浏览全部资源
扫码关注微信
东华大学 纺织学院 纺织科技创新中心 上海 201620
Xiao-hua Zhang, E-mail: zhangxh@dhu.edu.cn
Received:07 March 2025,
Accepted:26 March 2025,
Published Online:29 April 2025,
Published:20 June 2025
移动端阅览
张允, 何丽萍, 李坤鹏, 俞建勇, 丁彬, 张骁骅. 聚醚酮酮静电纺纳米纤维的细化及高温过滤应用研究. 高分子学报, 2025, 56(6), 1002-1013
Zhang, Y.; He, L. P.; Li, K. P.; Yu, J. Y.; Ding, B.; Zhang, X. H. Electrospinning of polyetherketoneketone: strategy of fiber refinement and high temperature filtration application. Acta Polymerica Sinica, 2025, 56(6), 1002-1013
张允, 何丽萍, 李坤鹏, 俞建勇, 丁彬, 张骁骅. 聚醚酮酮静电纺纳米纤维的细化及高温过滤应用研究. 高分子学报, 2025, 56(6), 1002-1013 DOI: 10.11777/j.issn1000-3304.2025.25010. CSTR: 32057.14.GFZXB.2025.7372.
Zhang, Y.; He, L. P.; Li, K. P.; Yu, J. Y.; Ding, B.; Zhang, X. H. Electrospinning of polyetherketoneketone: strategy of fiber refinement and high temperature filtration application. Acta Polymerica Sinica, 2025, 56(6), 1002-1013 DOI: 10.11777/j.issn1000-3304.2025.25010. CSTR: 32057.14.GFZXB.2025.7372.
基于高分子的纤维过滤材料应用广泛,然而利用工程热塑性树脂开发耐高温过滤应用受到湿法纺丝难、纤维不易细化的限制. 采用高性能工程塑料聚醚酮酮作为原材料,利用其可溶解特性,在三氟乙酸溶液中,通过静电纺丝制备了纳米纤维膜,研究了纤维直径和形貌的调控规律,及其高温过滤应用特性. 研究表明:纤维平均直径可细化至87 nm,纤维膜孔径可降低至293 nm,断裂强度可达7.77 MPa;纤维膜展现出优异的过滤性能,在6 μm厚度下过滤效率即可高于99.9%;纤维膜在300 ℃仍保持良好的形貌结构以及力、热性能,表现出优异的高温空气过滤特性.
Polymer-based fibrous filtration materials are widely used
however
the development of high-temperature filtration application using engineering thermoplastics is limited by the difficulty of wet spinning and fiber refinement. In this paper
a nanofibrous membrane was prepared by electrospinning using the high performance engineering polymer polyetherketoneketone (PEKK)
which can be dissolved in trifluoroacetic acid. And the regulation laws of the fiber diameter and morphology were investigated
as well as its characteristics for high temperature filtration application. The average diameter of the fiber can be refined to 87 nm
the pore size of the fiber membrane can be reduced to 293 nm
and the tensile strength can reach 7.77 MPa. The fiber membrane shows excellent filtration performance with the filtration efficiency of higher than 99.9% at a thickness of 6 μm. The fiber membrane maintains a good morphological structure
force
thermal properties
and high-temperature air filtration properties at 300 ℃.
Yin H. ; McDuffie E. E. ; Martin R. V. ; Brauer M. Global health costs of ambient PM2.5 from combustion sources: a modelling study supporting air pollution control strategies . Lancet Planet. Health , 2024 , 8 ( 7 ), e476 - e488 . doi: 10.1016/S2542-5196(24)00098-6 http://dx.doi.org/10.1016/S2542-5196(24)00098-6
Kinnunen H. ; Hedman M. ; Engblom M. ; Lindberg D. ; Uusitalo M. ; Enestam S. ; Yrjas P. The influence of flue gas temperature on lead chloride induced high temperature corrosion . Fuel , 2017 , 196 , 241 - 251 . doi: 10.1016/j.fuel.2017.01.082 http://dx.doi.org/10.1016/j.fuel.2017.01.082
Souzandeh H. ; Wang Y. ; Netravali A. N. ; Zhong W. H. Towards sustainable and multifunctional air-filters: a review on biopolymer-based filtration materials . Polym. Rev. , 2019 , 59 ( 4 ), 651 - 686 . doi: 10.1080/15583724.2019.1599391 http://dx.doi.org/10.1080/15583724.2019.1599391
Zhao L. F. ; Zhang M. ; Bai L. R. ; Zhao Y. F. ; Cai Z. W. ; Yung K. K. L. ; Dong C. ; Li R. J. Real-world PM 2.5 exposure induces pathological injury and DNA damage associated with miRNAs and DNA methylation alteration in rat lungs . Environ. Sci. Pollut. Res. , 2022 , 29 ( 19 ), 28788 - 28803 . doi: 10.1007/s11356-021-17779-7 http://dx.doi.org/10.1007/s11356-021-17779-7
Liu J. Y. ; Zhou J. X. ; Zhou J. Z. ; Li M. C. ; Chen E. Z. ; Jiang G. Q. ; Chen Y. Y. ; Wu J. J. ; Yang Q. Y. Fine particulate matter exposure induces DNA damage by downregulating Rad51 expression in human bronchial epithelial Beas-2B cells in vitro . Toxicology , 2020 , 444 , 152581 . doi: 10.1016/j.tox.2020.152581 http://dx.doi.org/10.1016/j.tox.2020.152581
Liu Y. S. ; Qian X. M. ; Zhang H. ; Wang L. ; Zou C. ; Cui Y. W. Preparing micro/nano-fibrous filters for effective PM 2.5 under low filtration resistance . Chem. Eng. Sci. , 2020 , 217 , 115523 . doi: 10.1016/j.ces.2020.115523 http://dx.doi.org/10.1016/j.ces.2020.115523
Zhao C. ; Pu W. Y. ; Niu M. Y. ; Wazir J. ; Song S. Y. ; Wei L. L. ; Li L. ; Su Z. L. ; Wang H. W. Respiratory exposure to PM 2.5 soluble extract induced chronic lung injury by disturbing the phagocytosis function of macrophage . Environ. Sci. Pollut. Res. , 2022 , 29 ( 10 ), 13983 - 13997 . doi: 10.1007/s11356-021-16797-9 http://dx.doi.org/10.1007/s11356-021-16797-9
Hill W. ; Lim E. L. ; Weeden C. E. ; Lee C. ; Augustine M. ; Chen K. ; Kuan F.-C. ; Marongiu F. ; Evans E. J. ; Moore D. A. ; Rodrigues F. S. ; Pich O. ; Bakker B. ; Cha H. ; Myers R. ; van Maldegem F. ; Boumelha J. ; Veeriah S. ; Rowan A. ; Naceur-Lombardelli C. ; Karasaki T. ; Sivakumar M. ; De S. ; Caswell D. R. ; Nagano A. ; Black J. R. M. ; Martínez-Ruiz C. ; Ryu M. H. ; Huff R. D. ; Li S. ; Favé M. -J. ; Magness A. ; Suárez-Bonnet A. ; Priestnall S. L. ; Lüchtenborg M. ; Lavelle K. ; Pethick J. ; Hardy S. ; McRonald F. E. ; Lin M.-H. ; Troccoli C. I. ; Ghosh M. ; Miller Y. E. ; Merrick D. T. ; Keith R. L. ; Al Bakir M. ; Bailey C. ; Hill M. S. ; Saal L. H. ; Chen Y. ; George A. M. ; Abbosh C. ; Kanu N. ; Lee S.-H. ; McGranahan N. ; Berg C. D. ; Sasieni P. ; Houlston R. ; Turnbull C. ; Lam S. ; Awadalla P. ; Grönroos E. ; Downward J. ; Jacks T. ; Carlsten C. ; Malanchi I. ; Hackshaw A. ; Litchfield K. ; DeGregori J. ; Jamal-Hanjani M. ; Swanton C. Lung adenocarcinoma promotion by air pollutants . Nature , 2023 , 616 ( 7955 ), 159 - 167 .
Zhang R. F. ; Liu C. ; Hsu P. C. ; Zhang C. F. ; Liu N. ; Zhang J. S. ; Lee H. R. ; Lu Y. Y. ; Qiu Y. C. ; Chu S. ; Cui Y. Nanofiber air filters with high-temperature stability for efficient PM 2.5 removal from the pollution sources . Nano Lett. , 2016 , 16 ( 6 ), 3642 - 3649 . doi: 10.1021/acs.nanolett.6b00771 http://dx.doi.org/10.1021/acs.nanolett.6b00771
Jia C. ; Xu Z. ; Luo D. ; Xiang H. ; Zhu M. Flexible ceramic fibers: recent development in preparation and application . Adv. Fiber Mater. , 20 , 4 ( 4 ), 573 - 603 . doi: 10.1007/s42765-022-00133-y http://dx.doi.org/10.1007/s42765-022-00133-y
Zou C. ; Shi Y. L. ; Qian X. M. Characterization of glass fiber felt and its performance as an air filtration media . J. Ind. Text. , 2022 , 51 ( 1_suppl ), 1186S - 1206S . doi: 10.1177/1528083720961410 http://dx.doi.org/10.1177/1528083720961410
陈明星 , 王新亚 , 张威 , 肖长发 . 纤维基耐高温空气过滤材料研究进展 . 化工进展 , 20 , 42 ( 5 ), 2439 - 245 .
Mamun A. ; Blachowicz T. ; Sabantina L. Electrospun nanofiber mats for filtering applications: technology, structure and materials . Polymers , 2021 , 13 ( 9 ), 1368 . doi: 10.3390/polym13091368 http://dx.doi.org/10.3390/polym13091368
Hua Y. Z. ; Li Y. Y. ; Ji Z. K. ; Cui W. ; Wu Z. ; Fan J. ; Liu Y. Dual-bionic, fluffy, and flame resistant polyamide-imide ultrafine fibers for high-temperature air filtration . Chem. Eng. J. , 20 , 452 P 2 , 139168 . doi: 10.1016/j.cej.2022.139168 http://dx.doi.org/10.1016/j.cej.2022.139168
Wang X. F. ; Ding B. ; Sun G. ; Wang M. R. ; Yu J. Y. Electro-spinning/netting: a strategy for the fabrication of three-dimensional polymer nano-fiber/nets . Prog. Mater. Sci. , 2013 , 58 ( 8 ), 1173 - 1243 . doi: 10.1016/j.pmatsci.2013.05.001 http://dx.doi.org/10.1016/j.pmatsci.2013.05.001
Li K. L. ; Wang Y. ; Xie G. ; Kang J. X. ; He H. ; Wang K. J. ; Liu Y. Solution electrospinning with a pulsed electric field . J. Appl. Polym. Sci. , 2018 , 135 ( 15 ), 46130 . doi: 10.1002/app.46130 http://dx.doi.org/10.1002/app.46130
王雅欣 , 黄继伟 , 凌新龙 . 静电纺丝技术的发展现状及应用 . 纺织科学与工程学报 , 2024 , 41 ( 2 ), 88 - 99 .
Li Y. Y. ; Yin X. ; Yu J. Y. ; Ding B. Electrospun nanofibers for high-performance air filtration . Compos. Commun. , 2019 , 15 , 6 - 19 . doi: 10.1016/j.coco.2019.06.003 http://dx.doi.org/10.1016/j.coco.2019.06.003
Liu H. ; Zhang S. C. ; Liu L. F. ; Yu J. Y. ; Ding B. High-performance PM0.3 air filters using self-polarized electret nanofiber/nets . Adv. Funct. Mater. , 2020 , 30 ( 13 ), 1909554 . doi: 10.1002/adfm.201909554 http://dx.doi.org/10.1002/adfm.201909554
Wang Q. N. ; Yildiz O. ; Li A. ; Aly K. ; Qiu Y. P. ; Jiang Q. R. ; Pui D. Y. H. ; Chen S. C. ; Bradford P. D. High temperature carbon nanotube—Nanofiber hybrid filters . Sep. Purif. Technol. , 2020 , 236 , 116255 . doi: 10.1016/j.seppur.2019.116255 http://dx.doi.org/10.1016/j.seppur.2019.116255
Lv Y. R. ; He H. W. ; Chen F. X. ; Yu J. ; Ning X. ; Zhou R. Polyphenylene sulfide (PPS) fibrous felt coated with conductive polyaniline via in situ polymerization for smart high temperature bag-filter . Mater. Res. Express , 2019 , 6 ( 7 ), 075706 . doi: 10.1088/2053-1591/ab15f1 http://dx.doi.org/10.1088/2053-1591/ab15f1
Chen Q. Q. ; Liu Y. J. ; Deng H. J. ; Lyu T. T. ; Tan J. ; Yang W. M. ; Li H. Y. ; Ramakrishna S. Melt differential electrospinning of polyphenylene sulfide nanofibers for flue gas filtration . Polym. Eng. Sci. , 2020 , 60 ( 11 ), 2887 - 2894 . doi: 10.1002/pen.25520 http://dx.doi.org/10.1002/pen.25520
李帅 ; 汪泽幸 ; 吴璠 ; 陈小英 . 聚酰亚胺耐高温过滤材料的研究现状 . 棉纺织技术 , 20 , 50 (S 1 ), 43 - 47 .
Shen Y. ; Xing J. ; Sun S. Y. ; Li D. W. ; Xu Z. Z. ; Zhao Z. Q. ; Dong W. H. ; Deng B. Y. Biomimetic strategy to prepare thermostable polyimide micro/nanofiber assembled aerogels for airborne particles filtration . J. Environ. Chem. Eng. , 2022 , 10 ( 6 ), 108923 . doi: 10.1016/j.jece.2022.108923 http://dx.doi.org/10.1016/j.jece.2022.108923
Wei W. H. ; Tao Y. Y. ; Feng T. X. ; Wu Y. T. ; Li L. J. ; Pang J. ; Li D. W. ; Xu G. C. ; Liang X. ; Gao M. ; Zhang X. S. Self-assembly-dominated hierarchical porous nanofibrous membranes for efficient high-temperature air filtration and unidirectional water penetration . J. Membr. Sci. , 2023 , 686 , 121996 . doi: 10.1016/j.memsci.2023.121996 http://dx.doi.org/10.1016/j.memsci.2023.121996
An Y. ; Yu S. Y. ; Li S. M. ; Wang X. ; Yang W. M. ; Yousefzadeh M. ; Bubakir M. M. ; Li H. Y. Melt-electrospinning of polyphenylene sulfide . Fibres. Polym. , 2018 , 19 ( 12 ), 2507 - 2513 . doi: 10.1007/s12221-018-8619-8 http://dx.doi.org/10.1007/s12221-018-8619-8
Zhang L. H. ; Duan X. P. ; Yan X. ; Yu M. ; Ning X. ; Zhao Y. ; Long Y. Z. Recent advances in melt electrospinning . RSC Adv. , 2016 , 6 ( 58 ), 53400 - 53414 . doi: 10.1039/c6ra09558e http://dx.doi.org/10.1039/c6ra09558e
Li B. L. ; Zhang F. ; Jiao M. X. ; Li Y. B. ; Wang X. ; Zhang X. H. Carbon fiber/polyetherketoneketone composites. part I: an ideal and uniform composition via solution-based processing . Polym. Compos. , 2022 , 43 ( 5 ), 2803 - 2811 . doi: 10.1002/pc.26577 http://dx.doi.org/10.1002/pc.26577
Zhang X. H. ; Jiao M. X. ; Wang X. ; Li B. L. ; Zhang F. ; Li Y. B. ; Zhao J. N. ; Jin H. H. ; Yang Y. Preheat compression molding for polyetherketoneketone: effect of molecular mobility . Chinese J. Polym. Sci. , 20 , 40 ( 2 ), 175 - 184 . doi: 10.1007/s10118-021-2649-1 http://dx.doi.org/10.1007/s10118-021-2649-1
Cherri A. ; Iliopoulos I. ; Régnier G. ; Brulé B. ; Lé G. ; Tencé-Girault S. Thermal and crystallization properties of the alternated tere/iso PEKK copolymer: importance in high-temperature laser sintering . ACS Appl. Polym. Mater. , 2022 , 4 ( 4 ), 2806 - 2818 . doi: 10.1021/acsapm.2c00096 http://dx.doi.org/10.1021/acsapm.2c00096
Alqadhi N. ; Abdellah M. H. ; Nematulloev S. ; Mohammed O. F. ; Abdulhamid M. A. ; Szekely G. Solution-processable poly(ether-ether-ketone) membranes for organic solvent nanofiltration: From dye separation to pharmaceutical purification . Sep. Purif. Technol. , 2024 , 328 , 125072 . doi: 10.1016/j.seppur.2023.125072 http://dx.doi.org/10.1016/j.seppur.2023.125072
Shang J. Z. ; Song P. ; Li G. H. ; Sun Q. M. ; Li Y. ; Wei Z. Y. Crystallization and melting behavior of poly(ether ketone ketone) (PEKK) copolymers synthesized by facile one-step method . J. Therm. Anal. Calorim. , 2023 , 148 ( 21 ), 11727 - 11741 . doi: 10.1007/s10973-023-12518-1 http://dx.doi.org/10.1007/s10973-023-12518-1
Li B. L. ; Zhang F. ; Jiao M. X. ; Li Y. B. ; Wang X. ; Zhang X. H. Carbon fiber/polyetherketoneketone composites. Part I: an ideal and uniform composition via solution-based processing . Polym. Compos. , 2022 , 43 ( 5 ), 2803 - 2811 . doi: 10.1002/pc.26577 http://dx.doi.org/10.1002/pc.26577
Croshaw C. ; Hamernik L. ; Ghanbari L. ; Browning A. ; Wiggins J. Melt-state degradation mechanism of poly(ether ketone ketone): the role of branching on crystallization and rheological behavior . Polym. Degrad. Stab. , 2022 , 200 , 109968 . doi: 10.1016/j.polymdegradstab.2022.109968 http://dx.doi.org/10.1016/j.polymdegradstab.2022.109968
Satilmis B. ; Uyar T. Electrospinning of ultrafine poly(1-trimethylsilyl-1-propyne) [PTMSP] fibers: highly porous fibrous membranes for volatile organic compound removal . ACS Appl. Polym. Mater. , 2019 , 1 ( 4 ), 787 - 796 . doi: 10.1021/acsapm.9b00027 http://dx.doi.org/10.1021/acsapm.9b00027
Pattanashetti N. A. ; Kariduraganavar M. Y. ; Rao A. S. ; Savadi A. ; Pali M. ; Sonavane S. ; Sunita . Effect of solvent on the development of Poly(2-ethyl-2-oxazoline) nanofibrous scaffolds using electrospinning technique for biomedical applications . Heliyon , 2025 , 11 ( 1 ), e41259 . doi: 10.1016/j.heliyon.2024.e41259 http://dx.doi.org/10.1016/j.heliyon.2024.e41259
He Z. C. ; Rault F. ; Lewandowski M. ; Mohsenzadeh E. ; Salaün F. Electrospun PVDF nanofibers for piezoelectric applications: a review of the influence of electrospinning parameters on the β phase and crystallinity enhancement . Polymers , 2021 , 13 ( 2 ), 174 . doi: 10.3390/polym13020174 http://dx.doi.org/10.3390/polym13020174
Cozza E. S. ; Monticelli O. ; Marsano E. ; Cebe P. On the Electrospinning of PVDF: influence of the Experimental Conditions on the Nanofiber Properties . Polym. Int. , 201 , 62 ( 1 ), 41 - 48 . doi: 10.1002/pi.4314 http://dx.doi.org/10.1002/pi.4314
Zhang S. C. ; Liu H. ; Tang N. ; Zhou S. ; Yu J. Y. ; Ding B. Spider-web-inspired PM0.3 filters based on self-sustained electrostatic nanostructured networks . Adv. Mater. , 2020 , 32 ( 29 ), 2002361 . doi: 10.1002/adma.202002361 http://dx.doi.org/10.1002/adma.202002361
Zhang J. F. ; Yang D. Z. ; Nie J. Preparation of three-dimensional structure controllable nanofibers by electrospinning . Polym. Adv. Technol. , 2008 , 19 ( 9 ), 1150 - 1153 . doi: 10.1002/pat.1148 http://dx.doi.org/10.1002/pat.1148
De Vrieze S. ; Van Camp T. ; Nelvig A. ; Hagström B. ; Westbroek P. ; De Clerck K. The effect of temperature and humidity on electrospinning . J. Mater. Sci. , 2009 , 44 ( 5 ), 1357 - 1362 . doi: 10.1007/s10853-008-3010-6 http://dx.doi.org/10.1007/s10853-008-3010-6
Zhang H. N. ; Xie Y. X. ; Song Y. ; Qin X. H. Preparation of high-temperature resistant poly(m-phenylene isophthalamide)/polyacrylonitrile composite nanofibers membrane for air filtration . Colloids Surf. A Physicochem. Eng. Aspects , 2021 , 624 , 126831 . doi: 10.1016/j.colsurfa.2021.126831 http://dx.doi.org/10.1016/j.colsurfa.2021.126831
杨天哲 , 柯弈名 , 明晓娟 , 李沐芳 , 王栋 , 钟卫兵 . 聚丙烯腈纳米纤维基压电声学传感器的制备及性能 . 高分子材料科学与工程 , 2024 , 40 ( 9 ), 128 - 135 .
田华峰 , 袁理 , 王海亮 , 项爱民 . 聚乙烯醇静电纺丝纳米纤维的制备及形貌研究 . 中国塑料 , 2018 , 32 ( 12 ), 91 - 96 . doi: 10.19491/j.issn.1001-9278.2018.12.015 http://dx.doi.org/10.19491/j.issn.1001-9278.2018.12.015
Gu X. Y. ; Li N. ; Luo J. J. ; Xia X. ; Gu H. H. ; Xiong J. Electrospun polyurethane microporous membranes for waterproof and breathable application: the effects of solvent properties on membrane performance . Polym. Bull. , 2018 , 75 ( 8 ), 3539 - 3553 . doi: 10.1007/s00289-017-2223-8 http://dx.doi.org/10.1007/s00289-017-2223-8
Castro C. ; Juárez D. A. ; Arizmendi-Morquecho A. ; Gonzalez-Perez G. ; Estrada-Villegas G. M. The effects of relative humidity and salt concentration on the diameter of hydrophilic polymeric nanofibers obtained by electrospinning: synergistic effect study by Central Composite Design (CCD) . React. Funct. Polym. , 2024 , 203 , 106013 . doi: 10.1016/j.reactfunctpolym.2024.106013 http://dx.doi.org/10.1016/j.reactfunctpolym.2024.106013
Han Y. F. ; Xu Y. L. ; Zhang S. P. ; Li T. Y. ; Ramakrishna S. ; Liu Y. Progress of improving mechanical strength of electrospun nanofibrous membranes . Macromol. Mater. Eng. , 2020 , 305 ( 11 ), 2000230 . doi: 10.1002/mame.202000230 http://dx.doi.org/10.1002/mame.202000230
Shang J. Z. ; Song P. ; Li G. H. ; Sun Q. M. ; Li Y. ; Wei Z. Y. Crystallization and melting behavior of poly(ether ketone ketone) (PEKK) copolymers synthesized by facile one-step method . J. Therm. Anal. Calorim. , 2023 , 148 ( 21 ), 11727 - 11741 . doi: 10.1007/s10973-023-12518-1 http://dx.doi.org/10.1007/s10973-023-12518-1
Quan Z. Z. ; Zu Y. ; Wang Y. H. ; Zhou M. J. ; Qin X. H. ; Yu J. Y. Slip effect based bimodal nanofibrous membrane for high-efficiency and low-resistance air purification . Sep. Purif. Technol. , 2021 , 275 , 119258 . doi: 10.1016/j.seppur.2021.119258 http://dx.doi.org/10.1016/j.seppur.2021.119258
0
Views
123
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution