更为重要的是,互锁传感器呈现较短的响应/恢复时间(30/41 ms)、较低的检测限(~10 Pa)和较高的灵敏度,这归因于微柱表面上形成的微褶皱二级结构. 互锁压阻传感器用于检测人体微弱生理信号(如手腕/颈部脉搏、脸部动作)和较高压力场景(如足底压力)时均呈现很好的响应效果,表明其在健康监测和运动检测方面具有良好的应用前景.
Poly(ethylene-
co
-octene) (POE) slices with micropillar arrays on their surfaces were prepared by compression molding
then conductive pyrrole (Py) layer was polymerized on the slices to obtain sensing substrates by Py polymerization. Two sensing substrates with the micropillar arrays were assembled into a flexible interlocked piezoresistive sensor face to face. For the sensing substrate prepared at 30 min polymerization time
complete conductive polypyrrole (PPy) layer is developed at the micropillars and on the base surface of the sensing substrate
and more obvious worm-shaped microwrinkles appear on the PPy layer
which are confirmed by scanning electron microscope observation
infrared spectrum test and surface resistivity test. The interlocked piezoresistive sensor exhibits higher cyclic response stability and repeatability and wider pressure response range
which are attributed to higher pressure resistance and mutual support of the interlocked micropillars as well as higher
resilience of POE. More importantly
the interlocked sensors have shorter response/recovery time (30/41 ms)
lower detection limit (~10 Pa)
and higher sensitivity
which are attributed to the secondary microwrinkles developed at the micropillars. The interlocked piezoresistive sensor exhibit good responses when applied to detect weak physiological signals (
e.g.
wrist/carotid pulse and facial movement) and higher-pressure scenario (
e.g.
plantar pressure)
demonstrating its good application prospect in health monitoring and motion detection.
Meng K. Y. ; Xiao X. ; Wei W. X. ; Chen G. R. ; Nashalian A. ; Shen S. ; Xiao X. ; Chen J. Wearable pressure sensors for pulse wave monitoring . Adv. Mater. , 2022 , 34 ( 21 ), 2109357 . doi: 10.1002/adma.202270158 http://dx.doi.org/10.1002/adma.202270158
Zhu M. L. ; Sun Z. D. ; Zhang Z. X. ; Shi Q. F. ; He T. ; Liu H. C. ; Chen T. ; Lee C. K. Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications . Sci. Adv. , 2020 , 6 ( 19 ), eaaz 8693 . doi: 10.1126/sciadv.aaz8693 http://dx.doi.org/10.1126/sciadv.aaz8693
Li W. D. ; Ke K. ; Jia J. ; Pu J. H. ; Zhao X. ; Bao R. Y. ; Liu Z. Y. ; Bai L. ; Zhang K. ; Yang M. B. ; Yang W. Recent advances in multiresponsive flexible sensors towards E-skin: a delicate design for versatile sensing . Small , 2022 , 18 ( 7 ), 2103734 . doi: 10.1002/smll.202103734 http://dx.doi.org/10.1002/smll.202103734
林云飞 , 程鑫慧 , 夏利琼 , 刘瑾 , 张茜 , 龚剑亮 , 陈义旺 . 腰带型人体微环境可视化监测系统柔性集成与可穿戴应用研究 . 高分子学报 , 2024 , 55 ( 6 ), 718 - 728 . doi: 10.11777/j.issn1000-3304.2024.24028 http://dx.doi.org/10.11777/j.issn1000-3304.2024.24028
Cheng Y. F. ; Ma Y. N. ; Li L. Y. ; Zhu M. ; Yue Y. ; Liu W. J. ; Wang L. F. ; Jia S. F. ; Li C. ; Qi T. Y. ; Wang J. B. ; Gao Y. H. Bioinspired microspines for a high-performance spray Ti 3 C 2 Tx MXene-based piezoresistive sensor. ACS Nano , 2020 , 14 ( 2 ), 2145 - 2155 . doi: 10.1021/acsnano.9b08952 http://dx.doi.org/10.1021/acsnano.9b08952
Pang Y. ; Zhang K. N. ; Yang Z. ; Jiang S. ; Ju Z. Y. ; Li Y. X. ; Wang X. F. ; Wang D. Y. ; Jian M. Q. ; Zhang Y. Y. ; Liang R. R. ; Tian H. ; Yang Y. ; Ren T. L. Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity . ACS Nano , 2018 , 12 ( 3 ), 2346 - 2354 . doi: 10.1021/acsnano.7b07613 http://dx.doi.org/10.1021/acsnano.7b07613
Chen G. Q. ; Zhang Y. T. ; Li S. N. ; Zheng J. X. ; Yang H. L. ; Ren J. Y. ; Zhu C. J. ; Zhou Y. C. ; Chen Y. M. ; Fu J. Flexible artificial tactility with excellent robustness and temperature tolerance based on organohydrogel sensor array for robot motion detection and object shape recognition . Adv. Mater. , 2024 , 36 ( 45 ), 2408193 . doi: 10.1002/adma.202408193 http://dx.doi.org/10.1002/adma.202408193
Zhang Y. X. ; He Y. ; Liang Y. ; Tang J. ; Yang Y. ; Song H. M. ; Zrínyi M. ; Chen Y. M. Sensitive piezoresistive pressure sensor based on micropyramid patterned tough hydrogel . Appl. Surf. Sci. , 2023 , 615 , 156328 . doi: 10.1016/j.apsusc.2023.156328 http://dx.doi.org/10.1016/j.apsusc.2023.156328
Zhang Y. J. ; Zhao Y. ; Zhai W. ; Zheng G. Q. ; Ji Y. X. ; Dai K. ; Mi L. W. ; Zhang D. B. ; Liu C. T. ; Shen C. Y. Multifunctional interlocked e-skin based on elastic micropattern array facilely prepared by hot-air-gun . Chem. Eng. J. , 2021 , 407 , 127960 . doi: 10.1016/j.cej.2020.127960 http://dx.doi.org/10.1016/j.cej.2020.127960
田信龙 , 黄汉雄 . 具有较高回弹性的乙烯-辛烯共聚物基微孔复合材料的传感性能 . 高分子学报 , 2023 , 54 ( 2 ), 235 - 244 .
Zheng X. H. ; Zhou D. S. ; Liu Z. ; Hong X. H. ; Li C. L. ; Ge S. H. ; Cao W. T. Skin-inspired textile electronics enable ultrasensitive pressure sensing . Small , 2024 , 20 ( 33 ), 2310032 . doi: 10.1002/smll.202310032 http://dx.doi.org/10.1002/smll.202310032
Ruth S. R. A. ; Feig V. R. ; Tran H. ; Bao Z. N. Microengineering pressure sensor active layers for improved performance . Adv. Funct. Mater. , 2020 , 30 ( 39 ), 2003491 . doi: 10.1002/adfm.202003491 http://dx.doi.org/10.1002/adfm.202003491
Jing W. J. ; Yang C. ; Wu Y. ; Zhao Q. ; Chen L. ; Li G. CNT-coated magnetic self-assembled elastomer micropillar arrays for sensing broad-range pressures . Nanotechnology , 2020 , 31 ( 43 ), 435501 . doi: 10.1088/1361-6528/aba3db http://dx.doi.org/10.1088/1361-6528/aba3db
Liao L. R. ; Zhou S. N. ; Yang J. F. ; Wang Z. K. ; Li J. J. ; Qiu Z. Q. ; Yu Z. X. ; Yang C. R. ; Wang H. ; Wen L. A flexible pressure sensor based on an interlocked micropillars array with secondary nanoprotrusions for health monitoring . IEEE Trans. Instrum. Meas. , 2024 , 73 , 4005709 . doi: 10.1109/tim.2024.3378283 http://dx.doi.org/10.1109/tim.2024.3378283
Ma C. ; Xu D. ; Huang Y. C. ; Wang P. Q. ; Huang J. ; Zhou J. Y. ; Liu W. F. ; Li S. T. ; Huang Y. ; Duan X. F. Robust flexible pressure sensors made from conductive micropyramids for manipulation tasks . ACS Nano , 2020 , 14 ( 10 ), 12866 - 12876 . doi: 10.1021/acsnano.0c03659 http://dx.doi.org/10.1021/acsnano.0c03659
Zhu G. J. ; Ren P. G. ; Wang J. ; Duan Q. ; Ren F. ; Xia W. M. ; Yan D. X. A highly sensitive and broad-range pressure sensor based on polyurethane mesodome arrays embedded with silver nanowires . ACS Appl. Mater. Interfaces , 2020 , 12 ( 17 ), 19988 - 19999 . doi: 10.1021/acsami.0c03697 http://dx.doi.org/10.1021/acsami.0c03697
赵家浩 , 黄汉雄 . 微乳突提高低力学刺激下微结构柔性压力传感器的性能 . 机械工程学报 , 2024 , 60 ( 4 ), 222 - 229 .
Park J. ; Kim J. ; Hong J. ; Lee H. ; Lee Y. ; Cho S. ; Kim S. W. ; Kim J. J. ; Kim S. Y. ; Ko H. Tailoring force sensitivity and selectivity by microstructure engineering of multidirectional electronic skins . NPG Asia Mater. , 2018 , 10 , 163 - 176 . doi: 10.1038/s41427-018-0031-8 http://dx.doi.org/10.1038/s41427-018-0031-8
Zhang Y. J. ; Zhang X. Y. ; Ning C. ; Dai K. ; Zheng G. Q. ; Liu C. T. ; Shen C. Y. Mushroom-mimetic 3D hierarchical architecture-based e-skin with high sensitivity and a wide sensing range for intelligent perception . Mater. Horiz. , 2023 , 10 ( 12 ), 5666 - 5676 . doi: 10.1039/d3mh00679d http://dx.doi.org/10.1039/d3mh00679d
Shi J. D. ; Wang L. ; Dai Z. H. ; Zhao L. Y. ; Du M. D. ; Li H. B. ; Fang Y. Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range . Small , 2018 , 14 ( 27 ), 1800819 . doi: 10.1002/smll.201800819 http://dx.doi.org/10.1002/smll.201800819
Wang K. ; Lou Z. ; Wang L. L. ; Zhao L. J. ; Zhao S. F. ; Wang D. Y. ; Han W. ; Jiang K. ; Shen G. Z. Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors . ACS Nano , 2019 , 13 ( 8 ), 9139 - 9147 . doi: 10.1021/acsnano.9b03454 http://dx.doi.org/10.1021/acsnano.9b03454
Zhang Y. J. ; Qiu M. F. ; Zhang X. Y. ; Zheng G. Q. ; Dai K. ; Liu C. T. ; Shen C. Y. Skin-inspired high-performance E-skin with interlocked microridges for intelligent perception . Adv. Funct. Mater. , 2025 , 35 ( 1 ), 2412065 . doi: 10.1002/adfm.202412065 http://dx.doi.org/10.1002/adfm.202412065
Jain R. ; Jadon N. ; Pawaiya A. Polypyrrole based next generation electrochemical sensors and biosensors: a review . Trac Trends Anal. Chem. , 2017 , 97 , 363 - 373 . doi: 10.1016/j.trac.2017.10.009 http://dx.doi.org/10.1016/j.trac.2017.10.009
Yu S. X. ; Li L. L. ; Wang J. J. ; Liu E. P. ; Zhao J. X. ; Xu F. ; Cao Y. P. ; Lu C. H. Light-boosting highly sensitive pressure sensors based on bioinspired multiscale surface structures . Adv. Funct. Mater. , 2020 , 30 ( 16 ), 1907091 . doi: 10.1002/adfm.201907091 http://dx.doi.org/10.1002/adfm.201907091
Wang D. ; Zhou X. ; Song R. F. ; Fang C. Q. ; Wang Z. ; Wang C. X. ; Huang Y. W. Freestanding silver/polypyrrole composite film for multifunctional sensor with biomimetic micropattern for physiological signals monitoring . Chem. Eng. J. , 2021 , 404 , 126940 . doi: 10.1016/j.cej.2020.126940 http://dx.doi.org/10.1016/j.cej.2020.126940
Chen S. ; Li J. Y. ; Liu H. Z. ; Shi W. ; Peng Z. F. ; Liu L. Pruney fingers-inspired highly stretchable and sensitive piezoresistive fibers with isotropic wrinkles and robust interfaces . Chem. Eng. J. , 2022 , 430 , 133005 . doi: 10.1016/j.cej.2021.133005 http://dx.doi.org/10.1016/j.cej.2021.133005
Li X. D. ; Huang H. X. Flexible and multifunctional pressure/gas sensors with polypyrrole-coated TPU hierarchical array . ACS Appl. Mater. Interfaces , 2024 , 16 ( 39 ), 53072 - 53082 . doi: 10.1021/acsami.4c13516 http://dx.doi.org/10.1021/acsami.4c13516
Qin S. H. ; Li Q. F. ; He M. ; Shao H. J. ; Yu J. ; Guo J. B. ; Zhang K. ; Yan W. Study on thermal stability and flame retardancy of polymer/layered silicate nanocomposites based on POE and POE- g -MAH . Polym. Eng. Sci. , 2014 , 54 ( 12 ), 2911 - 2917 . doi: 10.1002/pen.23848 http://dx.doi.org/10.1002/pen.23848
Sirisinha K. ; Meksawat D. Changes in properties of silane-water crosslinked metallocene ethylene-octene copolymer after prolonged crosslinking time . J. Appl. Polym. Sci. , 2004 , 93 ( 2 ), 901 - 906 . doi: 10.1002/app.20526 http://dx.doi.org/10.1002/app.20526
Dai Y. L. ; Zhang X. J. ; Wen B. Y. ; Du Q. Y. Facile synthesis of polypyrrole nanoparticles with tunable conductivity for efficient electromagnetic wave absorption and shielding performance . CrystEngComm , 2022 , 24 ( 17 ), 3287 - 3296 . doi: 10.1039/d2ce00206j http://dx.doi.org/10.1039/d2ce00206j
Beniwal A. ; Sunny . Novel TPU/Fe 2 O 3 and TPU/Fe 2 O 3 /PPy nanocomposites synthesized using electrospun nanofibers investigated for analyte sensing applications at room temperature . Sens. Actuat. B Chem. , 2020 , 304 , 127384 . doi: 10.1016/j.snb.2019.127384 http://dx.doi.org/10.1016/j.snb.2019.127384
Wang Q. ; Jian M. Q. ; Wang C. Y. ; Zhang Y. Y. Carbonized silk nanofiber membrane for transparent and sensitive electronic skin . Adv. Funct. Mater. , 2017 , 27 ( 9 ), 1605657 . doi: 10.1002/adfm.201605657 http://dx.doi.org/10.1002/adfm.201605657
0
Views
203
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution