浏览全部资源
扫码关注微信
1.华南师范大学环境理论化学教育部重点实验室 广州 510006
2.吕梁学院化工与材料工程系 吕梁 033001
Yan Wang, E-mail: wangyan.cn@m.scnu.edu.cn
Hong Liu, E-mail: hongliu@m.scnu.edu.cn
Received:09 January 2025,
Accepted:17 February 2025,
Published Online:31 March 2025,
Published:20 July 2025
移动端阅览
柴祺娉, 郭宇琦, 高敏惠, 王衍, 刘鸿. 补丁纳米粒子聚合诱导自组装行为的模拟研究. 高分子学报, 2025, 56(7), 1234-1246
Chai, Q. P.; Guo, Y. Q.; Gao, M. H.; Wang, Y.; Liu, H. Polymerization-induced self-assembly of patchy nanoparticles: a simulation study. Acta Polymerica Sinica, 2025, 56(7), 1234-1246
柴祺娉, 郭宇琦, 高敏惠, 王衍, 刘鸿. 补丁纳米粒子聚合诱导自组装行为的模拟研究. 高分子学报, 2025, 56(7), 1234-1246 DOI: 10.11777/j.issn1000-3304.2025.25014. CSTR: 32057.14.GFZXB.2025.7364.
Chai, Q. P.; Guo, Y. Q.; Gao, M. H.; Wang, Y.; Liu, H. Polymerization-induced self-assembly of patchy nanoparticles: a simulation study. Acta Polymerica Sinica, 2025, 56(7), 1234-1246 DOI: 10.11777/j.issn1000-3304.2025.25014. CSTR: 32057.14.GFZXB.2025.7364.
采用耗散粒子动力学模拟方法结合随机聚合反应模型,深入探讨了聚合诱导自组装(polymerization-induced self-assembly
PISA)过程中纳米粒子形成复杂组装结构的机制和影响因素. 研究结果表明,与传统自组装方法相比,PISA在调控组装体形貌上展现出独特的优势. 此外纳米粒子的填充比对聚合诱导自组装形貌有显著影响,随着纳米粒子填充比的增加,自组装结构从简单的球状胶束演变为复杂的层状网络结构. 最后,基于相图分析结果,我们预测了在特定条件下不同自组装结构形成的可能性. 本研究深入探讨了聚合物接枝纳米粒子形成不同组装体结构的影响因素,为实验合成及工业生产中制备丰富的纳米复合材料提供一定的理论指导.
Using dissipative particle dynamics simulation combined with our stochastic reaction model
we delve into the mechanisms and controlling factors of self-assembled structures formed by the solvophilic/solvophobic chain-grafted patchy nanoparticles via the polymerization-induced self-assembly strategy
i.e.
PISA. The results indicate that PISA exhibits unique advantages in controlling the morphology of assemblies compared to conventional self-assembly methods. Furthermore
the packing fraction of nanoparticles significantly affects the morphologies obtained by PISA
with the self-assembled structures evolving from simple spherical micelles to complex layered network structures as the nanoparticle's packing fraction increases. Finally
based on the analysis of the phase diagram
we predict the formation tendencies of different self-assembled structures under specific conditions. This study investigates the factors that influence the formation of different assembly morphologies of patchy nanoparticles. These results are expected to provide theoretical guidance for the experimental synthesis and industrial production of nanocomposites with a variety of morphologies.
Maillard D. ; Kumar S. K. ; Fragneaud B. ; Kysar J. W. ; Rungta A. ; Benicewicz B. C. ; Deng H. ; Brinson L. C. ; Douglas J. F. Mechanical properties of thin glassy polymer films filled with spherical polymer-grafted nanoparticles . Nano Lett. , 2012 , 12 ( 8 ), 3909 - 3914 . doi: 10.1021/nl301792g http://dx.doi.org/10.1021/nl301792g
Morsi M. A. ; Rajeh A. ; Al-Muntaser A. A. Reinforcement of the optical, thermal and electrical properties of PEO based on MWCNTs/Au hybrid fillers: Nanodielectric materials for organoelectronic devices . Compos. Part B Eng. , 2019 , 173 , 106957 . doi: 10.1016/j.compositesb.2019.106957 http://dx.doi.org/10.1016/j.compositesb.2019.106957
林冬妮 , 张力 , 谭剑波 . 室温非均相可逆失活自由基聚合 . 高分子学报 , 2023 , 54 ( 6 ), 761 - 777 .
Varanakkottu S. N. ; Anyfantakis M. ; Morel M. ; Rudiuk S. ; Baigl D. Light-directed particle patterning by evaporative optical Marangoni assembly . Nano Lett. , 2016 , 16 ( 1 ), 644 - 650 . doi: 10.1021/acs.nanolett.5b04377 http://dx.doi.org/10.1021/acs.nanolett.5b04377
MacKay M. E. ; Tuteja A. ; Duxbury P. M. ; Hawker C. J. ; Van Horn B. ; Guan Z. B. ; Chen G. H. ; Krishnan R. S. General strategies for nanoparticle dispersion . Science , 2006 , 311 ( 5768 ), 1740 - 1743 . doi: 10.1126/science.1122225 http://dx.doi.org/10.1126/science.1122225
Zhang W. J. ; Hong C. Y. ; Pan C. Y. Polymerization-induced self-assembly of functionalized block copolymer nanoparticles and their application in drug delivery . Macromol. Rapid Commun. , 2019 , 40 ( 2 ), 1800279 . doi: 10.1002/marc.201800279 http://dx.doi.org/10.1002/marc.201800279
Bansal A. ; Yang H. ; Li C. Z. ; Cho K. ; Benicewicz B. C. ; Kumar S. K. ; Schadler L. S. Quantitative equivalence between polymer nanocomposites and thin polymer films . Nat. Mater. , 2005 , 4 ( 9 ), 693 - 698 . doi: 10.1038/nmat1447 http://dx.doi.org/10.1038/nmat1447
Zhang N.-N. ; Shen X. X. ; Liu K. ; Nie Z. H. ; Kumacheva E. Polymer-tethered nanoparticles: from surface engineering to directional self-assembly . Acc. Chem. Res. , 2022 , 55 ( 11 ), 1503 - 1513 . doi: 10.1021/acs.accounts.2c00066 http://dx.doi.org/10.1021/acs.accounts.2c00066
Khor S. Y. ; Quinn J. F. ; Whittaker M. R. ; Truong N. P. ; Davis T. P. Cont rolling nanomaterial size and shape for biomedical applications via polymerization-induced self-assembly . Macromol. Rapid Commun. , 2019 , 40 ( 2 ), 1800438 . doi: 10.1002/marc.201800438 http://dx.doi.org/10.1002/marc.201800438
Akcora P. ; Harton S. E. ; Kumar S. K. ; Garcia Sakai V. ; Li Y. ; Benicewicz B. C. ; Schadler L. S. Segmental dynamics in PMMA-grafted nanoparticle composites . Macromolecules , 2011 , 44 ( 2 ), 416 . doi: 10.1021/ma102771k http://dx.doi.org/10.1021/ma102771k
Rossner C. ; Zhulina E. B. ; Kumacheva E. Staged surface patterning and self-assembly of nanoparticles functionalized with end-grafted block copolymer ligands . Angew. Chem. Int. Ed. , 2019 , 58 ( 27 ), 9269 - 9274 . doi: info:doi/10.1002/anie.201904430 http://dx.doi.org/info:doi/10.1002/anie.201904430
Song W. Y. ; Lu H. ; He J. W. ; Zhu Z. J. ; He S. Y. ; Liu D. H. ; Liu H. ; Wang Y. Dynamics and morphology of self-assembly behavior of polymer-grafted nanoparticles: a dissipative particle dynamics simulation study . Polym. Int. , 2022 , 71 ( 11 ), 1330 - 1339 . doi: 10.1002/pi.6437 http://dx.doi.org/10.1002/pi.6437
Liu D. D. ; Cai W. B. ; Zhang L. ; Boyer C. ; Tan J. B. Efficient photoinitiated polymerization-induced self-assembly with oxygen tolerance through dual-wavelength type I photoinitiation and photoinduced deoxygenation . Macromolecules , 2020 , 53 ( 4 ), 1212 - 1223 . doi: 10.1021/acs.macromol.9b02710 http://dx.doi.org/10.1021/acs.macromol.9b02710
Li S. S. ; Liu X. B. ; Zhang H. ; Mao Y. H. ; Zhang T. X. ; Wang J. L. Shape-tunable polymeric Janus nanoparticles with hollow cavities derived from polymerization induced self-assembly based crosslinked vesicles . Chem. Commun. , 2022 , 58 ( 13 ), 2228 - 2231 . doi: 10.1039/d1cc06966g http://dx.doi.org/10.1039/d1cc06966g
Sun P. Q. ; Yang C. G. ; Peng F. ; Dang J. B. ; Wang W. T. ; Deng D. W. ; Zhang N. N. ; Yang Y. ; Liu K. Free-radical polymerization induced grafting-to of polymer chains onto aluminum nanoparticles . Chin. J. Chem. , 2024 , 42 ( 24 ), 3193 - 3200 . doi: 10.1002/cjoc.202400510 http://dx.doi.org/10.1002/cjoc.202400510
刘鸿 , 朱有亮 , 吕中元 . 高分子界面聚合动力学模拟研究进展 . 高分子学报 , 2021 , 52 ( 6 ), 565 - 577 . doi: 10.11777/j.issn1000-3304.2021.21008 http://dx.doi.org/10.11777/j.issn1000-3304.2021.21008
Zheng G. H. ; Pan C. Y. Reversible addition-fragmentation transfer polymerization in nanosized micelles formed in situ . Macromolecules , 2006 , 39 ( 1 ), 95 - 102 . doi: 10.1021/ma0517897 http://dx.doi.org/10.1021/ma0517897
Jennings J. ; He G. ; Howdle S. M. ; Zetterlund P. B. Block copolymer synthesis by controlled/living radical polymerisation in heterogeneous systems . Chem. Soc. Rev. , 2016 , 45 ( 18 ), 5055 - 5084 . doi: 10.1039/c6cs00253f http://dx.doi.org/10.1039/c6cs00253f
Sun J. T. ; Hong C. Y. ; Pan C. Y. Formation of the block copolymer aggregates via polymerization-induced self-assembly and reorganization . Soft Matter , 2012 , 8 ( 30 ), 7753 - 7767 . doi: 10.1039/c2sm25537e http://dx.doi.org/10.1039/c2sm25537e
Wang R. M. ; Zhu W. Y. ; Zhang L. ; Sheng X. X. ; Tan J. B. Synthesis of self-assembled star/linear block copolymer blends via aqueous RAFT dispersion polymerization . Chin. J. Chem. , 2024 , 42 ( 14 ), 1606 - 1614 . doi: 10.1002/cjoc.202400023 http://dx.doi.org/10.1002/cjoc.202400023
Sidorenko A. ; Minko S. ; Schenk-Meuser K. ; Duschner H. ; Stamm M. Switching of polymer brushes . Langmuir , 1999 , 15 ( 24 ), 8349 - 8355 . doi: 10.1021/la990869z http://dx.doi.org/10.1021/la990869z
Gao H. F. ; Matyjaszewski K. Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers: From stars to gels . Prog. Polym. Sci. , 2009 , 34 ( 4 ), 317 - 350 . doi: 10.1016/j.progpolymsci.2009.01.001 http://dx.doi.org/10.1016/j.progpolymsci.2009.01.001
Zhang M. F. ; Müller A. H. E. Cylindrical polymer brushes . J. Polym. Sci. Part A Polym. Chem. , 2005 , 43 ( 16 ), 3461 - 3481 . doi: 10.1002/pola.20900 http://dx.doi.org/10.1002/pola.20900
Hou W. M. ; Wang H. ; Cui Y. L. ; Liu Y. Z. ; Ma X. T. ; Zhao H. Y. Surface nanostructures fabricated by polymerization-induced surface self-assembly . Macromolecules , 2019 , 52 ( 21 ), 8404 - 8414 . doi: 10.1021/acs.macromol.9b01664 http://dx.doi.org/10.1021/acs.macromol.9b01664
Chang Y. X. ; Xu X. ; Zhang R. ; Peng H. ; Liu K. ; Whittaker A. K. ; Fu C. K. Oxidation-responsive polymeric fluorinated nanoparticles prepared by polymerization-induced self-assembly . Macromolecules , 2024 , 57 ( 1 ), 263 - 271 . doi: 10.1021/acs.macromol.3c01895 http://dx.doi.org/10.1021/acs.macromol.3c01895
Deng L. Y. Orthogonal arrays: theory and applications . Technometrics , 2000 , 42 ( 4 ), 440 . doi: 10.1080/00401706.2000.10485735 http://dx.doi.org/10.1080/00401706.2000.10485735
Xing J. Y. ; Lu Z. Y. ; Liu H. ; Xue Y. H. The selectivity of nanoparticles for polydispersed ligand chains during the grafting-to process: a computer simulation study . Phys. Chem. Chem. Phys. , 2018 , 20 ( 3 ), 2066 - 2074 . doi: 10.1039/c7cp07818h http://dx.doi.org/10.1039/c7cp07818h
Li L. ; Han C. ; Xu D. ; Xing J. Y. ; Xue Y. H. ; Liu H. Polymer-grafted nanoparticles prepared via a grafting-from strategy: a computer simulation study . Phys. Chem. Chem. Phys. , 2018 , 20 ( 27 ), 18400 - 18409 . doi: 10.1039/c8cp02905a http://dx.doi.org/10.1039/c8cp02905a
Liu H. ; Zhu Y. L. ; Lu Z. Y. ; Müller-Plathe F. A kinetic chain growth algorithm in coarse-grained simulations . J. Comput. Chem. , 2016 , 37 ( 30 ), 2634 - 2646 . doi: 10.1002/jcc.24495 http://dx.doi.org/10.1002/jcc.24495
Yi C. L. ; Yang Y. Q. ; Liu B. ; He J. ; Nie Z. H. Polymer-guided assembly of inorganic nanoparticles . Chem. Soc. Rev. , 2020 , 49 ( 2 ), 465 - 508 . doi: 10.1039/c9cs00725c http://dx.doi.org/10.1039/c9cs00725c
Chao H. K. ; Riggleman R. A. Effect of particle size and grafting density on the mechanical properties of polymer nanocomposites . Polymer , 2013 , 54 ( 19 ), 5222 - 5229 . doi: 10.1016/j.polymer.2013.07.018 http://dx.doi.org/10.1016/j.polymer.2013.07.018
Allen M. P. ; Tildesley D. J. Computer simulation of liquids, 2nd edn . Oxford : Oxford Academic , 2017 , 20 - 100 . doi: 10.1093/oso/9780198803195.001.0001 http://dx.doi.org/10.1093/oso/9780198803195.001.0001
Li C. X. ; Mao J. Y. ; Li S. J. ; Wang Y. ; Liu H. A long chain-induced depletion effect for abnormal grafting in the preparation of bimodal bidisperse polymer-grafted nanoparticles . Phys. Chem. Chem. Phys. , 2023 , 25 ( 7 ), 5627 - 5637 . doi: 10.1039/d2cp04229k http://dx.doi.org/10.1039/d2cp04229k
Groot R. D. ; Warren P. B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation . J. Chem. Phys. , 1997 , 107 ( 11 ), 4423 - 4435 . doi: 10.1063/1.474784 http://dx.doi.org/10.1063/1.474784
Español P. ; Warren P. Statistical mechanics of dissipative particle dynamics . Europhys. Lett. , 1995 , 30 ( 4 ), 191 - 196 . doi: 10.1209/0295-5075/30/4/001 http://dx.doi.org/10.1209/0295-5075/30/4/001
Groot R. D. ; Madden T. J. Dynamic simulation of diblock copolymer microphase separation . J. Chem. Phys. , 1998 , 108 ( 20 ), 8713 - 8724 . doi: 10.1063/1.476300 http://dx.doi.org/10.1063/1.476300
Yan Y. D. ; Xue Y. H. ; Zhao H. Y. ; Liu H. ; Lu Z. Y. ; Gu F. L. Insight into the polymerization-induced self-assembly via a realistic computer simulation strategy . Macromolecules , 2019 , 52 ( 16 ), 6169 - 6180 . doi: 10.1021/acs.macromol.9b01051 http://dx.doi.org/10.1021/acs.macromol.9b01051
He W. D. ; Sun X. L. ; Wan W. M. ; Pan C. Y. Multiple morphologies of PAA- b -PSt assemblies throughout RAFT dispersion polymerization of styrene with PAA macro-CTA . Macromolecules , 2011 , 44 ( 9 ), 3358 - 3365 . doi: 10.1021/ma2000674 http://dx.doi.org/10.1021/ma2000674
Liu H. ; Li M. ; Lu Z.-Y. ; Zhang Z.-G. ; Sun C. C. Influence of surface-initiated polymerization rate and initiator density on the properties of polymer brushes . Macromolecules , 2009 , 42 ( 7 ), 2863 - 2872 . doi: 10.1021/ma802817r http://dx.doi.org/10.1021/ma802817r
Zhang Z. Y. ; Dong X. L. ; Yin J. ; Li Z. G. ; Li X. ; Zhang D. L. ; Pan T. T. ; Lei Q. ; Liu X. L. ; Xie Y. Q. ; Shui F. ; Li J. L. ; Yi M. ; Yuan J. ; You Z. F. ; Zhang L. Y. ; Chang J. H. ; Zhang H. B. ; Li W. ; Fang Q. R. ; Li B. Y. ; Bu X. H. ; Han Y. Chemically stable guanidinium covalent organic framework for the efficient capture of low-concentration iodine at high temperatures . J. Am. Chem. Soc. , 2022 , 144 ( 15 ), 6821 - 6829 . doi: 10.1021/jacs.2c00563 http://dx.doi.org/10.1021/jacs.2c00563
Humphrey W. ; Dalke A. ; Schulten K. VMD: visual molecular dynamics . J. Mol. Graph. , 1996 , 14 ( 1 ), 33 - 38 . doi: 10.1016/0263-7855(96)00018-5 http://dx.doi.org/10.1016/0263-7855(96)00018-5
Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool . Model. Simul Mater Sci Eng , 2010 , 18 ( 1 ), 015012 . doi: 10.1088/0965-0393/18/1/015012 http://dx.doi.org/10.1088/0965-0393/18/1/015012
Gu P. ; Xu J. P. ; Zhu J. T. Self-assembly of polymer-grafted inorganic nanoparticles into three-dimensional superlattices . Giant , 2022 , 12 , 100123 . doi: 10.1016/j.giant.2022.100123 http://dx.doi.org/10.1016/j.giant.2022.100123
Rao A. ; Roy S. ; Jain V. ; Pillai P. P. Nanoparticle self-assembly: from design principles to complex matter to functional materials . ACS Appl. Mater. Interfaces , 2023 , 15 ( 21 ), 25248 - 25274 . doi: 10.1021/acsami.2c05378 http://dx.doi.org/10.1021/acsami.2c05378
Wang Z. X. ; Zheng Z. J. ; Liu J. ; Wu Y. P. ; Zhang L. Q. Tuning the mechanical properties of polymer nanocomposites filled with grafted nanoparticles by varying the grafted chain length and flexibility . Polymers , 2016 , 8 ( 9 ), 270 . doi: 10.3390/polym8090270 http://dx.doi.org/10.3390/polym8090270
Qu J. J. ; Chen Q. H. ; Huang W. H. ; Zhang L. Q. ; Liu J. Dispersion and diffusion mechanism of nanofillers with different geometries in bottlebrush polymers: Insights from molecular dynamics simulation . J. Phys. Chem. B , 2022 , 126 ( 39 ), 7761 - 7770 . doi: 10.1021/acs.jpcb.2c04389 http://dx.doi.org/10.1021/acs.jpcb.2c04389
Hu J. M. ; Wu T. ; Zhang G. Y. ; Liu S. Y. Efficient synthesis of single gold nanoparticle hybrid amphiphilic triblock copolymers and their controlled self-assembly . J. Am. Chem. Soc. , 2012 , 134 ( 18 ), 7624 - 7627 . doi: 10.1021/ja302019q http://dx.doi.org/10.1021/ja302019q
Blanazs A. ; Ryan A. J. ; Armes S. P. Predictive phase diagrams for RAFT aqueous dispersion polymerization: effect of block copolymer composition, molecular weight, and copolymer concentration . Macromolecules , 2012 , 45 ( 12 ), 5099 - 5107 . doi: 10.1021/ma301059r http://dx.doi.org/10.1021/ma301059r
Yang Y. Q. ; Yi C. L. ; Duan X. Z. ; Wu Q. ; Zhang Y. ; Tao J. ; Dong W. H. ; Nie Z. H. Block-random copolymer-micellization-mediated formation of polymeric patches on gold nanoparticles . J. Am. Chem. Soc. , 2021 , 143 ( 13 ), 5060 - 5070 . doi: 10.1021/jacs.1c00310 http://dx.doi.org/10.1021/jacs.1c00310
0
Views
282
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution