浏览全部资源
扫码关注微信
北京化工大学材料科学与工程学院 有机无机复合材料全国重点实验室 北京 100029
Received:18 March 2025,
Accepted:25 April 2025,
Published Online:22 May 2025,
Published:20 June 2025
移动端阅览
岳尚志, 于中振, 杨丹. 自修复介电弹性体致动器的研究进展. 高分子学报, 2025, 56(6), 881-902
Yue, S. Z.; Yu, Z. Z.; Yang, D. Advances in self-healing dielectric elastomer actuators. Acta Polymerica Sinica, 2025, 56(6), 881-902
岳尚志, 于中振, 杨丹. 自修复介电弹性体致动器的研究进展. 高分子学报, 2025, 56(6), 881-902 DOI: 10.11777/j.issn1000-3304.2025.25041. CSTR: 32057.14.GFZXB.2025.7403.
Yue, S. Z.; Yu, Z. Z.; Yang, D. Advances in self-healing dielectric elastomer actuators. Acta Polymerica Sinica, 2025, 56(6), 881-902 DOI: 10.11777/j.issn1000-3304.2025.25041. CSTR: 32057.14.GFZXB.2025.7403.
介电弹性体致动器(DEA)能在外界电刺激作用下产生类似肌肉的收缩-舒张变形,被誉为人工肌肉,在软体机器人领域具有广阔应用前景. 传统DEA不具备自修复性能,设计制备能抵御机械损伤和电学损伤的弹性体材料是解决DEA长效稳定服役的关键. 本文首先概述了DEA的组成、机理及其驱动模式. 然后详细介绍了自修复DEA的制备方法,主要包括自修复介电弹性体和自修复柔性电极的设计策略,并阐明了其优缺点. 最后对DEA的未来发展趋势进行了展望,以期推动DEA的快速发展和应用.
Dielectric elastomer actuators (DEAs)
which can produce muscle-like contraction-diastolic deformation under external electrical stimulation
are known as artificial muscle. Due to the advantages of simple structure
fast response speed
large strain output
and high energy density
DEAs have been showing a broad application prospect in the field of soft robotics
prosthetic organs
and braille displays. However
DEAs are susceptible to electrical and mechanical damage during operation
largely limits their long-term and stable service life. Design and preparation of elastomer materials that can endure mechanical and electrical damage is the key to solve the above problem. In this paper
the working principles and material characteristics of DEAs are firstly outlined
then the corresponding optimization methods for improving their actuation performance are introduced. Afterwards
DEAs with various configurations and their working mechanism are issued
showcasing the development of DEAs in biomimetic robots. Next
recent advances in self-healing DEAs containing self-healing dielectric elastomers and self-healing flexible electrodes are summarized. By introducing reversible covalent bonds and noncovalent bonds into polymer chains is a common method to synthesized the self-healing dielectric elastomers. Besides
preparing self-clearing elastomers and adding liquid dielectrics into elastomer matrices can also endow DEAs with self-healing abilities. However
self-cleaning process of dielectric elastomers will lead to the gradual decline of the actuation performance in DEAs and the strict encapsulation is required to avoid liquid leakage in liquid dielectric filled-DEAs. By doping polymers with conductive components
self-clearing compliant electrodes can be obtained by isolating the defects after the device underwent electrical breakdown. However
the mechanical damages such as cracks and scratches on the self-clearing compliant electrodes can hardly be healed. Otherwise
the self-healing compliant electrode with reversible covalent bonds and noncovalent bonds can endure both electrical damage and mechanical damage. At last
the future challenges in DEAs are proposed for promoting their rapid development and application in soft robots.
Kim O. ; Shin T. J. ; Park M. J. Fast low-voltage electroactive actuators using nanostructured polymer electrolytes . Nat. Commun. , 2013 , 4 , 2208 . doi: 10.1038/ncomms3208 http://dx.doi.org/10.1038/ncomms3208
Deng Y. K. ; Liu G. Y. ; Brûlet A. ; Nguyen G. T. M. ; Dudzinski D. ; Vidal F. ; Plesse C. ; Vancaeyzeele C. ; Li M. H. Interpenetrating liquid crystal elastomer and ionogel as tunable electroactive actuators and sensors . Adv. Funct. Mater. , 2024 , 34 ( 40 ), 2403892 . doi: 10.1002/adfm.202403892 http://dx.doi.org/10.1002/adfm.202403892
McCracken J. M. ; Donovan B. R. ; White T. J. Materials as machines . Adv. Mater. , 2020 , 32 ( 20 ), 1906564 . doi: 10.1002/adma.201906564 http://dx.doi.org/10.1002/adma.201906564
Huang D. Y. ; Ma J. X. ; Han Y. B. ; Xue C. ; Zhang M. Y. ; Wen W. J. ; Sun S. ; Wu J. B. Artificial intelligence artificial muscle of dielectric elastomers . Mater. Des. , 2025 , 251 , 113691 . doi: 10.1016/j.matdes.2025.113691 http://dx.doi.org/10.1016/j.matdes.2025.113691
李岩 , 梁雨薇 , 宋浩源 , 甄冠成 , 刘晓坤 , 刘云鹏 . 温度对两种电缆绝缘材料介电参数影响的分析 . 高分子学报 , 2024 , 55 ( 12 ), 1754 - 1762 .
Yang D. ; Ni Y. F. ; Kong X. X. ; Li S. Y. ; Chen X. Y. ; Zhang L. Q. ; Wang Z. L. Self-healing and elastic triboelectric nanogenerators for muscle motion monitoring and photothermal treatment . ACS Nano , 2021 , 15 ( 9 ), 14653 - 14661 . doi: 10.1021/acsnano.1c04384 http://dx.doi.org/10.1021/acsnano.1c04384
Liu G. Y. ; Deng Y. K. ; Ni B. ; Nguyen G. T. M. ; Vancaeyzeele C. ; Brûlet A. ; Vidal F. ; Plesse C. ; Li M. H. Electroactive bi-functional liquid crystal elastomer actuators . Small , 2024 , 20 ( 12 ), 2307565 . doi: 10.1002/smll.202307565 http://dx.doi.org/10.1002/smll.202307565
Yao Z. F. ; Lundqvist E. ; Kuang Y. Y. ; Ardoña H. A. M. Engineering multi-scale organization for biotic and organic abiotic electroactive systems . Adv. Sci. , 2023 , 10 ( 10 ), 2205381 . doi: 10.1002/advs.202205381 http://dx.doi.org/10.1002/advs.202205381
Yan Y. S. ; Santaniello T. ; Bettini L. G. ; Minnai C. ; Bellacicca A. ; Porotti R. ; Denti I. ; Faraone G. ; Merlini M. ; Lenardi C. ; Milani P. Electroactive ionic soft actuators with monolithically integrated gold nanocomposite electrodes . Adv. Mater. , 2017 , 29 ( 23 ), 1606109 . doi: 10.1002/adma.201606109 http://dx.doi.org/10.1002/adma.201606109
Chen B. ; Yuan M. ; Ma R. X. ; Wang X. H. ; Cao W. ; Liu C. T. ; Shen C. Y. ; Wang Z. High performance piezoelectric polymer film with aligned electroactive phase nanofibrils achieved by melt stretching of slightly crosslinked poly(vinylidene fluoride) for sensor applications . Chem. Eng. J. , 2022 , 433 , 134475 . doi: 10.1016/j.cej.2021.134475 http://dx.doi.org/10.1016/j.cej.2021.134475
Dou X. R. ; Chen Z. Q. ; Ren F. H. ; He L. J. ; Chen J. X. ; Yin L. J. ; Luo Y. W. ; Dang Z. M. ; Mao J. Dielectric elastomer network with large side groups achieves large electroactive deformation for soft robotic grippers . Adv. Funct. Mater. , 2024 , 34 ( 44 ), 2407049 . doi: 10.1002/adfm.202407049 http://dx.doi.org/10.1002/adfm.202407049
Ni Y. F. ; Yang D. ; Wei Q. G. ; Yu L. Y. ; Ai J. ; Zhang L. Q. Plasticizer-induced enhanced electromechanical performance of natural rubber dielectric elastomer composites . Compos. Sci. Technol. , 2020 , 195 , 108202 . doi: 10.1016/j.compscitech.2020.108202 http://dx.doi.org/10.1016/j.compscitech.2020.108202
Yin L. J. ; Zhao Y. ; Zhu J. ; Yang M. H. ; Zhao H. C. ; Pei J. Y. ; Zhong S. L. ; Dang Z. M. Soft, tough, and fast polyacrylate dielectric elastomer for non-magnetic motor . Nat. Commun. , 2021 , 12 , 4517 . doi: 10.1038/s41467-021-24851-w http://dx.doi.org/10.1038/s41467-021-24851-w
Xu C. Q. ; Faul C. F. J. ; Taghavi M. ; Rossiter J. Electric field-driven dielectrophoretic elastomer actuators . Adv. Funct. Mater. , 2023 , 33 ( 13 ), 2370080 . doi: 10.1002/adfm.202370080 http://dx.doi.org/10.1002/adfm.202370080
Sîrbu I. D. ; Preninger D. ; Danninger D. ; Penkner L. ; Schwödiauer R. ; Moretti G. ; Arnold N. ; Fontana M. ; Kaltenbrunner M. Electrostatic actuators with constant force at low power loss using matched dielectrics . Nat. Electron. , 2023 , 6 ( 11 ), 888 - 899 . doi: 10.1038/s41928-023-01057-0 http://dx.doi.org/10.1038/s41928-023-01057-0
Wang H. ; Ming Tan M. W. ; Poh W. C. ; Gao D. C. ; Wu W. T. ; Lee P. S. A highly stretchable, self-healable, transparent and solid-state poly(ionic liquid) filler for high-performance dielectric elastomer actuators . J. Mater. Chem. A , 2023 , 11 ( 26 ), 14159 - 14168 . doi: 10.1039/d3ta01954c http://dx.doi.org/10.1039/d3ta01954c
Atia M. G. B. ; Mohammad A. ; Gameros A. ; Axinte D. ; Wright I. Reconfigurable soft robots by building blocks . Adv. Sci. , 2022 , 9 ( 33 ), 2203217 . doi: 10.1002/advs.202270213 http://dx.doi.org/10.1002/advs.202270213
Gomez E. F. ; Wanasinghe S. V. ; Flynn A. E. ; Dodo O. J. ; Sparks J. L. ; Baldwin L. A. ; Tabor C. E. ; Durstock M. F. ; Konkolewicz D. ; Thrasher C. J. 3D-printed self-healing elastomers for modular soft robotics . ACS Appl. Mater. Interfaces , 2021 , 13 ( 24 ), 28870 - 28877 . doi: 10.1021/acsami.1c06419 http://dx.doi.org/10.1021/acsami.1c06419
Chortos A. ; Hajiesmaili E. ; Morales J. ; Clarke D. R. ; Lewis J. A. 3D printing of interdigitated dielectric elastomer actuators . Adv. Funct. Mater. , 2020 , 30 ( 1 ), 1907375 . doi: 10.1002/adfm.201907375 http://dx.doi.org/10.1002/adfm.201907375
Mirvakili S. M. ; Hunter I. W. Artificial muscles: mechanisms, applications, and challenges . Adv. Mater. , 2018 , 30 ( 6 ), 1704407 . doi: 10.1002/adma.201704407 http://dx.doi.org/10.1002/adma.201704407
Romasanta L. J. ; Lopez-Manchado M. A. ; Verdejo R. Increasing the performance of dielectric elastomer actuators: a review from the materials perspective . Prog. Polym. Sci. , 2015 , 51 , 188 - 211 . doi: 10.1016/j.progpolymsci.2015.08.002 http://dx.doi.org/10.1016/j.progpolymsci.2015.08.002
Zhao H. C. ; Hussain A. M. ; Duduta M. ; Vogt D. M. ; Wood R. J. ; Clarke D. R. Compact dielectric elastomer linear actuators . Adv. Funct. Mater. , 2018 , 28 ( 42 ), 1804328 . doi: 10.1002/adfm.201804328 http://dx.doi.org/10.1002/adfm.201804328
王思蛟 , 陈梦梦 , 杨乐 , 薛媛 . 用于介电弹性体发电机的材料研究进展 . 高分子通报 , 2024 , 37 ( 3 ), 309 - 315 .
刘苏亭 , 王秀娟 , 宁南英 , 田明 . 调控聚氨酯聚集态结构制备高性能介电弹性体 . 高分子学报 , 2023 , 54 ( 2 ), 266 - 276 . doi: 10.11777/j.issn1000-3304.2022.22215 http://dx.doi.org/10.11777/j.issn1000-3304.2022.22215
Dai Z. X. ; Liu Q. Q. ; Qi X. D. ; Zhang N. ; Huang T. ; Yang J. H. ; Wang Y. Silicon-based dielectric elastomer with amino-complexed hybrids towards high actuation performance . Nano Mater. Sci. , 2024 , 6 ( 5 ), 576 - 586 . doi: 10.1016/j.nanoms.2023.12.009 http://dx.doi.org/10.1016/j.nanoms.2023.12.009
Hajiesmaili E. ; Larson N. M. ; Lewis J. A. ; Clarke D. R. Programmed shape-morphing into complex target shapes using architected dielectric elastomer actuators . Sci. Adv. , 2022 , 8 ( 28 ), eabn 9198 . doi: 10.1126/sciadv.abn9198 http://dx.doi.org/10.1126/sciadv.abn9198
Rui G. C. ; Bernholc J. ; Zhang S. H. ; Zhang Q. M. Dilute nanocomposites: tuning polymer chain local nanostructures to enhance dielectric responses . Adv. Mater. , 2024 , 36 ( 52 ), 2311739 . doi: 10.1002/adma.202311739 http://dx.doi.org/10.1002/adma.202311739
Zhou Y. N. ; Zeng Y. ; Wang J. M. ; Li X. Y. ; Wang P. ; Ma W. L. ; Wang C. Y. ; Li J. W. ; Jiang W. Y. ; Zhang D. Enhancement of the voltage output of droplet electricity generators using high dielectric high-entropy oxide composites . Energy Environ. Sci. , 2024 , 17 ( 10 ), 3580 - 3593 . doi: 10.1039/d4ee01234h http://dx.doi.org/10.1039/d4ee01234h
Pan C. F. ; Markvicka E. J. ; Malakooti M. H. ; Yan J. J. ; Hu L. M. ; Matyjaszewski K. ; Majidi C. A liquid-metal-elastomer nanocomposite for stretchable dielectric materials . Adv. Mater. , 2019 , 31 ( 23 ), 1900663 . doi: 10.1002/adma.201900663 http://dx.doi.org/10.1002/adma.201900663
Nie R. P. ; Tang W. B. ; Li Y. ; Jia L. C. ; Xu L. ; Huang H. D. ; Lei J. ; Li Z. M. Surfactant-assisted fabrication of room-temperature self-healable dielectric elastomer toward actuation application . Compos. Part B Eng. , 2022 , 234 , 109655 . doi: 10.1016/j.compositesb.2022.109655 http://dx.doi.org/10.1016/j.compositesb.2022.109655
Feng Z. P. ; Hao Y. N. ; Qin J. ; Zhong S. L. ; Bi K. ; Zhao Y. ; Yin L. J. ; Pei J. Y. ; Dang Z. M. Ultrasmall barium titanate nanoparticles modulated stretchable dielectric elastomer sensors with large deformability and high sensitivity . InfoMat , 2023 , 5 ( 8 ), e 12413 . doi: 10.1002/inf2.12413 http://dx.doi.org/10.1002/inf2.12413
Yang D. ; Ni Y. F. ; Liang Y. F. ; Li B. Y. ; Ma H. N. ; Zhang L. Q. Improved thermal conductivity and electromechanical properties of natural rubber by constructing Al 2 O 3 -PDA-Ag hybrid nanoparticles . Compos. Sci. Technol. , 2019 , 180 , 86 - 93 . doi: 10.1016/j.compscitech.2019.05.019 http://dx.doi.org/10.1016/j.compscitech.2019.05.019
Jiang S. C. ; Peng J. B. ; Wang L. T. ; Ma H. Z. ; Shi Y. Recent progress in the development of dielectric elastomer materials and their multilayer actuators . J. Zhejiang Univ. Sci. A , 2024 , 25 ( 3 ), 183 - 205 . doi: 10.1631/jzus.a2300457 http://dx.doi.org/10.1631/jzus.a2300457
Yang D. ; Ni Y. F. ; Kong X. X. ; Wang Y. X. ; Zhang L. Q. A mussel-like inspired modification of BaTiO 3 nanopartciles using catechol/polyamine co-deposition and silane grafting for high-performance dielectric elastomer composites . Compos. Part B Eng. , 2019 , 172 , 621 - 627 . doi: 10.1016/j.compositesb.2019.05.101 http://dx.doi.org/10.1016/j.compositesb.2019.05.101
Li Z. C. ; Gao C. ; Fan S. S. ; Zou J. ; Gu G. Y. ; Dong M. D. ; Song J. Cell nanomechanics based on dielectric elastomer actuator device . Nanomicro Lett. , 2019 , 11 ( 1 ), 98 . doi: 10.1007/s40820-019-0331-8 http://dx.doi.org/10.1007/s40820-019-0331-8
Khedaioui D. Z. ; Tribout C. ; Bratasanu J. ; D'Agosto F. ; Boisson C. ; Montarnal D. Deciphering siloxane bond exchanges: from a molecular study to vitrimerization and recycling of silicone elastomers . Angew. Chem. Int. Ed. , 2023 , 62 ( 12 ), e 202300225 . doi: 10.1002/anie.202300225 http://dx.doi.org/10.1002/anie.202300225
Yang D. ; Yu L. Y. ; Liang Y. F. ; Wei Q. G. ; Ni Y. F. ; Zhang L. Q. Enhanced electromechanical performance of natural rubber composites via constructing strawberry-like dielectric nanoparticles . ACS Appl. Polym. Mater. , 2020 , 2 ( 12 ), 5621 - 5629 . doi: 10.1021/acsapm.0c00940 http://dx.doi.org/10.1021/acsapm.0c00940
Kang Z. Q. ; Yu L. Y. ; Nie Y. ; Skov A. L. Crosslinking methodology for imidazole-grafted silicone elastomers allowing for dielectric elastomers operated at low electrical fields with high strains . ACS Appl. Mater. Interfaces , 2022 , 14 ( 45 ), 51384 - 51393 . doi: 10.1021/acsami.2c16086 http://dx.doi.org/10.1021/acsami.2c16086
Huang J. J. ; Wang F. ; Ma L. ; Zhang Z. Q. ; Meng E. C. ; Zeng C. ; Zhang H. ; Guo D. J. Vinylsilane-rich silicone filled by polydimethylsiloxane encapsulated carbon black particles for dielectric elastomer actuator with enhanced out-of-plane actuations . Chem. Eng. J. , 2022 , 428 , 131354 . doi: 10.1016/j.cej.2021.131354 http://dx.doi.org/10.1016/j.cej.2021.131354
Yang D. ; Ni Y. F. ; Kong X. X. ; Xue H. ; Guo W. L. ; Zhang L. Q. Enhanced electromechanical properties of natural rubber using highly efficient and cost-effective mussel-inspired modification of TiO 2 nanoparticles . Appl. Surf. Sci. , 2019 , 495 , 143638 . doi: 10.1016/j.apsusc.2019.143638 http://dx.doi.org/10.1016/j.apsusc.2019.143638
Wang F. ; Zhou W. Y. ; He Y. F. ; Lv Y. J. ; Wang Y. ; Wang Z. J. Synergetic improvement of dielectric properties and thermal conductivity in Zn@ZnO/carbon fiber reinforced silicone rubber dielectric elastomers . Compos. Part A Appl. Sci. Manuf. , 2024 , 181 , 108129 . doi: 10.1016/j.compositesa.2024.108129 http://dx.doi.org/10.1016/j.compositesa.2024.108129
Xiang X. B. ; Zhang L. ; Sheng D. H. ; Yang X. ; Qi X. W. ; Wei S. T. ; Dai H. L. Healable and recyclable polyurea-urethane elastomer with high mechanical robustness, superhigh elastic restorability, and exceptional crack tolerance . Adv. Funct. Mater. , 2024 , 34 ( 22 ), 2312571 . doi: 10.1002/adfm.202312571 http://dx.doi.org/10.1002/adfm.202312571
Xiong L. L. ; Li D. L. ; Yang Y. F. ; Ye X. X. ; Huang Y. ; Xu E. ; Xia C. H. ; Yang M. B. ; Liu Z. Y. ; Cui X. D. ; Wang F. ; Huang Y. H. Tailoring crosslinking networks to fabricate photocurable polyurethane acrylate (PUA) dielectric elastomer with balanced electromechanical performance . React. Funct. Polym. , 2023 , 183 , 105498 . doi: 10.1016/j.reactfunctpolym.2023.105498 http://dx.doi.org/10.1016/j.reactfunctpolym.2023.105498
Ning N. Y. ; Yan B. Y. ; Liu S. T. ; Yao Y. ; Zhang L. Q. ; Chan T. W. ; Nishi T. ; Tian M. Improved actuated strain of dielectric elastomer through disruption of hydrogen bonds of thermoplastic polyurethane by adding diaminonaphthalene . Smart Mater. Struct. , 2015 , 24 ( 3 ), 032002 . doi: 10.1088/0964-1726/24/3/032002 http://dx.doi.org/10.1088/0964-1726/24/3/032002
Yang L. ; Wang H. ; Zhang D. S. ; Yang Y. N. ; Leng D. Y. Large deformation, high energy density dielectric elastomer actuators: principles, factors, optimization, applications, and prospects . Chem. Eng. J. , 2024 , 489 , 151402 . doi: 10.1016/j.cej.2024.151402 http://dx.doi.org/10.1016/j.cej.2024.151402
Xi S. Y. ; Yang S. R. ; Xiang C. Q. ; Chen Y. ; Niu Y. J. ; Yang J. L. ; He X. W. Advancements and challenges in dielectric elastomer actuator-based biomimetic mobile robots . Sens. Actuat. A Phys. , 2024 , 380 , 116024 . doi: 10.1016/j.sna.2024.116024 http://dx.doi.org/10.1016/j.sna.2024.116024
Sheima Y. ; von Szczepanski J. ; Danner P. M. ; Künniger T. ; Remhof A. ; Frauenrath H. ; Opris D. M. Transient elastomers with high dielectric permittivity for actuators, sensors, and beyond . ACS Appl. Mater. Interfaces , 2022 , 14 ( 35 ), 40257 - 40265 . doi: 10.1021/acsami.2c05631 http://dx.doi.org/10.1021/acsami.2c05631
Shintake J. ; Cacucciolo V. ; Floreano D. ; Shea H. Soft robotic grippers . Adv. Mater. , 2018 , 30 ( 29 ), 1707035 . doi: 10.1002/adma.201707035 http://dx.doi.org/10.1002/adma.201707035
Chen W. H. ; Tong D. Z. ; Meng L. H. ; Tan B. W. ; Lan R. C. ; Zhang Q. F. ; Yang H. ; Wang C. ; Liu K. Knotted artificial muscles for bio-mimetic actuation under deepwater . Adv. Mater. , 2024 , 36 ( 27 ), 2400763 . doi: 10.1002/adma.202400763 http://dx.doi.org/10.1002/adma.202400763
Dai B. ; Li S. H. ; Xu T. L. ; Wang Y. F. ; Zhang F. L. ; Gu Z. ; Wang S. T. Artificial asymmetric cilia array of dielectric elastomer for cargo transportation . ACS Appl. Mater. Interfaces , 2018 , 10 ( 49 ), 42979 - 42984 . doi: 10.1021/acsami.8b13419 http://dx.doi.org/10.1021/acsami.8b13419
Chortos A. ; Mao J. ; Mueller J. ; Hajiesmaili E. ; Lewis J. A. ; Clarke D. R. Printing reconfigurable bundles of dielectric elastomer fibers . Adv. Funct. Mater. , 2021 , 31 ( 22 ), 2010643 . doi: 10.1002/adfm.202010643 http://dx.doi.org/10.1002/adfm.202010643
Zhu Y. B. ; Liu N. ; Chen Z. Q. ; He H. H. ; Wang Z. W. ; Gu Z. M. ; Chen Y. W. ; Mao J. ; Luo Y. W. ; He Y. 3D-printed high-frequency dielectric elastomer actuator toward insect-scale ultrafast soft robot . ACS Mater. Lett. , 2023 , 5 ( 3 ), 704 - 714 . doi: 10.1021/acsmaterialslett.2c00991 http://dx.doi.org/10.1021/acsmaterialslett.2c00991
Shao Q. ; Zhou L. ; Zhou J. Y. ; Liu X. J. ; Zhao H. C. Long, fibrous, and tailorable dielectric elastomer artificial muscles via mask-free stamping of carbon nanotube electrodes . Adv. Funct. Mater. , 2025 , 35 ( 17 ), 2422905 . doi: 10.1002/adfm.202570101 http://dx.doi.org/10.1002/adfm.202570101
Kang Z. Q. ; Yu L. Y. ; Nie Y. ; Skowyra M. ; Zhang S. J. ; Skov A. L. Fiber-format dielectric elastomer actuators by the meter . Adv. Funct. Mater. , 2024 , 34 ( 26 ), 2314056 . doi: 10.1002/adfm.202314056 http://dx.doi.org/10.1002/adfm.202314056
Zhang C. C. ; Jin B. J. ; Cao X. N. ; Chen Z. Q. ; Miao W. S. ; Yang X. X. ; Luo Y. W. ; Li T. F. ; Xie T. Dielectric polymer with designable large motion under low electric field . Adv. Mater. , 2022 , 34 ( 50 ), 2206393 . doi: 10.1002/adma.202206393 http://dx.doi.org/10.1002/adma.202206393
Son J. ; Lee S. ; Bae G. Y. ; Lee G. ; Duduta M. ; Cho K. Skin-mountable vibrotactile stimulator based on laterally multilayered dielectric elastomer actuators . Adv. Funct. Mater. , 2023 , 33 ( 23 ), 2370140 . doi: 10.1002/adfm.202370140 http://dx.doi.org/10.1002/adfm.202370140
Peng J. B. ; Zhuo J. S. ; Dong H. F. ; Wang L. T. ; Jiang S. C. ; Li T. F. ; Shi Y. Dielectric elastomer actuators with low driving voltages and high mechanical outputs enabled by a scalable ultra-thin film multilayering process . Adv. Funct. Mater. , 2024 , 34 ( 48 ), 2411801 . doi: 10.1002/adfm.202411801 http://dx.doi.org/10.1002/adfm.202411801
Ren Z. J. ; Kim S. ; Ji X. ; Zhu W. K. ; Niroui F. ; Kong J. ; Chen Y. F. A high-lift micro-aerial-robot powered by low-voltage and long-endurance dielectric elastomer actuators . Adv. Mater. , 2022 , 34 ( 7 ), 2270051 . doi: 10.1002/adma.202270051 http://dx.doi.org/10.1002/adma.202270051
Wang L. T. ; Zhuo J. S. ; Peng J. B. ; Dong H. F. ; Jiang S. C. ; Shi Y. A stretchable soft pump driven by a heterogeneous dielectric elastomer actuator . Adv. Funct. Mater. , 2024 , 34 ( 52 ), 2411160 . doi: 10.1002/adfm.202411160 http://dx.doi.org/10.1002/adfm.202411160
Wang D. ; Zhao B. W. ; Li X. L. ; Dong L. ; Zhang M. J. ; Zou J. ; Gu G. Y. Dexterous electrical-driven soft robots with reconfigurable chiral-lattice foot design . Nat. Commun. , 2023 , 14 ( 1 ), 5067 . doi: 10.1038/s41467-023-40626-x http://dx.doi.org/10.1038/s41467-023-40626-x
Li Q. Z. ; Wang Z. Y. ; Chen Y. ; Xu Y. F. A nonsingular fast terminal sliding mode predictive controller for underwater soft crawling robots with parameter uncertainty . Ocean. Eng. , 2023 , 287 , 115822 . doi: 10.1016/j.oceaneng.2023.115822 http://dx.doi.org/10.1016/j.oceaneng.2023.115822
Li Q. Z. ; Chen T. ; Chen Y. ; Wang Z. Y. An underwater bionic crab soft robot with multidirectional controllable motion ability . Ocean. Eng. , 2023 , 278 , 114412 . doi: 10.1016/j.oceaneng.2023.114412 http://dx.doi.org/10.1016/j.oceaneng.2023.114412
Zheng Q. W. ; Xin L. M. ; Zhang Q. ; Shen F. ; Lu X. ; Cao C. ; Xin C. F. ; Zhao Y. ; Liu H. M. ; Peng Y. ; Luo J. ; Guo H. Y. ; Li Z. J. Leech-inspired amphibious soft robot driven by high-voltage triboelectricity . Adv. Mater. , 2025 , 37 ( 8 ), 2417380 . doi: 10.1002/adma.202417380 http://dx.doi.org/10.1002/adma.202417380
Zang W. P. ; Wang Y. H. ; Wu W. J. ; Yao J. S. ; Hao X. S. ; Yu B. ; Wu D. M. ; Cao P. F. ; Jiang Y. J. ; Ning N. Y. ; Tian M. ; Zhang L. Q. Superstretchable liquid-metal electrodes for dielectric elastomer transducers and flexible circuits . ACS Nano , 2024 , 18 ( 1 ), 1226 - 1236 . doi: 10.1021/acsnano.3c12210 http://dx.doi.org/10.1021/acsnano.3c12210
Zhang C. C. ; Chen G. C. ; Zhang K. H. ; Jin B. J. ; Zhao Q. ; Xie T. Repeatedly programmable liquid crystal dielectric elastomer with multimodal actuation . Adv. Mater. , 2024 , 36 ( 16 ), 2313078 . doi: 10.1002/adma.202313078 http://dx.doi.org/10.1002/adma.202313078
Yang D. ; Ge F. X. ; Tian M. ; Ning N. Y. ; Zhang L. Q. ; Zhao C. M. ; Ito K. ; Nishi T. ; Wang H. M. ; Luan Y. G. Dielectric elastomer actuator with excellent electromechanical performance using slide-ring materials/barium titanate composites . J. Mater. Chem. A , 2015 , 3 ( 18 ), 9468 - 9479 . doi: 10.1039/c5ta01182e http://dx.doi.org/10.1039/c5ta01182e
Wang Y. H. ; Wu W. J. ; Li S. S. ; Jiang Y. J. ; Zang W. P. ; Fu W. H. ; Hao X. S. ; Ning N. Y. ; Tian M. ; Zhang L. Q. A soft mimic robotic arm powered by dielectric elastomer actuator . Adv. Funct. Mater. , 2024 , 34 ( 52 ), 2411229 . doi: 10.1002/adfm.202411229 http://dx.doi.org/10.1002/adfm.202411229
Gratz-Kelly S. ; Rizzello G. ; Fontana M. ; Seelecke S. ; Moretti G. A multi-mode, multi-frequency dielectric elastomer actuator . Adv. Funct. Mater. , 2022 , 32 ( 34 ), 2201889 . doi: 10.1002/adfm.202201889 http://dx.doi.org/10.1002/adfm.202201889
Huang J. J. ; Zhang X. D. ; Liu R. X. ; Ding Y. H. ; Guo D. J. Polyvinyl chloride-based dielectric elastomer with high permittivity and low viscoelasticity for actuation and sensing . Nat. Commun. , 2023 , 14 ( 1 ), 1483 . doi: 10.1038/s41467-023-37178-5 http://dx.doi.org/10.1038/s41467-023-37178-5
He J. ; Chen Z. Q. ; Xiao Y. H. ; Cao X. N. ; Mao J. ; Zhao J. J. ; Gao X. ; Li T. F. ; Luo Y. W. Intrinsically anisotropic dielectric elastomer fiber actuators . ACS Mater. Lett. , 2022 , 4 ( 3 ), 472 - 479 . doi: 10.1021/acsmaterialslett.1c00742 http://dx.doi.org/10.1021/acsmaterialslett.1c00742
Gu G. ; Zou J. ; Zhao R. ; Zhao X. ; Zhu X. Soft wall-climbing robots . Sci. Robot. , 2018 , 3 ( 25 ), eaat 2874 . doi: 10.1126/scirobotics.aat2874 http://dx.doi.org/10.1126/scirobotics.aat2874
Qiu Y. ; Zhang E. ; Plamthottam R. ; Pei Q. B. Dielectric elastomer artificial muscle: materials innovations and device explorations . Acc. Chem. Res. , 2019 , 52 ( 2 ), 316 - 325 . doi: 10.1021/acs.accounts.8b00516 http://dx.doi.org/10.1021/acs.accounts.8b00516
Shi Y. ; Askounis E. ; Plamthottam R. ; Libby T. ; Peng Z. H. ; Youssef K. ; Pu J. H. ; Pelrine R. ; Pei Q. B. A processable, high-performance dielectric elastomer and multilayering process . Science , 2022 , 377 ( 6602 ), 228 - 232 . doi: 10.1126/science.abn0099 http://dx.doi.org/10.1126/science.abn0099
Fu H. B. ; Jiang Y. ; Lv J. ; Huang Y. ; Gai Z. P. ; Liu Y. ; Lee P. S. ; Xu H. ; Wu D. M. Multilayer dielectric elastomer with reconfigurable electrodes for artificial muscle . Adv. Sci. , 2023 , 10 ( 9 ), 2206094 . doi: 10.1002/advs.202206094 http://dx.doi.org/10.1002/advs.202206094
Yue S. Z. ; Liu Y. Z. ; Tian Z. Y. ; Zhu Z. J. ; Chen X. Y. ; Li X. F. ; Wang Z. L. ; Yu Z. Z. ; Yang D. Self-powered and integral self-healing dielectric elastomer actuator with a robust interface . Nano Energy , 2025 , 139 , 110974 . doi: 10.1016/j.nanoen.2025.110974 http://dx.doi.org/10.1016/j.nanoen.2025.110974
Wang C. ; He G. H. ; Chen S. ; Luo H. ; Yang Y. ; Zhang D. Achieving high breakdown strength and energy density in all-organic sandwich-structured dielectrics by introducing polyacrylate elastomers . J. Mater. Chem. A , 2022 , 10 ( 16 ), 9103 - 9113 . doi: 10.1039/d1ta09933g http://dx.doi.org/10.1039/d1ta09933g
Tang J. L. ; Chen Z. Q. ; Cai Y. T. ; Gao Y. ; He J. ; Xiao Y. H. ; Mao J. ; Zhao J. J. ; Gao X. ; Li T. F. ; Luo Y. W. Composite elastomers with on-demand convertible phase separations achieve large and healable electro-actuation . Mater. Horiz. , 2023 , 10 ( 10 ), 4501 - 4509 . doi: 10.1039/d3mh00781b http://dx.doi.org/10.1039/d3mh00781b
Li X. H. ; He S. ; Jiang Y. D. ; Wang J. ; Yu Y. ; Liu X. F. ; Zhu F. ; Xie Y. M. ; Li Y. Y. ; Ma C. ; Shen Z. H. ; Li B. W. ; Shen Y. ; Zhang X. ; Zhang S. J. ; Nan C. W. Unraveling bilayer interfacial features and their effects in polar polymer nanocomposites . Nat. Commun. , 2023 , 14 ( 1 ), 5707 . doi: 10.1038/s41467-023-41479-0 http://dx.doi.org/10.1038/s41467-023-41479-0
Chen J. ; Pei Z. T. ; Liu Y. J. ; Shi K. M. ; Zhu Y. K. ; Zhang Z. C. ; Jiang P. K. ; Huang X. Y. Aromatic-free polymers based all-organic dielectrics with breakdown self-healing for high-temperature capacitive energy storage . Adv. Mater. , 2023 , 35 ( 48 ), 2306562 . doi: 10.1002/adma.202306562 http://dx.doi.org/10.1002/adma.202306562
Zhou Y. ; Li L. ; Han Z. B. ; Li Q. ; He J. L. ; Wang Q. Self-healing polymers for electronics and energy devices . Chem. Rev. , 2023 , 123 ( 2 ), 558 - 612 . doi: 10.1021/acs.chemrev.2c00231 http://dx.doi.org/10.1021/acs.chemrev.2c00231
Zhang Z. P. ; Rong M. Z. ; Zhang M. Q. Self-healable functional polymers and polymer-based composites . Prog. Polym. Sci. , 2023 , 144 , 101724 . doi: 10.1016/j.progpolymsci.2023.101724 http://dx.doi.org/10.1016/j.progpolymsci.2023.101724
Ge S. R. ; Tsao Y. H. ; Evans C. M. Polymer architecture dictates multiple relaxation processes in soft networks with two orthogonal dynamic bonds . Nat. Commun. , 2023 , 14 ( 1 ), 7244 . doi: 10.1038/s41467-023-43073-w http://dx.doi.org/10.1038/s41467-023-43073-w
Liu L. ; Zhang W. H. ; Ning N. Y. ; Zhang L. Q. A self-healing dielectric supramolecular elastomer modified by TiO 2 /urea particles . Chem. Eng. J. , 2019 , 375 , 121993 . doi: 10.1016/j.cej.2019.121993 http://dx.doi.org/10.1016/j.cej.2019.121993
Sun H. B. ; Liu X. Y. ; Liu S. T. ; Yu B. ; Ning N. Y. ; Tian M. ; Zhang L. Q. A supramolecular silicone dielectric elastomer with a high dielectric constant and fast and highly efficient self-healing under mild conditions . J. Mater. Chem. A , 2020 , 8 ( 44 ), 23330 - 23343 . doi: 10.1039/d0ta06577c http://dx.doi.org/10.1039/d0ta06577c
Park H. ; Kang T. ; Kim H. ; Kim J. C. ; Bao Z. N. ; Kang J. Toughening self-healing elastomer crosslinked by metal-ligand coordination through mixed counter anion dynamics . Nat. Commun. , 2023 , 14 ( 1 ), 5026 . doi: 10.1038/s41467-023-40791-z http://dx.doi.org/10.1038/s41467-023-40791-z
Wang X. Y. ; Xu J. ; Zhang Y. M. ; Wang T. M. ; Wang Q. H. ; Li S. ; Yang Z. H. ; Zhang X. R. A stretchable, mechanically robust polymer exhibiting shape-memory-assisted self-healing and clustering-triggered emission . Nat. Commun. , 2023 , 14 ( 1 ), 4712 . doi: 10.1038/s41467-023-40340-8 http://dx.doi.org/10.1038/s41467-023-40340-8
Xie F. W. ; Zhang T. L. ; Bryant P. ; Kurusingal V. ; Colwell J. M. ; Laycock B. Degradation and stabilization of polyurethane elastomers . Prog. Polym. Sci. , 2019 , 90 , 211 - 268 . doi: 10.1016/j.progpolymsci.2018.12.003 http://dx.doi.org/10.1016/j.progpolymsci.2018.12.003
Xu J. ; Wang X. Y. ; Zhang X. R. ; Zhang Y. M. ; Yang Z. H. ; Li S. ; Tao L. M. ; Wang Q. H. ; Wang T. M. Room-temperature self-healing supramolecular polyurethanes based on the synergistic strengthening of biomimetic hierarchical hydrogen-bonding interactions and coordination bonds . Chem. Eng. J. , 2023 , 451 , 138673 . doi: 10.1016/j.cej.2022.138673 http://dx.doi.org/10.1016/j.cej.2022.138673
Zhang Y. ; Ellingford C. ; Zhang R. N. ; Roscow J. ; Hopkins M. ; Keogh P. ; McNally T. ; Bowen C. ; Wan C. Y. Electrical and mechanical self-healing in high-performance dielectric elastomer actuator materials . Adv. Funct. Mater. , 2019 , 29 ( 15 ), 1808431 . doi: 10.1002/adfm.201808431 http://dx.doi.org/10.1002/adfm.201808431
Tan T. ; Siew W. H. ; Han L. ; Given M. ; McKendry C. ; Liggat J. ; Li Q. ; He J. L. Self-healing of electrical damage in microphase-separated polyurethane elastomers with robust dielectric strength utilizing dynamic hydrogen bonding networks . ACS Appl. Polym. Mater. , 2023 , 5 ( 9 ), 7132 - 7143 . doi: 10.1021/acsapm.3c01155 http://dx.doi.org/10.1021/acsapm.3c01155
Tan M. W. M. ; Bark H. ; Thangavel G. ; Gong X. F. ; Lee P. S. Photothermal modulated dielectric elastomer actuator for resilient soft robots . Nat. Commun. , 2022 , 13 ( 1 ), 6769 . doi: 10.1038/s41467-022-34301-w http://dx.doi.org/10.1038/s41467-022-34301-w
Mao J. ; Li J. ; Lin W. ; Luo F. L. Polybutadiene dielectric elastomers with high dielectric constant and ultralow dielectric loss via tuning grafted polar groups . Macromol. Rapid Commun. , 2023 , 44 ( 10 ), 2200971 . doi: 10.1002/marc.202200971 http://dx.doi.org/10.1002/marc.202200971
van der Lubbe S. C. C. ; Zaccaria F. ; Sun X. B. ; Guerra C. F. Secondary electrostatic interaction model revised: prediction comes mainly from measuring charge accumulation in hydrogen-bonded monomers . J. Am. Chem. Soc. , 2019 , 141 ( 12 ), 4878 - 4885 . doi: 10.1021/jacs.8b13358 http://dx.doi.org/10.1021/jacs.8b13358
Brielle E. S. ; Arkin I. T. Quantitative analysis of multiplex H-bonds . J. Am. Chem. Soc. , 2020 , 142 ( 33 ), 14150 - 14157 . doi: 10.1021/jacs.0c04357 http://dx.doi.org/10.1021/jacs.0c04357
Tan M. W. M. ; Thangavel G. ; Lee P. S. Rugged soft robots using tough, stretchable, and self-healable adhesive elastomers . Adv. Funct. Mater. , 2021 , 31 ( 34 ), 2103097 . doi: 10.1002/adfm.202103097 http://dx.doi.org/10.1002/adfm.202103097
Ha S. M. ; Yuan W. ; Pei Q. ; Pelrine R. ; Stanford S. Interpenetrating polymer networks for high-performance electroelastomer artificial muscles . Adv. Mater. , 2006 , 18 ( 7 ), 887 - 891 . doi: 10.1002/adma.200502437 http://dx.doi.org/10.1002/adma.200502437
Li C. H. ; Zuo J. L. Self-healing polymers based on coordination bonds . Adv. Mater. , 2020 , 32 ( 27 ), 1903762 . doi: 10.1002/adma.201903762 http://dx.doi.org/10.1002/adma.201903762
Rao Y. L. ; Chortos A. ; Pfattner R. ; Lissel F. ; Chiu Y. C. ; Feig V. ; Xu J. ; Kurosawa T. ; Gu X. D. ; Wang C. ; He M. Q. ; Chung J. W. ; Bao Z. N. Stretchable self-healing polymeric dielectrics cross-linked through metal-ligand coordination . J. Am. Chem. Soc. , 2016 , 138 ( 18 ), 6020 - 6027 . doi: 10.1021/jacs.6b02428 http://dx.doi.org/10.1021/jacs.6b02428
Ellingford C. ; Zhang R. N. ; Wemyss A. M. ; Zhang Y. ; Brown O. B. ; Zhou H. Z. ; Keogh P. ; Bowen C. ; Wan C. Y. Self-healing dielectric elastomers for damage-tolerant actuation and energy harvesting . ACS Appl. Mater. Interfaces , 2020 , 12 ( 6 ), 7595 - 7604 . doi: 10.1021/acsami.9b21957 http://dx.doi.org/10.1021/acsami.9b21957
Zhou X. Q. ; Gong Z. ; Fan J. F. ; Chen Y. K. Self-healable, recyclable, mechanically tough transparent polysiloxane elastomers based on dynamic microphase separation for flexible sensor . Polymer , 2021 , 237 , 124357 . doi: 10.1016/j.polymer.2021.124357 http://dx.doi.org/10.1016/j.polymer.2021.124357
Niu W. B. ; Cao X. F. ; Wang Y. P. ; Yao B. W. ; Zhao Y. S. ; Cheng J. ; Wu S. L. ; Zhang S. F. ; He X. M. Photonic vitrimer elastomer with self-healing, high toughness, mechanochromism, and excellent durability based on dynamic covalent bond . Adv. Funct. Mater. , 2021 , 31 ( 13 ), 2009017 . doi: 10.1002/adfm.202009017 http://dx.doi.org/10.1002/adfm.202009017
Wang P. ; Yang L. ; Dai B. ; Yang Z. H. ; Guo S. ; Gao G. ; Xu L. G. ; Sun M. Q. ; Yao K. L. ; Zhu J. Q. A self-healing transparent polydimethylsiloxane elastomer based on imine bonds . Eur. Polym. J. , 2020 , 123 , 109382 . doi: 10.1016/j.eurpolymj.2019.109382 http://dx.doi.org/10.1016/j.eurpolymj.2019.109382
von Szczepanski J. ; Danner P. M. ; Opris D. M. Self-healable, self-repairable, and recyclable electrically responsive artificial muscles . Adv. Sci. , 2022 , 9 ( 22 ), 2202153 . doi: 10.1002/advs.202202153 http://dx.doi.org/10.1002/advs.202202153
Wang R. L. ; Zheng W. H. ; Bai Y. P. ; Liang Y. F. ; Wang Y. ; He J. M. Room-temperature self-assembly of poly-(thioctic acid)/silicone dielectric elastomer for highly healable, transparent, electro-sensitive electronic actuator . Mater. Today Nano , 2023 , 24 , 100434 . doi: 10.1016/j.mtnano.2023.100434 http://dx.doi.org/10.1016/j.mtnano.2023.100434
Nie R. P. ; Lin H. ; Li Y. ; Huang H. D. ; Yan D. X. ; Dai K. ; Lei J. ; Li Z. M. Dynamic chemical bonds design strategy for fabricating fast room-temperature healable dielectric elastomer with significantly improved actuation performance . Chem. Eng. J. , 2022 , 439 , 135683 . doi: 10.1016/j.cej.2022.135683 http://dx.doi.org/10.1016/j.cej.2022.135683
Xuan H. X. ; Guan Q. B. ; Tan H. ; Zuo H. ; Sun L. J. ; Guo Y. F. ; Zhang L. Z. ; Neisiany R. E. ; You Z. W. Light-controlled triple-shape-memory, high-permittivity dynamic elastomer for wearable multifunctional information encoding devices . ACS Nano , 2022 , 16 ( 10 ), 16954 - 16965 . doi: 10.1021/acsnano.2c07004 http://dx.doi.org/10.1021/acsnano.2c07004
Wang W. W. ; Li S. T. Research status and development of insulation breakdown in engineering solid dielectrics . Chin. Sci. Bull. , 2020 , 65 ( 31 ), 3461 - 3474 . doi: 10.1360/tb-2019-0563 http://dx.doi.org/10.1360/tb-2019-0563
Dünki S. J. ; Ko Y. S. ; Nüesch F. A. ; Opris D. M. Self-repairable, high permittivity dielectric elastomers with large actuation strains at low electric fields . Adv. Funct. Mater. , 2015 , 25 ( 16 ), 2467 - 2475 . doi: 10.1002/adfm.201500077 http://dx.doi.org/10.1002/adfm.201500077
Xu J. H. ; Dong Y. L. ; Jiang Z. Y. ; Tang L. C. ; Chen X. R. ; Yao Z. ; Cao K. Self-healing High-performance dielectric elastomer actuator with novel Liquid-solid interpenetrating structure . Compos. Part A Appl. Sci. Manuf. , 2021 , 149 , 106519 . doi: 10.1016/j.compositesa.2021.106519 http://dx.doi.org/10.1016/j.compositesa.2021.106519
Acome E. ; Mitchell S. K. ; Morrissey T. G. ; Emmett M. B. ; Benjamin C. ; King M. ; Radakovitz M. ; Keplinger C. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance . Science , 2018 , 359 ( 6371 ), 61 - 65 . doi: 10.1126/science.aao6139 http://dx.doi.org/10.1126/science.aao6139
Gao L. ; Yang Y. ; Xie J. Y. ; Zhang S. ; Hu J. ; Zeng R. ; He J. L. ; Li Q. ; Wang Q. Autonomous self-healing of electrical degradation in dielectric polymers using in situ electroluminescence . Matter , 2020 , 2 ( 2 ), 451 - 463 . doi: 10.1016/j.matt.2019.11.012 http://dx.doi.org/10.1016/j.matt.2019.11.012
Hunt S. ; McKay T. G. ; Anderson I. A. A self-healing dielectric elastomer actuator . Appl. Phys. Lett. , 2014 , 104 ( 11 ), 113701 . doi: 10.1063/1.4869294 http://dx.doi.org/10.1063/1.4869294
Chen Y. F. ; Kang G. Z. ; Hu Y. H. ; Yuan J. H. ; Li T. F. ; Qu S. X. Low-cycle electro-mechanical fatigue of dielectric elastomers: pure-shear experiments and life-prediction model . Int. J. Fatigue , 2021 , 148 , 106220 . doi: 10.1016/j.ijfatigue.2021.106220 http://dx.doi.org/10.1016/j.ijfatigue.2021.106220
Li W. B. ; Liu X. Y. ; Jiang Y. J. ; Wu W. J. ; Yu B. ; Ning N. Y. ; Tian M. ; Zhang L. Q. Extremely high energy density and long fatigue life of nano-silica/polymethylvinylsiloxane dielectric elastomer generator by interfacial design . Nano Energy , 2022 , 104 , 107969 . doi: 10.1016/j.nanoen.2022.107969 http://dx.doi.org/10.1016/j.nanoen.2022.107969
Keller M. W. ; White S. R. ; Sottos N. R. Torsion fatigue response of self-healing poly(dimethylsiloxane) elastomers . Polymer , 2008 , 49 ( 13-14 ), 3136 - 3145 . doi: 10.1016/j.polymer.2008.04.041 http://dx.doi.org/10.1016/j.polymer.2008.04.041
Duan L. ; Lai J. C. ; Li C. H. ; Zuo J. L. A dielectric elastomer actuator that can self-heal integrally . ACS Appl. Mater. Interfaces , 2020 , 12 ( 39 ), 44137 - 44146 . doi: 10.1021/acsami.0c11697 http://dx.doi.org/10.1021/acsami.0c11697
Zhang Y. ; Khanbareh H. ; Roscow J. ; Pan M. ; Bowen C. ; Wan C. Y. Self-healing of materials under high electrical stress . Matter , 2020 , 3 ( 4 ), 989 - 1008 . doi: 10.1016/j.matt.2020.07.020 http://dx.doi.org/10.1016/j.matt.2020.07.020
Sun H. B. ; Liu X. Y. ; Liu S. T. ; Yu B. ; Ning N. Y. ; Tian M. ; Zhang L. Q. Silicone dielectric elastomer with improved actuated strain at low electric field and high self-healing efficiency by constructing supramolecular network . Chem. Eng. J. , 2020 , 384 , 123242 . doi: 10.1016/j.cej.2019.123242 http://dx.doi.org/10.1016/j.cej.2019.123242
Naito K. ; Miwa Y. ; Ando R. ; Yashiro K. ; Kutsumizu S. Evaluation for the actuation performance of dielectric elastomer actuator using polyisoprene elastomer with dynamic ionic crosslinks . Sens. Actuat. A Phys. , 2021 , 332 , 113143 . doi: 10.1016/j.sna.2021.113143 http://dx.doi.org/10.1016/j.sna.2021.113143
Ko J. ; Kim Y. J. ; Kim Y. S. Self-healing polymer dielectric for a high capacitance gate insulator . ACS Appl. Mater. Interfaces , 2016 , 8 ( 36 ), 23854 - 23861 . doi: 10.1021/acsami.6b08220 http://dx.doi.org/10.1021/acsami.6b08220
Qi X. D. ; Yang J. H. ; Zhang N. ; Huang T. ; Zhou Z. W. ; Kühnert I. ; Pötschke P. ; Wang Y. Selective localization of carbon nanotubes and its effect on the structure and properties of polymer blends . Prog. Polym. Sci. , 2021 , 123 , 101471 . doi: 10.1016/j.progpolymsci.2021.101471 http://dx.doi.org/10.1016/j.progpolymsci.2021.101471
Niu T. C. Carbon nanotubes advance next-generation electronics . Nano Today , 2020 , 35 , 100992 . doi: 10.1016/j.nantod.2020.100992 http://dx.doi.org/10.1016/j.nantod.2020.100992
Cakmak E. ; Fang X. M. ; Yildiz O. ; Bradford P. D. ; Ghosh T. K. Carbon nanotube sheet electrodes for anisotropic actuation of dielectric elastomers . Carbon , 2015 , 89 , 113 - 120 . doi: 10.1016/j.carbon.2015.03.011 http://dx.doi.org/10.1016/j.carbon.2015.03.011
Cohen A. J. ; Kollosche M. ; Yuen M. C. ; Lee D. Y. ; Clarke D. R. ; Wood R. J. Batch-sprayed and stamp-transferred electrodes: a new paradigm for scalable fabrication of multilayer dielectric elastomer actuators . Adv. Funct. Mater. , 2022 , 32 ( 43 ), 2205394 . doi: 10.1002/adfm.202205394 http://dx.doi.org/10.1002/adfm.202205394
Liu S. Q. ; Chen S. ; Shi W. ; Peng Z. F. ; Luo K. Y. ; Xing S. T. ; Li J. T. ; Liu Z. F. ; Liu L. Self-healing, robust, and stretchable electrode by direct printing on dynamic polyurea surface at slightly elevated temperature . Adv. Funct. Mater. , 2021 , 31 ( 26 ), 2102225 . doi: 10.1002/adfm.202102225 http://dx.doi.org/10.1002/adfm.202102225
Hubertus J. ; Croce S. ; Neu J. ; Seelecke S. ; Rizzello G. ; Schultes G. Laser structuring of thin metal films of compliant electrodes on dielectric elastomers . Adv. Funct. Mater. , 2023 , 33 ( 16 ), 2214176 . doi: 10.1002/adfm.202214176 http://dx.doi.org/10.1002/adfm.202214176
Zhang H. X. ; Shao Y. ; Xia R. ; Chen G. L. ; Xiang X. Y. ; Yu Y. H. Stretchable electrodes with interfacial percolation network . Adv. Mater. , 2024 , 36 ( 26 ), 2401550 . doi: 10.1002/adma.202401550 http://dx.doi.org/10.1002/adma.202401550
Yuan W. ; Hu L. B. ; Yu Z. B. ; Lam T. ; Biggs J. ; Ha S. M. ; Xi D. J. ; Chen B. ; Senesky M. K. ; Grüner G. ; Pei Q. Fault-tolerant dielectric elastomer actuators using single-walled carbon nanotube electrodes . Adv. Mater. , 2008 , 20 ( 3 ), 621 - 625 . doi: 10.1002/adma.200701018 http://dx.doi.org/10.1002/adma.200701018
Peng Z. H. ; Shi Y. ; Chen N. ; Li Y. J. ; Pei Q. B. Stable and high-strain dielectric elastomer actuators based on a carbon nanotube-polymer bilayer electrode . Adv. Funct. Mater. , 2021 , 31 ( 9 ), 2008321 . doi: 10.1002/adfm.202008321 http://dx.doi.org/10.1002/adfm.202008321
Cheng Z. ; Feng W. W. ; Zhang Y. C. ; Sun L. ; Liu Y. C. ; Chen L. L. ; Wang C. A highly robust amphibious soft robot with imperceptibility based on a water-stable and self-healing ionic conductor . Adv. Mater. , 2023 , 35 ( 28 ), 2301005 . doi: 10.1002/adma.202301005 http://dx.doi.org/10.1002/adma.202301005
Zang W. P. ; Jin S. J. ; Fu S. X. ; Wang Y. H. ; Jiang Y. J. ; Liu X. Y. ; Ning N. Y. ; Tian M. ; Zhang L. Q. A supramolecular electrode with high self-healing efficiency at room temperature, recyclability and durability for dielectric elastomer generators . J. Mater. Chem. A , 2023 , 11 ( 7 ), 3565 - 3574 . doi: 10.1039/d2ta08987d http://dx.doi.org/10.1039/d2ta08987d
Liu Y. Z. ; Yue S. Z. ; Tian Z. Y. ; Zhu Z. J. ; Li Y. J. ; Chen X. Y. ; Wang Z. L. ; Yu Z. Z. ; Yang D. Self-powered and self-healable extraocular-muscle-like actuator based on dielectric elastomer actuator and triboelectric nanogenerator . Adv. Mater. , 2024 , 36 ( 7 ), 2309893 . doi: 10.1002/adma.202309893 http://dx.doi.org/10.1002/adma.202309893
0
Views
77
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution