浏览全部资源
扫码关注微信
江苏科技大学材料科学与工程学院 镇江 212100
Lu Wan, E-mail: LuWan@just.edu.cn
Received:14 December 2024,
Accepted:23 January 2025,
Published Online:01 April 2025,
Published:20 May 2025
移动端阅览
段宇峰, 付旭, 廖晓丽, 骆云政, 万露, 李照磊. 聚乙烯醇-g-右旋聚乳酸增韧全同质晶聚乳酸外消旋共混物的研究. 高分子学报, 2025, 56(5), 832-844
Duan, Y. F.; Fu, X.; Liao, X. L.; Luo, Y. Z.; Wan, L.; Li, Z. L. Investigation on poly(vinyl alcohol)-g-poly(D-lactic acid) toughening polylactide racemic blends with completely homo-crystals. Acta Polymerica Sinica, 2025, 56(5), 832-844
段宇峰, 付旭, 廖晓丽, 骆云政, 万露, 李照磊. 聚乙烯醇-g-右旋聚乳酸增韧全同质晶聚乳酸外消旋共混物的研究. 高分子学报, 2025, 56(5), 832-844 DOI: 10.11777/j.issn1000-3304.2024.24294. CSTR: 32057.14.GFZXB.2025.7346.
Duan, Y. F.; Fu, X.; Liao, X. L.; Luo, Y. Z.; Wan, L.; Li, Z. L. Investigation on poly(vinyl alcohol)-g-poly(D-lactic acid) toughening polylactide racemic blends with completely homo-crystals. Acta Polymerica Sinica, 2025, 56(5), 832-844 DOI: 10.11777/j.issn1000-3304.2024.24294. CSTR: 32057.14.GFZXB.2025.7346.
由于生物可降解性等诸多优异性能,聚乳酸材料的研究一直受到广泛关注. 然而,聚乳酸的韧性较差,这限制了其应用范围. 本研究首先将右旋聚乳酸(poly(
D
-lactic acid)
PDLA)与聚乙烯醇(poly(vinyl alcohol)
PVA)反应,制备了接枝物PVA-
g
-PDLA,并对PVA-
g
-PDLA进行表征. 其次,以六氟异丙醇(HFIP)为溶剂,将PVA-
g
-PDLA添加至聚乳酸外消旋共混物(poly(
D
-lactic acid)/poly(
L
-lactic acid)
PLLA/PDLA)中,制备了PVA-
g
-PDLA/PLLA/PDLA复合材料. 该复合材料经溶液浇铸形成的是同质晶,这被证明与所使用的溶剂有关. 再次,对PVA-
g
-PDLA/PLLA/PDLA复合材料进行了力学性能测试. 结果表明,PVA-
g
-PDLA/PLLA/PDLA的断裂伸长率最高可达200%. 最后,本文以PVA-
g
-PDLA/PLLA为参照,探讨了PVA-
g
-PDLA对全同质晶聚乳酸外消旋共混物的增韧机理.
Poly(lactic acid) (PLA)
derived from bio-renewable resources
exhibits numerous advantageous properties
including biodegradability
and is anticipated to substitute petroleum-based polymers in various applications. Consequently
research on PLA materials has garnered significant attention. However
the inherent brittleness of PLA restricts its broader application. In this study
we conducted molecular-level modifications and design of PLA. Initially
right-handed poly(lactic acid) (PDLA) and poly(vinyl alcohol) (PVA) underwent dehydration condensation to synthesize the graft copolymer PVA-
g
-PDLA. Characterization
via
NMR
FTIR
and TGA confirmed a reduction in hydroxyl group content and an increase in ester group content
thereby validating the successful synthesis of PVA-
g
-PDLA. Subsequently
using hexafluoroisopropanol (HFIP) as the solvent
PVA-
g
-PDLA was incorporated into the racemic copolymer of poly(lactic acid) (PLLA/PDLA) at varyin
g
mass ratios to prepare PVA-
g
-PDLA/PLLA/PDLA composites. XRD analysis indicated that the solution-cast composites exhibited homogeneous crystallinity
which was attributed to the choice of solvent. Mechanical propert
y tests revealed that the elongation at break of the composites increased with higher PVA-
g
-PDLA content
reaching up to 200%. Finally
by referencing PVA-
g
-PDLA/PLLA
the toughening mechanism of PVA-
g
-PDLA on the racemic copolymer of isotactic poly(lactic acid) was elucidated.
叶焱 , 孟祥泽 , 唐国烁 , 金广轩 , 杨睿 , 谢续明 . 高分子材料的生物降解性能表征 . 高分子学报 , 2023 , 54 ( 9 ), 1363 - 1384 . doi: 10.11777/j.issn1000-3304.2023.23111 http://dx.doi.org/10.11777/j.issn1000-3304.2023.23111
Chen Q. ; Auras R. ; Corredig M. ; Kirkensgaard J. J. K. ; Mamakhel A. ; Uysal-Unalan I. New opportunities for sustainable bioplastic development: tailorable polymorphic and three-phase crystallization of stereo complex polylactide by layered double hydroxide . Int. J. Biol. Macromol. , 2022 , 222 , 1101 - 1109 . doi: 10.1016/j.ijbiomac.2022.09.205 http://dx.doi.org/10.1016/j.ijbiomac.2022.09.205
Xiong Z. J. ; Zhang X. Q. ; Wang R. ; de Vos S. ; Wang R. Y. ; Joziasse C. A. P. ; Wang D. J. Favorable formation of stereo complex crystals in poly(L-lactide)/poly(D-lactide) blends by selective nucleation . Polymer , 2015 , 76 , 98 - 104 . doi: 10.1016/j.polymer.2015.08.056 http://dx.doi.org/10.1016/j.polymer.2015.08.056
Chen H. P. ; Nagarajan S. ; Woo E. M. Unusual radiating-stripe morphology in nonequimolar mixtures of poly(L-lactic acid) with poly(D-lactic acid) . Macromolecules , 2020 , 53 ( 6 ), 2157 - 2168 . doi: 10.1021/acs.macromol.0c00234 http://dx.doi.org/10.1021/acs.macromol.0c00234
Guo M. W. ; Wu W. J. ; Wu W. X. ; Gao Q. W. Competitive mechanism of stereo complexes and homocrystals in high-performance symmetric and asymmetric poly(lactic acid) enantiomers: qualitative methods . ACS Omega , 2022 , 7 ( 45 ), 41412 - 41425 . doi: 10.1021/acsomega.2c05198 http://dx.doi.org/10.1021/acsomega.2c05198
He Y. C. ; Liu D. ; Xie K. F. ; Xu W. Q. ; Pan P. J. ; Hu W. B. Glassy Alfa-relaxation promotes surprising homo-crystal nucleation in the low-molar-mass enantiomeric poly(lactic acid) blend . Macromolecules , 2022 , 55 ( 11 ), 4614 - 4623 . doi: 10.1021/acs.macromol.2c00679 http://dx.doi.org/10.1021/acs.macromol.2c00679
Zhu Z. Q. ; Tang Y. ; Xia X. H. ; Zhang T. ; Yang B. Terahertz spectroscopy of interchain hydrogen bond changes of poly(L-lactic acid)/poly(D-lactic acid) blends during solution crystallization . Polymer , 2024 , 290 , 126503 . doi: 10.1016/j.polymer.2023.126503 http://dx.doi.org/10.1016/j.polymer.2023.126503
Zheng S. M. ; Li W. ; Chen Y. Y. ; Yang H. R. ; Cai Y. B. ; Wang Q. Q. ; Wei Q. F. Synergistic effect of stereo-complexation and interfacial compatibility in ammonium polyphosphate grafted polylactic acid fibers for simultaneously improved toughness and flame retardancy . Int. J. Biol. Macromol. , 2024 , 261 , 129943 . doi: 10.1016/j.ijbiomac.2024.129943 http://dx.doi.org/10.1016/j.ijbiomac.2024.129943
Zhuang Z. X. ; Li T. T. ; Ning Z. B. ; Jiang N. ; Gan Z. H. Melt and nucleation reinforcement for stereo complex crystallites in poly(L-lactide)/lignin-grafted-poly(D-lactide) blend . Eur. Polym. J. , 2022 , 167 , 111072 . doi: 10.1016/j.eurpolymj.2022.111072 http://dx.doi.org/10.1016/j.eurpolymj.2022.111072
Li W. Z. ; Wang M. Y. ; Luo H. ; Niu Y. H. ; Huang Y. J. ; Li G. X. Influence of miscible and immiscible sequences of poly(D-lactide) copolymers on the competition of stereo complex- and homo-crystallization in poly(L-lactide) blends . Polymer , 2021 , 218 , 123519 . doi: 10.1016/j.polymer.2021.123519 http://dx.doi.org/10.1016/j.polymer.2021.123519
Feng S. Y. ; Zhao W. C. ; He J. H. ; Zhang Y. T. High performance polylactide toughened by supertough polyester thermoplastic elastomers: properties and mechanism . Chem. Res. Chin. Univ. , 2023 , 39 ( 5 ), 750 - 756 . doi: 10.1007/s40242-023-3160-8 http://dx.doi.org/10.1007/s40242-023-3160-8
Li S. J. ; Chen T. Y. ; Liao X. ; Han W. Q. ; Yan Z. H. ; Li J. S. ; Li G. X. Effect of macromolecular chain movement and the interchain interaction on crystalline nucleation and spherulite growth of polylactic acid under high-pressure CO 2 . Macromolecules , 2020 , 53 ( 1 ), 312 - 322 . doi: 10.1021/acs.macromol.9b01601 http://dx.doi.org/10.1021/acs.macromol.9b01601
Rosli N. A. ; Karamanlioglu M. ; Kargarzadeh H. ; Ahmad I. Comprehensive exploration of natural degradation of poly(lactic acid) blends in various degradation media: a review . Int. J. Biol. Macromol. , 2021 , 187 , 732 - 741 . doi: 10.1016/j.ijbiomac.2021.07.196 http://dx.doi.org/10.1016/j.ijbiomac.2021.07.196
Wang M. ; Wu Y. ; Li Y. D. ; Zeng J. B. Progress in toughening poly(lactic acid) with renewable polymers . Polym. Rev. , 2017 , 57 ( 4 ), 557 - 593 . doi: 10.1080/15583724.2017.1287726 http://dx.doi.org/10.1080/15583724.2017.1287726
胡锦博 , 王文博 , 杜晔奇 , 张昊 , 刘焱龙 , 边新超 , 孙海 , 陈学思 . 聚乳酸衍生物的高效合成及其性能研究 . 高分子学报 , 2024 , 56 ( 1 ), 26 - 35 .
Yan X. Y. ; Liu C. K. ; He L. T. ; Li C. T. ; Wang D. M. ; Wu G. F. ; Bian J. J. ; Zhao Y. ; Zhang H. L. Biodegradable blends of poly(butylene succinate- co -terephthalate) and stereo complex polylactide with enhanced rheological, mechanical properties, heat resistance and hydrolytic degradation . J. Mater. Sci. , 2023 , 58 ( 14 ), 6391 - 6404 . doi: 10.1007/s10853-023-08415-5 http://dx.doi.org/10.1007/s10853-023-08415-5
Ma B. M. ; Zhang H. ; Wang K. L. ; Xu H. L. ; He Y. ; Wang X. L. Influence of scPLA microsphere on the crystallization behavior of PLLA/PDLA composites . Compos. Commun. , 2020 , 21 , 100380 . doi: 10.1016/j.coco.2020.100380 http://dx.doi.org/10.1016/j.coco.2020.100380
Liu H. L. ; Zhao Y. L. ; Zheng Y. S. ; Chen J. Y. ; Wang J. C. ; Gao G. Y. ; Bai D. Y. Toward ultra-tough and heat-resistant biodegradable polylactide/core-shell rubber blends by regulating the distribution of rubber particles with stereo complex crystallites . Int. J. Biol. Macromol. , 2023 , 232 , 123422 . doi: 10.1016/j.ijbiomac.2023.123422 http://dx.doi.org/10.1016/j.ijbiomac.2023.123422
Yang W. J. ; Xiao L. Q. ; Ding H. ; Xu P. W. ; Weng Y. X. ; Ma P. M. Fabrication of UV- and heat-resistant PDLA/PLLA- g -nanolignin composite films by constructing interfacial stereo complex crystallites . ACS Sustainable Chem. Eng. , 2021 , 9 ( 47 ), 15875 - 15883 . doi: 10.1021/acssuschemeng.1c05559 http://dx.doi.org/10.1021/acssuschemeng.1c05559
Han L. L. ; Yu C. T. ; Zhou J. ; Shan G. R. ; Bao Y. Z. ; Yun X. Y. ; Dong T. ; Pan P. J. Enantiomeric blends of high-molecular-weight poly(lactic acid)/poly(ethylene glycol) triblock copolymers: enhanced stereo complexation and thermomechanical properties . Polymer , 2016 , 103 , 376 - 386 . doi: 10.1016/j.polymer.2016.09.073 http://dx.doi.org/10.1016/j.polymer.2016.09.073
Xu L. ; Chen Y. ; Xu C. ; Huang H. D. ; Lin H. ; Zhong G. J. ; Li Z. M. Polylactide films with superhydrophobicity and superior mechanical properties constructed by combining annealing stretching and nonsolvent-induced phase separation . ACS Sustainable Chem. Eng. , 2023 , 11 ( 25 ), 9498 - 9508 . doi: 10.1021/acssuschemeng.3c01938 http://dx.doi.org/10.1021/acssuschemeng.3c01938
Wanamaker C. L. ; Bluemle M. J. ; Pitet L. M. ; O'Leary L. E. ; Tolman W. B. ; Hillmyer M. A. Consequences of polylactide stereochemistry on the properties of polylactide-polymenthide-polylactide thermoplastic elastomers . Biomacromolecules , 2009 , 10 ( 10 ), 2904 - 2911 . doi: 10.1021/bm900721p http://dx.doi.org/10.1021/bm900721p
Kumar M. ; Mohanty S. ; Nayak S. K. ; Rahail Parvaiz M. Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites . Bioresour. Technol. , 2010 , 101 ( 21 ), 8406 - 8415 . doi: 10.1016/j.biortech.2010.05.075 http://dx.doi.org/10.1016/j.biortech.2010.05.075
Chen J. L. ; Rong C. Y. ; Lin T. T. ; Chen Y. H. ; Wu J. L. ; You J. C. ; Wang H. T. ; Li Y. J. Stable co-continuous PLA/PBAT blends compatibilized by interfacial stereo complex crystallites: toward full biodegradable polymer blends with simultaneously enhanced mechanical properties and crystallization rates . Macromolecules , 2021 , 54 ( 6 ), 2852 - 2861 . doi: 10.1021/acs.macromol.0c02861 http://dx.doi.org/10.1021/acs.macromol.0c02861
Ikada Y. ; Jamshidi K. ; Tsuji H. ; Hyon S. H. Stereo complex formation between enantiomeric poly(lactides) . Macromolecules , 1987 , 20 ( 4 ), 904 - 906 . doi: 10.1021/ma00170a034 http://dx.doi.org/10.1021/ma00170a034
Chen X. T. ; Chen G. ; Shi W. C. Polymer chirality modulates phase transitions at liquid-liquid interfaces . Macromolecules , 2024 , 57 ( 18 ), 8851 - 8860 .
Wang Z. Q. ; Duan R. L. ; Pang X. ; Wu R. L. ; Guo B. H. ; Xu J. Critical size and formation mechanism of secondary nuclei in melt-crystallized polylactide stereo complex crystals . Macromolecules , 2023 , 56 ( 3 ), 999 - 1012 . doi: 10.1021/acs.macromol.2c02494 http://dx.doi.org/10.1021/acs.macromol.2c02494
Cui J. M. ; Yang S. G. ; Zhang Q. L. ; Liu F. ; Ungar G. Poisoning by purity: what stops stereo complex crystallization in polylactide racemate? Macromolecules , 2023 , 56 ( 3 ), 989 - 998 . doi: 10.1021/acs.macromol.2c02067 http://dx.doi.org/10.1021/acs.macromol.2c02067
Zhang M. ; Fan X. ; Guo W. J. ; Zhou H. J. ; Li Z. L. ; Ma Y. ; Yan C. ; Dufresne A. Insights into stereo complexation of poly(lactic acid) materials: Evolution of interaction between enantiomeric chains and its role in conformational transformation in racemic blends . ACS Appl. Polym. Mater. , 2022 , 4 ( 8 ), 5891 - 5900 . doi: 10.1021/acsapm.2c00781 http://dx.doi.org/10.1021/acsapm.2c00781
Feng L. D. ; Bian X. C. ; Li G. ; Chen X. S. Thermal properties and structural evolution of poly(L-lactide)/poly(D-lactide) blends . Macromolecules , 2021 , 54 ( 21 ), 10163 - 10176 . doi: 10.1021/acs.macromol.1c01866 http://dx.doi.org/10.1021/acs.macromol.1c01866
Liu P. F. ; Zhang Q. ; Wu H. ; Guo S. Y. ; Qiu J. H. In situ formation of soft-rigid hybrid fibers decorated by sparse lamellae of PLLA: achieving ductile and heat-resistant materials with high strength . Macromolecules , 2023 , 56 ( 2 ), 634 - 646 . doi: 10.1021/acs.macromol.2c01868 http://dx.doi.org/10.1021/acs.macromol.2c01868
Ye H. S. ; Li A. Z. ; Li G. Q. ; Li K. ; Zhang J. ; Wang D. ; Ray S. S. ; Wang H. T. ; Li Y. J. Construction of elastomeric nanobelts in a glassy polymer matrix: toward supertoughened nanoalloys with significantly depressed yielding behaviors . Macromolecules , 2024 , 57 ( 21 ), 9999 - 10015 . doi: 10.1021/acs.macromol.4c01319 http://dx.doi.org/10.1021/acs.macromol.4c01319
Qi J. L. ; Yang Z. H. ; Ou Y. T. ; Jiang F. ; Wang Z. K. ; Zhang Y. Q. Supertough polylactide-based materials with fast shrinking property by stereo complex crystallites through in situ reactive blending . Ind. Crops Prod. , 2022 , 187 , 115326 . doi: 10.1016/j.indcrop.2022.115326 http://dx.doi.org/10.1016/j.indcrop.2022.115326
吴正贵 , 董新一 , 东为富 . 环氧化淀粉基核壳纳米粒子增韧聚乳酸的研究 . 高分子学报 , 2021 , 52 ( 7 ), 734 - 740 . doi: 10.11777/j.issn1000-3304.2020.20274 http://dx.doi.org/10.11777/j.issn1000-3304.2020.20274
曹宏伟 , 顾国章 , 王卓 , 马伟健 , 缪志成 , 李锦春 , 杨荣 . 苹果酸基脂肪共聚酯反应性共混制备超韧聚乳酸共混物 . 高分子学报 , 2022 , 53 ( 1 ), 79 - 89 . doi: 10.11777/j.issn1000-3304.2021.21155 http://dx.doi.org/10.11777/j.issn1000-3304.2021.21155
Rong C. Y. ; Chen Y. H. ; Chen C. M. ; Hu L. M. ; Wang H. T. ; Li Y. J. Toward simultaneous compatibilization and nucleation of fully biodegradabe nanocomposites: effect of nanorod-assisted interfacial stereo complex crystals in immiscible polymer blends . Compos. Part B Eng. , 2022 , 234 , 109708 . doi: 10.1016/j.compositesb.2022.109708 http://dx.doi.org/10.1016/j.compositesb.2022.109708
Wu J. L. ; Chen Y. H. ; Wang H. T. ; Li Y. J. Quasi block copolymers noncovalent bonded by stereo complex crystals . Giant , 2023 , 14 , 100150 . doi: 10.1016/j.giant.2023.100150 http://dx.doi.org/10.1016/j.giant.2023.100150
Wang H. T. ; Chen J. L. ; Li Y. J. Arrested elongated interface with small curvature by the simultaneous reactive compatibilization and stereo complexation . Macromolecules , 2020 , 53 ( 23 ), 10664 - 10674 . doi: 10.1021/acs.macromol.0c01804 http://dx.doi.org/10.1021/acs.macromol.0c01804
Chen Y. H. ; Ling X. Y. ; Wu J. L. ; Ye H. S. ; Wang H. T. ; Li Y. J. Simultaneous physical cross-linking and mechanical strengthening of elastomers by enantiomeric interactions through reactive processing . ACS Appl. Polym. Mater. , 2023 , 5 ( 12 ), 10127 - 10136 . doi: 10.1021/acsapm.3c01966 http://dx.doi.org/10.1021/acsapm.3c01966
Mulchandani N. ; Masutani K. ; Kumar S. ; Yamane H. ; Sakurai S. ; Kimura Y. ; Katiyar V. Toughened PLA-b-PCL-b-PLA triblock copolymer based biomaterials: effect of self-assembled nanostructure and stereo complexation on the mechanical properties . Polym. Chem. , 2021 , 12 ( 26 ), 3806 - 3824 . doi: 10.1039/d1py00429h http://dx.doi.org/10.1039/d1py00429h
Chen Y. H. ; Wu J. L. ; Qu Y. D. ; Ling X. Y. ; Wang H. T. ; Li Y. J. Immiscible polymer blends compatibilized through noncovalent forces: construction of a "quasi-block/graft copolymer" by interfacial stereo complex crystallites . ACS Appl. Polym. Mater. , 2022 , 4 ( 12 ), 9378 - 9387 . doi: 10.1021/acsapm.2c01630 http://dx.doi.org/10.1021/acsapm.2c01630
Cai H. ; Cheng Y. ; Zhang Z. L. ; Pan L. ; Zhang K. Y. ; Li Y. S. Toughening poly(lactic acid) with novel polyolefin-graft-poly(lactic acid) copolymers maintaining high transparency and stiffness . Giant , 2024 , 18 , 100274 . doi: 10.1016/j.giant.2024.100274 http://dx.doi.org/10.1016/j.giant.2024.100274
Ma Y. ; Li W. ; Li L. L. ; Fan Z. Y. ; Li S. M. Stereo complexed three-arm PPO-PDLA-PLLA copolymers: Synthesis via an end-functionalized initiator . Eur. Polym. J. , 2014 , 55 , 27 - 34 . doi: 10.1016/j.eurpolymj.2014.03.018 http://dx.doi.org/10.1016/j.eurpolymj.2014.03.018
Han L. L. ; Shan G. R. ; Bao Y. Z. ; Pan P. J. Exclusive stereo complex crystallization of linear and multiarm star-shaped high-molecular-weight stereo diblock poly(lactic acid)s . J. Phys. Chem. B , 2015 , 119 ( 44 ), 14270 - 14279 . doi: 10.1021/acs.jpcb.5b06757 http://dx.doi.org/10.1021/acs.jpcb.5b06757
Song L. X. ; Chi W. H. ; Zhang Q. ; Ren J. N. ; Yang B. ; Cong F. ; Li Y. C. ; Wang W. ; Li X. L. ; Wang Y. X. High-performance and functional fully bio-based polylactic acid/polypropylene carbonate blends by in situ multistep reaction-induced interfacial control . Int. J. Biol. Macromol. , 2024 , 258 , 128799 . doi: 10.1016/j.ijbiomac.2023.128799 http://dx.doi.org/10.1016/j.ijbiomac.2023.128799
Liu R. ; Dai L. ; Hu L. Q. ; Zhou W. Q. ; Si C. L. Fabrication of high-performance poly(L-lactic acid)/lignin-graft-poly(D-lactic acid) stereo complex films . Mater. Sci. Eng. C , 2017 , 80 , 397 - 403 . doi: 10.1016/j.msec.2017.06.006 http://dx.doi.org/10.1016/j.msec.2017.06.006
Yuan L. Z. ; Deng S. H. ; Wang Y. ; Xiu H. ; Zhang Q. ; Bai H. W. Remarkably enhanced stereo complex crystallization of high-molar-mass enantiomeric polylactide blends by adding double-grafted copolymers . Int. J. Biol. Macromol. , 2024 , 258 , 128919 . doi: 10.1016/j.ijbiomac.2023.128919 http://dx.doi.org/10.1016/j.ijbiomac.2023.128919
Wei Y. H. ; Wang Z. Y. ; Zhou S. N. ; Li Z. B. Toughened transparent poly(L-lactic acid)/poly(D-lactide)- b -poly(butadiene)- b -poly(D-lactide) blended film with balanced strength . Polymer , 2023 , 267 , 125695 . doi: 10.1016/j.polymer.2023.125695 http://dx.doi.org/10.1016/j.polymer.2023.125695
Hu W. B. ; Frenkel D. ; Mathot V. B. Intramolecular nucleation model for polymer crystallization . Macromolecules , 2003 , 36 ( 21 ), 8178 - 8183 . doi: 10.1021/ma0344285 http://dx.doi.org/10.1021/ma0344285
Hu W. B. The physics of polymer chain-folding . Phys. Rep. , 2018 , 747 , 1 - 50 . doi: 10.1016/j.physrep.2018.04.004 http://dx.doi.org/10.1016/j.physrep.2018.04.004
钱丽 . 抗冲聚丙烯结晶及形变过程中微观结构演化研究 . 中国科学技术大学 博士学位论文 , 2022 .
Talbamrung T. ; Kasemsook C. ; Sangtean W. ; Wachirahuttapong S. ; Thongpin C. Effect of peroxide and organoclay on thermal and mechanical properties of PLA in PLA/NBR melted blend . Energy Procedia , 2016 , 89 , 274 - 281 . doi: 10.1016/j.egypro.2016.05.035 http://dx.doi.org/10.1016/j.egypro.2016.05.035
Li R. Y. ; Wu L. B. ; Li B. G. Poly(L-lactide)/PEG-mb-PBAT blends with highly improved toughness and balanced performance . Eur. Polym. J. , 2018 , 100 , 178 - 186 . doi: 10.1016/j.eurpolymj.2018.01.037 http://dx.doi.org/10.1016/j.eurpolymj.2018.01.037
Zhao X. P. ; Yu X. L. ; Chen H. ; Zhou W. Y. ; Fang P. F. ; Peng S. X. Interfacial compatibility of super-tough poly(lactic acid)/polyurethane blends investigated by positron annihilation lifetime spectroscopy . J. Appl. Polym. Sci. , 2018 , 135 ( 31 ), 46596 . doi: 10.1002/app.46596 http://dx.doi.org/10.1002/app.46596
He Y. ; Jia S. H. ; Fang C. ; Tan L. C. ; Qin S. ; Yin X. C. ; Park C. B. ; Qu J. P. Constructing synergistically strengthening-toughening 3D network bundle structures by stereo complex crystals for manufacturing high-performance thermoplastic polyurethane nanofibers reinforced poly(lactic acid) composites . Compos. Sci. Technol. , 2023 , 232 , 109847 . doi: 10.1016/j.compscitech.2022.109847 http://dx.doi.org/10.1016/j.compscitech.2022.109847
Irani-Kolash E. ; Moshiri-Gomchi N. ; Talebi-Liasi A. ; Sabahi S. ; Bahri-Laleh N. ; Mehdipour-Ataei S. ; Mokhtari-Aliabad J. ; Mirmohammadi S. A. Preparation of an enhanced nanohybrid alloy based on polylactic acid/polycarbonate/nanosilica . Plast. Rubber Compos. , 2020 , 49 ( 6 ), 263 - 270 . doi: 10.1080/14658011.2020.1743088 http://dx.doi.org/10.1080/14658011.2020.1743088
Liu Y. P. ; Wei H. H. ; Wang Z. ; Li Q. ; Tian N. Simultaneous enhancement of strength and toughness of PLA induced by miscibility variation with PVA . Polymers , 2018 , 10 ( 10 ), 1178 . doi: 10.3390/polym10101178 http://dx.doi.org/10.3390/polym10101178
Wu B. G. ; Yang W. J. ; Niu D. Y. ; Dong W. F. ; Chen M. Q. ; Liu T. X. ; Du M. L. ; Ma P. M. Stereo complexed poly(lactide) composites toward engineering plastics with superior toughness, heat resistance and anti-hydrolysis . Chinese J. Polym. Sci. , 2020 , 38 ( 10 ), 1107 - 1116 . doi: 10.1007/s10118-020-2443-5 http://dx.doi.org/10.1007/s10118-020-2443-5
Liu H. L. ; Bai D. Y. ; Du S. L. ; Li X. ; Bai H. W. ; Fu Q. Stereo complex crystallization induced significant improvement in transparency and stiffness-toughness performance of core-shell rubber nanoparticles toughened poly(L-lactide) blends . Macromol. Mater. Eng. , 2021 , 306 ( 5 ), 2100021 . doi: 10.1002/mame.202100021 http://dx.doi.org/10.1002/mame.202100021
Mohammadi M. ; Heuzey M. C. ; Carreau P. J. ; Taguet A. Interfacial localization of CNCs in PLA/PBAT blends and its effect on rheological, thermal, and mechanical properties . Polymer , 2021 , 233 , 124229 . doi: 10.1016/j.polymer.2021.124229 http://dx.doi.org/10.1016/j.polymer.2021.124229
Li Z. L. ; Zhang M. ; Fan X. ; Ye X. X. ; Zeng Y. ; Zhou H. J. ; Guo W. J. ; Ma Y. ; Shao J. ; Yan C. Hydrogen bonding assists stereo complexation in poly(L-lactic acid)/poly(D-lactic acid) racemic blends . J. Polym. Sci. Part B Polym. Phys. , 2019 , 57 ( 2 ), 83 - 88 . doi: 10.1002/polb.24756 http://dx.doi.org/10.1002/polb.24756
Zhang J. M. ; Sato H. ; Tsuji H. ; Noda I. ; Ozaki Y. Infrared spectroscopic study of CH 3 …OC interaction during poly(L-lactide)/poly(D-lactide) stereo complex formation . Macromolecules , 2005 , 38 ( 5 ), 1822 - 1828 . doi: 10.1021/ma047872w http://dx.doi.org/10.1021/ma047872w
0
Views
44
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution