浏览全部资源
扫码关注微信
1.武汉工程大学材料科学与工程学院 等离子体化学与新材料湖北省重点实验室 武汉 430205
2.国家纳米科学中心 中国科学院纳米系统与多级次制造重点实验室 北京 100190
Sheng-wei Shi, E-mail: shisw@wit.edu.cn
Kun Lu, E-mail: lvk@nanoctr.cn
Received:23 December 2024,
Accepted:26 January 2025,
Published Online:07 April 2025,
Published:20 July 2025
移动端阅览
李静, 王昱涵, 仇丁丁, 石胜伟, 魏志祥, 吕琨. 引入柔性链的聚合物给体设计策略获得可非卤溶剂加工的高效柔性大面积有机太阳能电池. 高分子学报, 2025, 56(7), 1074-1087
Li, J.; Wang, Y. H.; Qiu, D. D.; Shi, S. W.; Wei, Z. X.; Lu, K. Design strategy of incorporating flexible chain polymer donors for high-efficiency, large-area flexible organic solar cells with non-halogen solvent processability. Acta Polymerica Sinica, 2025, 56(7), 1074-1087
李静, 王昱涵, 仇丁丁, 石胜伟, 魏志祥, 吕琨. 引入柔性链的聚合物给体设计策略获得可非卤溶剂加工的高效柔性大面积有机太阳能电池. 高分子学报, 2025, 56(7), 1074-1087 DOI: 10.11777/j.issn1000-3304.2024.24304. CSTR: 32057.14.GFZXB.2025.7348.
Li, J.; Wang, Y. H.; Qiu, D. D.; Shi, S. W.; Wei, Z. X.; Lu, K. Design strategy of incorporating flexible chain polymer donors for high-efficiency, large-area flexible organic solar cells with non-halogen solvent processability. Acta Polymerica Sinica, 2025, 56(7), 1074-1087 DOI: 10.11777/j.issn1000-3304.2024.24304. CSTR: 32057.14.GFZXB.2025.7348.
开发兼具优异器件性能和良好加工性能的聚合物给体是推进有机太阳能电池产业化的有效措施. 聚(2
6-(4
8-双(5-(2-乙基己基-3-氟)噻吩-2-基)-苯并(1
2-b:4
5-b')二噻吩))-(2-丁基辛基)噻吩-2-基-8-(4-(2-丁基辛基)-5-甲基噻吩-2-基)二噻吩并(3'
2':3
4;2''
3'':5
6)苯并(1
2)(1
2
5)噻二唑 (简称:D18)因其高效率的优势受到了很多研究者的兴趣,但是其强聚集特性限制了其用非卤溶剂加
工. 本文介绍了一种在聚合物给体D18共轭主链中引入含柔性烷基桥联单元的结构改性方法,通过改变柔性烷基链的长度,调节引入含柔性烷基的桥联单元的含量,合成了D18-3C-5%和D18-4C-5%两种溶解性显著改善的新型聚合物给体. 测试结果表明,当引入的柔性烷基链包含4个碳原子,含柔性烷基的桥联单元在聚合物主链中含量为5%时,所得的聚合物给体D18-4C-5%在使用非卤素溶剂邻二甲苯制备器件时可以获得高达17.32%的优异能量转换效率(PCE),器件的开路电压(
V
OC
)为0.87 V,短路电流密度(
J
SC
)为25.53 mA·cm
-2
,填充因子(FF)为0.78. D18-4C-5%减弱的分子聚集和结晶性大大改善了其在非卤溶剂中的溶解性,表现出优异的器件加工性能. 基于D18-4C-5%:L8-BO的大面积柔性器件(1 cm
2
)也可实现14.00%的优异PCE. 本工作阐明了柔性链削弱聚集策略对聚合物给体加工性能改善的重要作用,能够解决强聚集聚合物给体材料在大面积溶液加工中的局限性,对高效有机太阳能电池的进一步发展具有重要意义.
Developing polymer donors with both excellent device performance and good processability is an effective approach to advancing the commercialization of organic solar cells. D18 has attracted considerable interest from researchers due to its high efficiency
but its strong aggregation behavior limits its processability with non-halogen solvents. This paper introduces a structural modification method by incorporating flexible alkyl-br
idged units into the conjugated backbone of the polymer donor D18. By adjusting the length of the flexible alkyl chains and the content of the alkyl-bridged units
two novel polymer donors
D18-3C-5% and D18-4C-5%
with significantly improved solubility were synthesized. Test results show that when the flexible alkyl chain contains four carbon atoms and the content of flexible alkyl-bridged units in the polymer backbone is 5%
the resulting polymer donor D18-4C-5% achieves an outstanding power conversion efficiency (PCE) of 17.32% when devices are fabricated with the non-halogen solvent
o
-xylene. The device exhibits an open-circuit voltage (
V
OC
) of 0.87 V
a short-circuit current density (
J
SC
) of 25.53 mA·cm
-2
and a fill factor (FF) of 0.78. The reduced molecular aggregation and crystallinity of D18-4C-5% significantly improve its solubility in non-halogen solvents
demonstrating excellent device processability. Large-area flexible devices (1 cm²) based on D18-4C-5%:L8-BO can also achieve an excellent PCE of 14.00%. This work highlights the critical role of the flexible chain-induced aggregation reduction strategy in improving the processability of polymer donors and addresses the limitations of highly aggregated polymer donor materials in large-area solution processing. This study has significant implications for the further development of high-efficiency organic solar cells.
Zhao Y. P. ; Li Z. Q. ; Deger C. ; Wang M. H. ; Peric M. ; Yin Y. F. ; Meng D. ; Yang W. X. ; Wang X. Y. ; Xing Q. Y. ; Chang B. ; Scott E. G. ; Zhou Y. F. ; Zhang E. ; Zheng R. ; Bian J. M. ; Shi Y. T. ; Yavuz I. ; Wei K. H. ; Houk K. N. ; Yang Y. Achieving sustainability of greenhouses by integrating stable semi-transparent organic photovoltaics . Nat. Sustain. , 2023 , 6 ( 5 ), 539 - 548 . doi: 10.1038/s41893-023-01071-2 http://dx.doi.org/10.1038/s41893-023-01071-2
Wang J. X. ; Han C. Y. ; Han J. H. ; Bi F. Z. ; Sun X. K. ; Wen S. G. ; Yang C. P. ; Yang C. M. ; Bao X. C. ; Chu J. H. Synergetic strategy for highly efficient and super flexible thick-film organic solar cells . Adv. Energy Mater. , 2022 , 12 ( 31 ), 2201614 . doi: 10.1002/aenm.202270136 http://dx.doi.org/10.1002/aenm.202270136
Wan Q. P. ; Seo S. ; Lee S. W. ; Lee J. ; Jeon H. ; Kim T. S. ; Kim B. J. ; Thompson B. C. High-performance intrinsically stretchable polymer solar cell with record efficiency and stretchability enabled by thymine-functionalized terpolymer . J. Am. Chem. Soc. , 2023 , 145 ( 22 ), 11914 - 11920 . doi: 10.1021/jacs.3c02764 http://dx.doi.org/10.1021/jacs.3c02764
Sun R. ; Wang T. ; Yang X. R. ; Wu Y. ; Wang Y. ; Wu Q. ; Zhang M. J. ; Brabec C. J. ; Li Y. F. ; Min J. High-speed sequential deposition of photoactive layers for organic solar cell manufacturing . Nat. Energy , 2022 , 7 ( 11 ), 1087 - 1099 . doi: 10.1038/s41560-022-01140-4 http://dx.doi.org/10.1038/s41560-022-01140-4
Ravishankar E. ; Booth R. E. ; Hollingsworth J. A. ; Ade H. ; Sederoff H. ; DeCarolis J. F. ; O'Connor B. T. Organic solar powered greenhouse performance optimization and global economic opportunity . Energy Environ. Sci. , 2022 , 15 ( 4 ), 1659 - 1671 . doi: 10.1039/d1ee03474j http://dx.doi.org/10.1039/d1ee03474j
Chen H. ; Jeong S. Y. ; Tian J. F. ; Zhang Y. D. ; Naphade D. R. ; Alsufyani M. ; Zhang W. M. ; Griggs S. ; Hu H. L. ; Barlow S. ; Woo H. Y. ; Marder S. R. ; Anthopoulos T. D. ; McCulloch I. ; Lin Y. B. A 19% efficient and stable organic photovoltaic device enabled by a guest nonfullerene acceptor with fibril-like morphology . Energy Environ. Sci. , 2023 , 16 ( 3 ), 1062 - 1070 . doi: 10.1039/d2ee03483b http://dx.doi.org/10.1039/d2ee03483b
Li D. H. ; Deng N. ; Fu Y. W. ; Guo C. H. ; Zhou B. J. ; Wang L. ; Zhou J. ; Liu D. ; Li W. ; Wang K. ; Sun Y. M. ; Wang T. Fibrillization of non-fullerene acceptors enables 19% efficiency pseudo-bulk heterojunction organic solar cells . Adv. Mater. , 2023 , 35 ( 6 ), 2208211 . doi: 10.1002/adma.202208211 http://dx.doi.org/10.1002/adma.202208211
Zhou M. W. ; Liao C. T. ; Duan Y. W. ; Xu X. P. ; Yu L. Y. ; Li R. P. ; Peng Q. 19.10% efficiency and 80.5% fill factor layer-by-layer organic solar cells realized by 4-bis(2-thienyl)Pyrrole-2,5-dione based polymer additives for inducing vertical segregation morphology . Adv. Mater. , 2023 , 35 ( 6 ), 2208279 . doi: 10.1002/adma.202305240 http://dx.doi.org/10.1002/adma.202305240
Xiao C. ; Wang X. C. ; Zhong T. ; Zhou R. X. ; Zheng X. F. ; Liu Y. R. ; Hu T. Y. ; Luo Y. X. ; Sun F. B. ; Xiao B. ; Liu Z. T. ; Yang C. M. ; Yang R. Q. Hybrid cycloalkyl-alkyl chain-based symmetric/asymmetric acceptors with optimized crystal packing and interfacial exciton properties for efficient organic solar cells . Adv. Sci. , 2023 , 10 ( 7 ), 2206580 . doi: 10.1002/advs.202206580 http://dx.doi.org/10.1002/advs.202206580
Noriega R. ; Rivnay J. ; Vandewal K. ; Koch F. P. V. ; Stingelin N. ; Smith P. ; Toney M. F. ; Salleo A. A general relationship between disorder, aggregation and charge transport in conjugated polymers . Nat. Mater. , 2013 , 12 ( 11 ), 1038 - 1044 . doi: 10.1038/nmat3722 http://dx.doi.org/10.1038/nmat3722
Peng Z. X. ; Ye L. ; Ade H. Understanding, quantifying, and controlling the molecular ordering of semiconducting polymers: from novices to experts and amorphous to perfect crystals . Mater. Horiz. , 2022 , 9 ( 2 ), 577 - 606 . doi: 10.1039/d0mh00837k http://dx.doi.org/10.1039/d0mh00837k
Abutaha A. ; Kumar P. ; Yildirim E. ; Shi W. ; Yang S. W. ; Wu G. ; Hippalgaonkar K. Correlating charge and thermoelectric transport to paracrystallinity in conducting polymers . Nat. Commun. , 2020 , 11 ( 1 ), 1737 . doi: 10.1038/s41467-020-15399-2 http://dx.doi.org/10.1038/s41467-020-15399-2
Cui C. H. Molecular design and device performance of organic photovoltaic materials . Acta Polymerica Sinica (in Chinese) 2021 , 52 ( 6 ), 663 - 678 .
Pang B. ; Liao C. T. ; Xu X. P. ; Yu L. Y. ; Li R. P. ; Peng Q. Benzo [d ] thiazole based wide bandgap donor polymers enable 19.54% efficiency organic solar cells along with desirable batch-to-batch reproducibility and general applicability. Adv. Mater. , 2023 , 35 ( 21 ), 2300631 . doi: 10.1002/adma.202300631 http://dx.doi.org/10.1002/adma.202300631
Liu M. H. ; Han X. ; Chen H. ; Peng Q. ; Huang H. A molecular descriptor of intramolecular noncovalent interaction for regulating optoelectronic properties of organic semiconductors . Nat. Commun. , 2023 , 14 ( 1 ), 2500 . doi: 10.1038/s41467-023-38078-4 http://dx.doi.org/10.1038/s41467-023-38078-4
Li H. X. ; Yang H. ; Zhang L. ; Wang S. C. ; Chen Y. ; Zhang Q. ; Zhang J. D. ; Tian H. K. ; Han Y. C. Optimizing the crystallization behavior and film morphology of donor-acceptor conjugated semiconducting polymers by side-chain-solvent interaction in nonpolar solvents . Macromolecules , 2021 , 54 ( 22 ), 10557 - 10573 . doi: 10.1021/acs.macromol.1c01347 http://dx.doi.org/10.1021/acs.macromol.1c01347
Li Q. Y. ; Yao Z. F. ; Wang J. Y. ; Pei J. Multi-level aggregation of conjugated small molecules and polymers: from morphology control to physical insights . Rep. Prog. Phys. , 2021 , 84 ( 7 ), 076601 . doi: 10.1088/1361-6633/abfaad http://dx.doi.org/10.1088/1361-6633/abfaad
Ghasemi M. ; Balar N. ; Peng Z. X. ; Hu H. W. ; Qin Y. P. ; Kim T. ; Rech J. J. ; Bidwell M. ; Mask W. ; McCulloch I. ; You W. ; Amassian A. ; Risko C. ; O'Connor B. T. ; Ade H. A molecular interaction-diffusion framework for predicting organic solar cell stability . Nat. Mater. , 2021 , 20 ( 4 ), 525 - 532 . doi: 10.1038/s41563-020-00872-6 http://dx.doi.org/10.1038/s41563-020-00872-6
Ghasemi M. ; Hu H. W. ; Peng Z. X. ; Rech J. J. ; Angunawela I. ; Carpenter J. H. ; Stuard S. J. ; Wadsworth A. ; McCulloch I. ; You W. ; Ade H. Delineation of thermodynamic and kinetic factors that control stability in non-fullerene organic solar cells . Joule , 2019 , 3 ( 5 ), 1328 - 1348 . doi: 10.1016/j.joule.2019.03.020 http://dx.doi.org/10.1016/j.joule.2019.03.020
胡笑添 , 刘思奇 , 宋延林 , 陈义旺 . 新型薄膜太阳电池器件: 柔性设计与印刷制造 . 高分子学报 , 2023 , 54 ( 6 ), 910 - 926 .
吴江 , 李右占 , 汤浩 , 易雪亭 , 刘泽坤 , 谢志元 . 基于自组装修饰银纳米线透明电极的柔性有机太阳能电池 . 高分子学报 , 2023 ( 1 ), 78 - 86 .
Song W. ; Ye Q. R. ; Yang S. C. ; Xie L. ; Meng Y. Y. ; Chen Z. Y. ; Gu Q. ; Yang D. B. ; Shi J. Y. ; Ge Z. Y. Ultra robust and highly efficient flexible organic solar cells with over 18% efficiency realized by incorporating a linker dimerized acceptor . Angew. Chem. Int. Ed. , 2023 , 62 ( 41 ), e 202310034 . doi: 10.1002/anie.202310034 http://dx.doi.org/10.1002/anie.202310034
Wang Z. ; Peng Z. X. ; Xiao Z. ; Seyitliyev D. ; Gundogdu K. ; Ding L. M. ; Ade H. Thermodynamic properties and molecular packing explain performance and processing procedures of three D18: NFA organic solar cells . Adv. Mater. , 2020 , 32 ( 49 ), 2005386 . doi: 10.1002/adma.202005386 http://dx.doi.org/10.1002/adma.202005386
Li D. H. ; Guo C. H. ; Zhang X. ; Du B. C. ; Wang P. ; Cheng S. L. ; Cai J. L. ; Wang H. ; Liu D. ; Yao H. F. ; Hou J. H. ; Wang T. Heating-induced aggregation control for efficient sequential-cast organic solar cells . Aggregate , 2022 , 3 ( 3 ), e 104 . doi: 10.1002/agt2.72 http://dx.doi.org/10.1002/agt2.72
Zeng A. P. ; Ma X. L. ; Pan M. G. ; Chen Y. Z. ; Ma R. J. ; Zhao H. ; Zhang J. Q. ; Kim H. K. ; Shang A. ; Luo S. W. ; Angunawela I. C. ; Chang Y. ; Qi Z. Y. ; Sun H. L. ; Lai J. Y. L. ; Ade H. ; Ma W. ; Zhang F. J. ; Yan H. A chlorinated donor polymer achieving high-performance organic solar cells with a wide range of polymer molecular weight . Adv. Funct. Mater. , 2021 , 31 ( 33 ), 2102413 . doi: 10.1002/adfm.202102413 http://dx.doi.org/10.1002/adfm.202102413
Lu H. ; Liu W. L. ; Ran G. L. ; Liang Z. Z. ; Li H. X. ; Wei N. ; Wu H. B. ; Ma Z. F. ; Liu Y. H. ; Zhang W. K. ; Xu X. J. ; Bo Z. S. High-pressure fabrication of binary organic solar cells with high molecular weight D18 yields record 19.65% efficiency . Angew. Chem. Int. Ed. , 2023 , 62 ( 50 ), e 202314420 . doi: 10.1002/anie.202314420 http://dx.doi.org/10.1002/anie.202314420
Mei J. G. ; Bao Z. N. Side chain engineering in solution-processable conjugated polymers . Chem. Mater. , 2014 , 26 ( 1 ), 604 - 615 . doi: 10.1021/cm4020805 http://dx.doi.org/10.1021/cm4020805
Zhao Y. ; Zhao X. K. ; Zang Y. P. ; Di C. A. ; Diao Y. ; Mei J. G. Conjugation-break spacers in semiconducting polymers: impact on polymer processability and charge transport properties . Macromolecules , 2015 , 48 ( 7 ), 2048 - 2053 . doi: 10.1021/acs.macromol.5b00194 http://dx.doi.org/10.1021/acs.macromol.5b00194
王思怡 , 钟文楷 , 黄飞 . 可拉伸高分子光电器件的研究进展 . 高分子学报 , 2024 , 55 ( 9 ), 1091 - 1110 . doi: 10.11777/j.issn1000-3304.2024.24131 http://dx.doi.org/10.11777/j.issn1000-3304.2024.24131
Zhang J. Q. ; Zhu L. Y. ; Wei Z. X. Toward over 15% power conversion efficiency for organic solar cells: current status and perspectives . Small Meth. , 2017 , 1 ( 12 ), 1700258 . doi: 10.1002/smtd.201700258 http://dx.doi.org/10.1002/smtd.201700258
Gao M. Y. ; Liang Z. Q. ; Geng Y. H. ; Ye L. Significance of thermodynamic interaction parameters in guiding the optimization of polymer: Nonfullerene solar cells . Chem. Commun. , 2020 , 56 ( 83 ), 12463 - 12478 . doi: 10.1039/d0cc04869k http://dx.doi.org/10.1039/d0cc04869k
Ye L. ; Collins B. A. ; Jiao X. C. ; Zhao J. B. ; Yan H. ; Ade H. Miscibility-function relations in organic solar cells: significance of optimal miscibility in relation to percolation . Adv. Energy Mater. , 2018 , 8 ( 28 ), 1703058 . doi: 10.1002/aenm.201870124 http://dx.doi.org/10.1002/aenm.201870124
Song I. ; Kim H. W. ; Ahn J. ; Han M. ; Kwon S. K. ; Kim Y. H. ; Oh J. H. Non-halogenated solution-processed ambipolar plastic transistors based on conjugated polymers prepared by asymmetric donor engineering . J. Mater. Chem. C , 2019 , 7 ( 47 ), 14977 - 14985 . doi: 10.1039/c9tc04808a http://dx.doi.org/10.1039/c9tc04808a
Qiu D. D. ; Tian C. Y. ; Zhang H. ; Zhang J. Q. ; Wei Z. X. ; Lu K. Correlating aggregation ability of polymer donors with film formation kinetics for organic solar cells with improved efficiency and processability . Adv. Mater. , 2024 , 36 ( 29 ), 2313251 . doi: 10.1002/adma.202313251 http://dx.doi.org/10.1002/adma.202313251
Wang Y. L. ; Wang X. H. ; Lin B. J. ; Bi Z. Z. ; Zhou X. B. ; Naveed H. B. ; Zhou K. ; Yan H. P. ; Tang Z. ; Ma W. Achieving balanced crystallization kinetics of donor and acceptor by sequential-blade coated double bulk heterojunction organic solar cells . Adv. Energy Mater. , 2020 , 10 ( 28 ), 2000826 . doi: 10.1002/aenm.202000826 http://dx.doi.org/10.1002/aenm.202000826
Zhan L. L. ; Li S. X. ; Xia X. X. ; Li Y. K. ; Lu X. H. ; Zuo L. J. ; Shi M. M. ; Chen H. Z. Layer-by-layer processed ternary organic photovoltaics with efficiency over 18% . Adv. Mater. , 2021 , 33 ( 12 ), 2007231 . doi: 10.1002/adma.202007231 http://dx.doi.org/10.1002/adma.202007231
Gao M. Y. ; Wang W. X. ; Hou J. H. ; Ye L. Control of aggregated structure of photovoltaic polymers for high-efficiency solar cells . Aggregate , 2021 , 2 ( 5 ), e 46 . doi: 10.1002/agt2.46 http://dx.doi.org/10.1002/agt2.46
Chen H. Y. ; Zhang R. ; Chen X. B. ; Zeng G. ; Kobera L. ; Abbrent S. ; Zhang B. ; Chen W. J. ; Xu G. Y. ; Oh J. ; Kang S. H. ; Chen S. S. ; Yang C. ; Brus J. ; Hou J. H. ; Gao F. ; Li Y. W. ; Li Y. F. A guest-assisted molecular-organization approach for >17% efficiency organic solar cells using environmentally friendly solvents . Nat. Energy , 2021 , 6 ( 11 ), 1045 - 1053 . doi: 10.1038/s41560-021-00923-5 http://dx.doi.org/10.1038/s41560-021-00923-5
Sun W. W. ; Chen H. Y. ; Zhang B. ; Cheng Q. R. ; Yang H. Y. ; Chen Z. Y. ; Zeng G. ; Ding J. Y. ; Chen W. J. ; Li Y. W. Host-guest active layer enabling annealing-free, nonhalogenated green solvent processing for high-performance organic solar cells . Chin. J. Chem. , 2022 , 40 ( 24 ), 2963 - 2972 . doi: 10.1002/cjoc.202200437 http://dx.doi.org/10.1002/cjoc.202200437
0
Views
51
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution