浏览全部资源
扫码关注微信
1.郑州大学化学学院 郑州 450001
2.中国科学院化学研究所 北京分子科学国家研究中心 有机固体院重点实验室 北京 100190
3.中国科学院理化技术研究所 光化学转换与功能材料重点实验室 北京 100190
Chen-kai Sun, E-mail: schenkai@zzu.edu.cn
Received:14 February 2025,
Accepted:17 March 2025,
Published:20 July 2025
移动端阅览
孔晓磊, 张鑫佳, 章津源, 李敬, 黎澳祥, 孙晨凯. 共轭外侧链的类型对小分子受体光伏性能的影响. 高分子学报, 2025, 56(7), 1108-1117
Kong, X. L.; Zhang, X. J.; Zhang, J. Y.; Li, J.; Li, A. X.; Sun, C. K. Effect of various conjugated outer side chains on the photovoltaic performance of small molecule acceptors. Acta Polymerica Sinica, 2025, 56(7), 1108-1117
孔晓磊, 张鑫佳, 章津源, 李敬, 黎澳祥, 孙晨凯. 共轭外侧链的类型对小分子受体光伏性能的影响. 高分子学报, 2025, 56(7), 1108-1117 DOI: 10.11777/j.issn1000-3304.2025.25035. CSTR: 32057.14.GFZXB.2025.7384.
Kong, X. L.; Zhang, X. J.; Zhang, J. Y.; Li, J.; Li, A. X.; Sun, C. K. Effect of various conjugated outer side chains on the photovoltaic performance of small molecule acceptors. Acta Polymerica Sinica, 2025, 56(7), 1108-1117 DOI: 10.11777/j.issn1000-3304.2025.25035. CSTR: 32057.14.GFZXB.2025.7384.
侧链工程作为一种简便且通用的化学修饰手段,被广泛应用于有机光伏材料的分子设计与性能优化过程中.本工作通过引入
β
-位取代的2-乙基己氧基噻吩单元和苯环单元到A-DA'D-A类小分子受体(SMAs)的稠环核末端合成了两个新型的受体材料K10和K11,并与前期已发表的受体材料K2 (T2EH)和K5 (P2EH)进行系统的对比,以此来探究共轭外侧链的类型对材料光电特性、分子聚集行为和光伏性能的影响. 与烷基侧链相比,烷氧基侧链的引入能够显著改变材料的能级分布,使得材料的吸收范围发生显著红移;同时也会对分子间的排列堆积产生不利的影响,导致材料的电荷传输能力变差,因此K10和K11的光伏性能均不如K2和K5. 最终,以低成本聚合物PTQ10为给体、K2为受体的有机太阳电池(OSCs)因具有更高且更平衡的载流子迁移率、更高效的激子解离和电荷收集,实现了18.94%的能量转换效率(PCE). 该工作证实了精细调控A-DA'D-A类SMAs外侧链对提升材料光伏性能的重要性和可行性.
Side-chain engineering
as a simple and universal method of chemical modification
has been widely used in the molecular design and performance optimization of organic photovoltaic materials. In this work
two novel A-DA'D-A small molecule acceptors (SMAs)
named K10 and K11
were synthesized by introducing
β
-substituted 2-ethylhexyloxy thienyl or phenyl conjugated outer side chains
and the effects of different conjugated side chains on physicochemical properties
molecular aggregation
and the photovoltaic performance of the SMAs was systematically investigated by comparison with previously reported acceptors K2 (T2EH) and K5 (P2EH). As a result
the introduction of oxygen atoms into the conjugated side chains can significantly change the energy level distribution and lead to a significantly red-shifted absorption range for SMAs. In addition
oxygen atoms can adversely affect molecular arrangement and stacking
resulting in poor charge transport ability. Therefore
the photovoltaic performances of K10 and K11 are inferior to those of K2 and K5. Eventually
the organic solar cell (OSC) with low-cost polymer PTQ10 as donor and K2 as acceptor achieved an impressive
power conversion efficiency (PCE) of 18.94%
owing to the higher and more balanced carrier mobility
more efficient exciton dissociation
and charge collection. This work confirms the importance and feasibility of fine-tuning the outer side chains of A-DA'D-A type SMAs to enhance the photovoltaic performance.
Li Y. F. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption . Acc. Chem. Res. , 2012 , 45 ( 5 ), 723 - 733 . doi: 10.1021/ar2002446 http://dx.doi.org/10.1021/ar2002446
Zhang G. Y. ; Zhao J. B. ; Chow P. C. Y. ; Jiang K. ; Zhang J. Q. ; Zhu Z. L. ; Zhang J. ; Huang F. ; Yan H. Nonfullerene acceptor molecules for bulk heterojunction organic solar cells . Chem. Rev. , 2018 , 118 ( 7 ), 3447 - 3507 . doi: 10.1021/acs.chemrev.7b00535 http://dx.doi.org/10.1021/acs.chemrev.7b00535
Liu Y. H. ; Liu B. W. ; Ma C. Q. ; Huang F. ; Feng G. T. ; Chen H. Z. ; Hou J. H. ; Yan L. P. ; Wei Q. Y. ; Luo Q. ; Bao Q. Y. ; Ma W. ; Liu W. ; Li W. W. ; Wan X. J. ; Hu X. T. ; Han Y. C. ; Li Y. W. ; Zhou Y. H. ; Zou Y. P. ; Chen Y. W. ; Li Y. F. ; Chen Y. S. ; Tang Z. ; Hu Z. C. ; Zhang Z. G. ; Bo Z. S. Recent progress in organic solar cells (Part I material science) . Sci. China Chem. , 2022 , 65 ( 2 ), 224 - 268 . doi: 10.1007/s11426-021-1180-6 http://dx.doi.org/10.1007/s11426-021-1180-6
Liu Y. H. ; Liu B. W. ; Ma C. Q. ; Huang F. ; Feng G. T. ; Chen H. Z. ; Hou J. H. ; Yan L. P. ; Wei Q. Y. ; Luo Q. ; Bao Q. Y. ; Ma W. ; Liu W. ; Li W. W. ; Wan X. J. ; Hu X. T. ; Han Y. C. ; Li Y. W. ; Zhou Y. H. ; Zou Y. P. ; Chen Y. W. ; Liu Y. Q. ; Meng L. ; Li Y. F. ; Chen Y. S. ; Tang Z. ; Hu Z. C. ; Zhang Z. G. ; Bo Z. S. Recent progress in organic solar cells (Part II device engineering) . Sci. China Chem. , 2022 , 65 ( 8 ), 1457 - 1497 . doi: 10.1007/s11426-022-1256-8 http://dx.doi.org/10.1007/s11426-022-1256-8
Yi J. C. ; Zhang G. Y. ; Yu H. ; Yan H. Advantages, challenges and molecular design of different material types used in organic solar cells . Nat. Rev. Mater. , 2023 , 9 ( 1 ), 46 - 62 . doi: 10.1038/s41578-023-00618-1 http://dx.doi.org/10.1038/s41578-023-00618-1
Yuan J. ; Zhang Y. Q. ; Zhou L. Y. ; Zhang G. C. ; Yip H. L. ; Lau T. K. ; Lu X. H. ; Zhu C. ; Peng H. J. ; Johnson P. A. ; Leclerc M. ; Cao Y. ; Ulanski J. ; Li Y. F. ; Zou Y. P. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core . Joule , 2019 , 3 ( 4 ), 1140 - 1151 . doi: 10.1016/j.joule.2019.01.004 http://dx.doi.org/10.1016/j.joule.2019.01.004
Cui Y. ; Yao H. F. ; Zhang J. Q. ; Xian K. H. ; Zhang T. ; Hong L. ; Wang Y. M. ; Xu Y. ; Ma K. Q. ; An C. B. ; He C. ; Wei Z. X. ; Gao F. ; Hou J. H. Single-junction organic photovoltaic cells with approaching 18% efficiency . Adv. Mater. , 2020 , 32 ( 19 ), e 1908205 . doi: 10.1002/adma.201908205 http://dx.doi.org/10.1002/adma.201908205
Li C. ; Zhou J. D. ; Song J. L. ; Xu J. Q. ; Zhang H. T. ; Zhang X. N. ; Guo J. ; Zhu L. ; Wei D. H. ; Han G. C. ; Min J. ; Zhang Y. ; Xie Z. Q. ; Yi Y. P. ; Yan H. ; Gao F. ; Liu F. ; Sun Y. M. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells . Nat. Energy , 2021 , 6 ( 6 ), 605 - 613 . doi: 10.1038/s41560-021-00820-x http://dx.doi.org/10.1038/s41560-021-00820-x
Liu K. R. ; Jiang Y. Y. ; Ran G. L. ; Liu F. ; Zhang W. K. ; Zhu X. Z. 19.7% efficiency binary organic solar cells achieved by selective core fluorination of nonfullerene electron acceptors . Joule , 2024 , 8 ( 3 ), 835 - 851 . doi: 10.1016/j.joule.2024.01.005 http://dx.doi.org/10.1016/j.joule.2024.01.005
Karuthedath S. ; Gorenflot J. ; Firdaus Y. ; Chaturvedi N. ; De Castro C. S. P. ; Harrison G. T. ; Khan J. I. ; Markina A. ; Balawi A. H. ; Dela Peña T. A. ; Liu W. L. ; Liang R. Z. ; Sharma A. ; Paleti S. H. K. ; Zhang W. M. ; Lin Y. B. ; Alarousu E. ; Lopatin S. ; Anjum D. H. ; Beaujuge P. M. ; De Wolf S. ; McCulloch I. ; Anthopoulos T. D. ; Baran D. ; Andrienko D. ; Laquai F. Intrinsic efficiency limits in low-bandgap non-fullerene acceptor organic solar cells . Nat. Mater. , 2021 , 20 ( 3 ), 378 - 384 . doi: 10.1038/s41563-020-00835-x http://dx.doi.org/10.1038/s41563-020-00835-x
Zhang Y. D. ; Ji Y. T. ; Zhang Y. Y. ; Zhang W. Q. ; Bai H. L. ; Du M. Z. ; Wu H. ; Guo Q. ; Zhou E. J. Recent progress of Y6-derived asymmetric fused ring electron acceptors . Adv. Funct. Mater. , 2022 , 32 ( 35 ), 2205115 . doi: 10.1002/adfm.202205115 http://dx.doi.org/10.1002/adfm.202205115
Wang J. Y. ; Xue P. Y. ; Jiang Y. T. ; Huo Y. ; Zhan X. W. The principles, design and applications of fused-ring electron acceptors . Nat. Rev. Chem. , 2022 , 6 ( 9 ), 614 - 634 . doi: 10.1038/s41570-022-00409-2 http://dx.doi.org/10.1038/s41570-022-00409-2
He Q. ; Ufimkin P. ; Aniés F. ; Hu X. T. ; Kafourou P. ; Rimmele M. ; Rapley C. L. ; Ding B. W. Molecular engineering of Y-series acceptors for nonfullerene organic solar cells . SusMat , 2022 , 2 ( 5 ), 591 - 606 . doi: 10.1002/sus2.82 http://dx.doi.org/10.1002/sus2.82
Zhang J. Q. ; Bai F. J. ; Angunawela I. ; Xu X. Y. ; Luo S. W. ; Li C. ; Chai G. D. ; Yu H. ; Chen Y. Z. ; Hu H. W. ; Ma Z. F. ; Ade H. ; Yan H. Alkyl-chain branching of non-fullerene acceptors flanking conjugated side groups toward highly efficient organic solar cells . Adv. Energy Mater. , 2021 , 11 ( 47 ), 2102596 . doi: 10.1002/aenm.202102596 http://dx.doi.org/10.1002/aenm.202102596
Chai G. D. ; Chang Y. ; Zhang J. Q. ; Xu X. P. ; Yu L. Y. ; Zou X. H. ; Li X. J. ; Chen Y. Z. ; Luo S. W. ; Liu B. B. ; Bai F. J. ; Luo Z. H. ; Yu H. ; Liang J. E. ; Liu T. ; Wong K. S. ; Zhou H. ; Peng Q. ; Yan H. Fine-tuning of side-chain orientations on nonfullerene acceptors enables organic solar cells with 17.7% efficiency . Energy Environ. Sci. , 2021 , 14 ( 6 ), 3469 - 3479 . doi: 10.1039/D0EE03506H http://dx.doi.org/10.1039/D0EE03506H
Bao S. N. ; Yang H. ; Fan H. Y. ; Zhang J. Q. ; Wei Z. X. ; Cui C. H. ; Li Y. F. Volatilizable solid additive-assisted treatment enables organic solar cells with efficiency over 18.8% and fill factor exceeding 80 . Adv. Mater. , 2021 , 33 ( 48 ), e 2105301 . doi: 10.1002/adma.202105301 http://dx.doi.org/10.1002/adma.202105301
Fan B. B. ; Gao W. ; Wu X. H. ; Xia X. X. ; Wu Y. ; Lin F. R. ; Fan Q. P. ; Lu X. H. ; Li W. J. ; Ma W. ; Jen A. K. Importance of structural hinderance in performance-stability equilibrium of organic photovoltaics . Nat. Commun. , 2022 , 13 ( 1 ), 5946 . doi: 10.1038/s41467-022-33754-3 http://dx.doi.org/10.1038/s41467-022-33754-3
Tu L. J. ; Wang H. ; Duan W. X. ; Ma R. J. ; Jia T. ; Dela Peña T. A. ; Luo Y. M. ; Wu J. Y. ; Li M. J. ; Xia X. M. ; Wu S. Q. ; Chen K. ; Wu Y. ; Huang Y. L. ; Yang K. ; Li G. ; Shi Y. Q. Cyano-functionalized pyrazine: an electron-deficient unit as a solid additive enables binary organic solar cells with 19.67% efficiency . Energy Environ. Sci. , 2024 , 17 ( 10 ), 3365 - 3374 . doi: 10.1039/D4EE00764F http://dx.doi.org/10.1039/D4EE00764F
Zhu L. ; Zhang M. ; Zhou G. Q. ; Wang Z. Y. ; Zhong W. K. ; Zhuang J. X. ; Zhou Z. C. ; Gao X. Y. ; Kan L. X. ; Hao B. N. ; Han F. ; Zeng R. ; Xue X. N. ; Xu S. J. ; Jing H. ; Xiao B. ; Zhu H. M. ; Zhang Y. M. ; Liu F. Achieving 20.8% organic solar cells via additive-assisted layer-by-layer fabrication with bulk p-i-n structure and improved optical management . Joule , 2024 , 8 ( 11 ), 3153 - 3168 . doi: 10.1016/j.joule.2024.08.001 http://dx.doi.org/10.1016/j.joule.2024.08.001
Kong X. L. ; Zhu C. ; Zhang J. Y. ; Meng L. ; Qin S. C. ; Zhang J. Q. ; Li J. ; Wei Z. X. ; Li Y. F. The effect of alkyl substitution position of thienyl outer side chains on photovoltaic performance of A-DA'D-a type acceptors . Energy Environ. Sci. , 2022 , 15 ( 5 ), 2011 - 2020 . doi: 10.1039/d2ee00430e http://dx.doi.org/10.1039/d2ee00430e
Kong X. L. ; Zhang J. Y. ; Meng L. ; Sun C. K. ; Qin S. C. ; Zhu C. ; Zhang J. Q. ; Li J. ; Wei Z. X. ; Li Y. F. 18.55% efficiency polymer solar cells based on a small molecule acceptor with alkylthienyl outer side chains and a low-cost polymer donor PTQ10 . CCS Chem. , 2023 , 5 ( 4 ), 841 - 850 . doi: 10.31635/ccschem.022.202202056 http://dx.doi.org/10.31635/ccschem.022.202202056
Sun C. K. ; Pan F. ; Bin H. J. ; Zhang J. Q. ; Xue L. W. ; Qiu B. B. ; Wei Z. X. ; Zhang Z. G. ; Li Y. F. A low cost and high performance polymer donor material for polymer solar cells . Nat. Commun. , 2018 , 9 ( 1 ), 743 . doi: 10.1038/s41467-018-03207-x http://dx.doi.org/10.1038/s41467-018-03207-x
Xue L. W. ; Yan C. Y. ; Yao J. ; Zhang M. F. ; Li Q. B. ; Chen Q. ; Zhang Z. ; Wang H. Q. ; Liu Z. T. ; Yao G. ; Zhang C. F. ; Liu J. G. ; Zhang Z. G. Heteroatom conjugated-shoulder side-chains-based non-fullerene acceptors for organic solar cells . Cell Rep. Phys. Sci. , 2023 , 4 ( 3 ), 101303 . doi: 10.1016/j.xcrp.2023.101303 http://dx.doi.org/10.1016/j.xcrp.2023.101303
Wan L. ; Zhang R. ; Cho E. ; Li H. X. ; Coropceanu V. ; Brédas J. L. ; Gao F. Sensitive near-infrared circularly polarized light detection via non-fullerene acceptor blends . Nat. Photonics , 2023 , 17 ( 8 ), 649 - 655 . doi: 10.1038/s41566-023-01230-z http://dx.doi.org/10.1038/s41566-023-01230-z
0
Views
84
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution