浏览全部资源
扫码关注微信
江南大学生命科学与健康工程学院 无锡 214122
Ping Wei, E-mail: weiping@jiangnan.edu.cn
Jing-hua Chen, E-mail: chenjinghua@jiangnan.edu.cn
Received:09 January 2025,
Accepted:14 March 2025,
Published Online:20 May 2025,
Published:20 July 2025
移动端阅览
杨敏, 韦平, 刘文浩, 陈敬华. 聚多肽囊泡声动力抗菌平台的构建及协同抗菌效果研究. 高分子学报, 2025, 56(7), 1170-1179
Yang, M.; Wei, P.; Liu, W. H.; Chen, J. H. Polypeptosomes-based sonodynamic platform for synergistic antibacterial therapy. Acta Polymerica Sinica, 2025, 56(7), 1170-1179
杨敏, 韦平, 刘文浩, 陈敬华. 聚多肽囊泡声动力抗菌平台的构建及协同抗菌效果研究. 高分子学报, 2025, 56(7), 1170-1179 DOI: 10.11777/j.issn1000-3304.2025.25015. CSTR: 32057.14.GFZXB.2025.7387.
Yang, M.; Wei, P.; Liu, W. H.; Chen, J. H. Polypeptosomes-based sonodynamic platform for synergistic antibacterial therapy. Acta Polymerica Sinica, 2025, 56(7), 1170-1179 DOI: 10.11777/j.issn1000-3304.2025.25015. CSTR: 32057.14.GFZXB.2025.7387.
抗生素长期不合理的乱用、滥用,导致细菌耐药性不断增强,严重威胁国民健康. 因此,亟需寻找一种新型、不易诱发耐药性的细菌感染治疗方法,以应对后抗生素时代的挑战. 针对该问题,成功设计出一种基于聚己内酯(PCL)和聚谷氨酸(PGA)的两亲性嵌段聚合物PCL
37
-
b
-PGA
25
,并自组装形成具有中空结构和双层膜的聚合物囊泡. 利用聚合物囊泡独特的结构特性,在其亲水空腔包载广谱抗生素药物头孢曲松(CRO),疏水双层膜同步负载声敏剂二氢卟吩(Ce6),构建声动力疗法联合抗生素多功能抗菌平台. 体外抗菌实验结果表明,在超声作用下,同时负载Ce6和CRO的聚合物囊泡可产生大量具有抗菌活性的活性氧(ROS),与抗生素CRO协同作用,对耐CRO的大肠杆菌菌株具有显著的抗菌效果,其菌落总数由4.69×10
9
CFU/mL降低至3.17×10
2
CFU/mL. 该声动力疗法联合抗生素多功能抗菌平台的构建实现了协同抗菌,有望为新型抗菌药物的研发奠定实验基础.
Bacterial infections constitute a substantial proportion of human morbidity and mortality
posing significant threats to public health and imposing considerable socioeconomic burdens annually. Although traditional antibiotics have a positive effect on killing bacteria
their therapeutic efficiency is greatly reduced due to the emergence of antibiotic-resistant pathogens. Therefore
there is an urgent need to seek an alternative treatment approach against antibiotic-resistant bacterial infections. Recently
some new antibiotics-free and non-invasive antibacterial approaches have been developed
including photothermal therapy
photodynamic therapy and ultrasound-triggered sonodynamic therapy (SDT). Among these approaches
SDT is the most promising bacterial infection treatment modality due to its deep tissue penetration capability and effectiveness against antibiotic-resistant bacteria. In this work
we propose a combined sonodynamic-antibiotic therapy based on poly(
ε
-caprolactone)-block-poly(glutamic acid) polymer vesicle. The hydrophilic cavity and the hydrophobic membrane of polymer vesicles can function as different modules for the simultaneous delivery of a broad-spectrum antibiotic drug ceftriaxone (CRO) and a photosensitizer chlorin e6 (Ce6). These multifunctional nanoplatforms exhibited enhanced antibacterial activity and could efficiently generate reactive oxygen species (ROS) upon ultrasound activation.
In vitro
antibacterial results indicated that under ultrasound exposure
the polymer vesicles simultaneously loaded with Ce6 and CRO exhibited a remarkable antibacterial effect against CRO-tolerant
Escherichia coli
strains
reducing the total colony count from 4.69×10
9
CFU/mL to 3.17×10
2
CFU/mL. The construction of this multifunctional antibacterial platform combining sonodynamic therapy and antibiotics can achieve synergistic antibacterial effects and is expected to lay an experimental foundation for the rese
arch and development of new antibacterial drugs.
Pang X. ; Li D. F. ; Zhu J. ; Cheng J. L. ; Liu G. Beyond antibiotics: photo/sonodynamic approaches for bacterial theranostics . Nanomicro Lett. , 2020 , 12 ( 1 ), 144 . doi: 10.1007/s40820-020-00485-3 http://dx.doi.org/10.1007/s40820-020-00485-3
Kaushik S. ; Thomas J. ; Panwar V. ; Murugesan P. ; Chopra V. ; Salaria N. ; Singh R. ; Roy H. S. ; Kumar R. ; Gautam V. ; Ghosh D. A drug-free strategy to combat bacterial infections with magnetic nanoparticles biosynthesized in bacterial pathogens . Nanoscale , 2022 , 14 ( 5 ), 1713 - 1722 . doi: 10.1039/D1NR07435K http://dx.doi.org/10.1039/D1NR07435K
Relman D. A. A high-pressure situation for bacteria . Nature , 2017 , 551 ( 7682 ), 571 - 572 . doi: 10.1038/nature24760 http://dx.doi.org/10.1038/nature24760
Cherif J. ; Raddaoui A. ; Trabelsi M. ; Souissi N. Diagnostic low-dose X-ray radiation induces fluoroquinolone resistance in pathogenic bacteria . Int. J. Radiat. Biol. , 2023 , 99 ( 12 ), 1971 - 1977 . doi: 10.1080/09553002.2023.2232016 http://dx.doi.org/10.1080/09553002.2023.2232016
Guo S. W. ; He Y. L. ; Zhu Y. Y. ; Tang Y. L. ; Yu B. R. Combatting antibiotic resistance using supramolecular assemblies . Pharmaceuticals , 2022 , 15 ( 7 ), 804 . doi: 10.3390/ph15070804 http://dx.doi.org/10.3390/ph15070804
Guan W. ; Tan L. ; Liu X. M. ; Cui Z. D. ; Zheng Y. F. ; Yeung K. W. K. ; Zheng D. ; Liang Y. Q. ; Li Z. Y. ; Zhu S. L. ; Wang X. B. ; Wu S. L. Ultrasonic interfacial engineering of red phosphorous-metal for eradicating MRSA infection effectively . Adv. Mater. , 2021 , 33 ( 5 ), 2006047 . doi: 10.1002/adma.202006047 http://dx.doi.org/10.1002/adma.202006047
Sun D. ; Pang X. ; Cheng Y. ; Ming J. ; Xiang S. J. ; Zhang C. ; Lv P. ; Chu C. C. ; Chen X. L. ; Liu G. ; Zheng N. F. Ultrasound-switchable nanozyme augments sonodynamic therapy against multidrug-resistant bacterial infection . ACS Nano , 2020 , 14 ( 2 ), 2063 - 2076 . doi: 10.1021/acsnano.9b08667 http://dx.doi.org/10.1021/acsnano.9b08667
Du M. ; Wang T. ; Peng W. R. ; Feng R. J. ; Goh M. ; Chen Z. Y. Bacteria-driven nanosonosensitizer delivery system for enhanced breast cancer treatment through sonodynamic therapy-induced immunogenic cell death . J. Nanobiotechnol. , 2024 , 22 ( 1 ), 167 . doi: 10.1186/s12951-024-02437-0 http://dx.doi.org/10.1186/s12951-024-02437-0
Liu D. ; Li L. ; Shi B. L. ; Shi B. ; Li M. D. ; Qiu Y. ; Zhao D. ; Shen Q. D. ; Zhu Z. Z. Ultrasound-triggered piezocatalytic composite hydrogels for promoting bacterial-infected wound healing . Bioact. Mater. , 2023 , 24 , 96 - 111 . doi: 10.1016/j.bioactmat.2023.09.013 http://dx.doi.org/10.1016/j.bioactmat.2023.09.013
Roy J. ; Pandey V. ; Gupta I. ; Shekhar H. Antibacterial sonodynamic therapy: current status and future perspectives . ACS Biomater. Sci. Eng. , 2021 , 7 ( 12 ), 5326 - 5338 . doi: 10.1021/acsbiomaterials.1c00587 http://dx.doi.org/10.1021/acsbiomaterials.1c00587
Zhang Y. ; Zhang X. Q. ; Yang H. C. ; Yu L. ; Xu Y. J. ; Sharma A. ; Yin P. ; Li X. Y. ; Kim J. S. ; Sun Y. Advanced biotechnology-assisted precise sonodynamic therapy . Chem. Soc. Rev. , 2021 , 50 ( 20 ), 11227 - 11248 . doi: 10.1039/d1cs00403d http://dx.doi.org/10.1039/d1cs00403d
Wang R. H. ; Liu Q. W. ; Gao A. ; Tang N. ; Zhang Q. ; Zhang A. M. ; Cui D. X. Recent developments of sonodynamic therapy in antibacterial application . Nanoscale , 2022 , 14 ( 36 ), 12999 - 13017 . doi: 10.1039/d2nr01847k http://dx.doi.org/10.1039/d2nr01847k
Pang X. ; Xiao Q. C. ; Cheng Y. ; Ren E. ; Lian L. L. ; Zhang Y. ; Gao H. Y. ; Wang X. Y. ; Leung W. ; Chen X. Y. ; Liu G. ; Xu C. S. Bacteria-responsive nanoliposomes as smart sonotheranostics for multidrug resistant bacterial infections . ACS Nano , 2019 , 13 ( 2 ), 2427 - 2438 . doi: 10.1021/acsnano.8b09336 http://dx.doi.org/10.1021/acsnano.8b09336
Darby E. M. ; Trampari E. ; Siasat P. ; Gaya M. S. ; Alav I. ; Webber M. A. ; Blair J. M. A. Molecular mechanisms of antibiotic resistance revisited . Nat. Rev. Microbiol. , 2023 , 21 ( 5 ), 280 - 295 . doi: 10.1038/s41579-022-00820-y http://dx.doi.org/10.1038/s41579-022-00820-y
石隽秋 , 陈帅 , 朱云卿 , 杜建忠 . 生物医用高分子囊泡 . 高分子学报 , 2023 , 54 ( 3 ), 314 - 326 .
Xi Y. J. ; Wang Y. ; Gao J. Y. ; Xiao Y. F. ; Du J. Z. Dual corona vesicles with intrinsic antibacterial and enhanced antibiotic delivery capabilities for effective treatment of biofilm-induced periodontitis . ACS Nano , 2019 , 13 ( 12 ), 13645 - 13657 . doi: 10.1021/acsnano.9b03237 http://dx.doi.org/10.1021/acsnano.9b03237
Fenaroli F. ; Robertson J. D. ; Scarpa E. ; Gouveia V. M. ; Di Guglielmo C. ; De Pace C. ; Elks P. M. ; Poma A. ; Evangelopoulos D. ; Canseco J. O. ; Prajsnar T. K. ; Marriott H. M. ; Dockrell D. H. ; Foster S. J. ; McHugh T. D. ; Renshaw S. A. ; Martí J. S. ; Battaglia G. ; Rizzello L. Polymersomes eradicating intracellular bacteria . ACS Nano , 2020 , 14 ( 7 ), 8287 - 8298 . doi: 10.1021/acsnano.0c01870 http://dx.doi.org/10.1021/acsnano.0c01870
Haas S. ; Hain N. ; Raoufi M. ; Handschuh-Wang S. ; Wang T. ; Jiang X. ; Schönherr H. Enzyme degradable polymersomes from hyaluronic acid-block-poly( ε -caprolactone) copolymers for the detection of enzymes of pathogenic bacteria . Biomacromolecules , 2015 , 16 ( 3 ), 832 - 841 . doi: 10.1021/bm501729h http://dx.doi.org/10.1021/bm501729h
Lane D. D. ; Su F. Y. ; Chiu D. Y. ; Srinivasan S. ; Wilson J. T. ; Ratner D. M. ; Stayton P. S. ; Convertine A. J. Dynamic intracellular delivery of antibiotics via pH-responsive polymersomes . Polym. Chem. , 2015 , 6 ( 8 ), 1255 - 1266 . doi: 10.1039/c4py01249f http://dx.doi.org/10.1039/c4py01249f
Blackman L. D. ; Oo Z. Y. ; Qu Y. ; Gunatillake P. A. ; Cass P. ; Locock K. E. S. Antimicrobial honey-inspired glucose-responsive nanoreactors by polymerization-induced self-assembly . ACS Appl. Mater. Interfaces , 2020 , 12 ( 10 ), 11353 - 11362 . doi: 10.1021/acsami.9b22386 http://dx.doi.org/10.1021/acsami.9b22386
Wei P. ; Chen S. ; Shi J. Q. ; Du J. Z. Oxygen-generating polymer vesicles for enhanced sonodynamic tumor therapy . J. Control. Release , 2023 , 353 , 975 - 987 . doi: 10.1016/j.jconrel.2022.12.023 http://dx.doi.org/10.1016/j.jconrel.2022.12.023
Shi R. ; Lv R. ; Dong Z. L. ; Cao Q. H. ; Wu R. F. ; Liu S. D. ; Ren Y. J. ; Liu Z. ; van der Mei H. C. ; Liu J. ; Busscher H. J. Magnetically-targetable outer-membrane vesicles for sonodynamic eradication of antibiotic-tolerant bacteria in bacterial meningitis . Biomaterials , 2023 , 302 , 122320 . doi: 10.1016/j.biomaterials.2023.122320 http://dx.doi.org/10.1016/j.biomaterials.2023.122320
Dong H. ; Xiu W. J. ; Wan L. ; Li Q. ; Zhang Y. ; Ding M. ; Shan J. Y. ; Yang K. L. ; Teng Z. G. ; Yuwen L. H. ; Mou Y. B. Biofilm microenvironment response nanoplatform synergistically degrades biofilm structure and relieves hypoxia for efficient sonodynamic therapy . Chem. Eng. J. , 2023 , 453 , 139839 . doi: 10.1016/j.cej.2022.139839 http://dx.doi.org/10.1016/j.cej.2022.139839
Zhu Y. Q. ; Fan L. ; Yang B. ; Du J. Z. Multifunctional homopolymer vesicles for facile immobilization of gold nanoparticles and effective water remediation . ACS Nano , 2014 , 8 ( 5 ), 5022 - 5031 . doi: 10.1021/nn5010974 http://dx.doi.org/10.1021/nn5010974
Fridman O. ; Goldberg A. ; Ronin I. ; Shoresh N. ; Balaban N. Q. Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations . Nature , 2014 , 513 ( 7518 ), 418 - 421 . doi: 10.1038/nature13469 http://dx.doi.org/10.1038/nature13469
江金辉 , 杨雨嬴 , 凡刘杰 , 朱云卿 , 杜建忠 . 一步酸化法制备抗菌肽胶束及其抗菌性能研究 . 高分子学报 , 2021 , 52 ( 12 ), 1559 - 1567 . doi: 10.11777/j.issn1000-3304.2021.21135 http://dx.doi.org/10.11777/j.issn1000-3304.2021.21135
Khan M. ; Ma K. R. ; Wan I. ; Willcox M. D. Ciprofloxacin resistance and tolerance of Pseudomonas aeruginosa ocular isolates . Contact Lens Anterior Eye , 2023 , 46 ( 3 ), 101819 . doi: 10.1016/j.clae.2023.101819 http://dx.doi.org/10.1016/j.clae.2023.101819
0
Views
99
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution