浏览全部资源
扫码关注微信
东华大学材料科学与工程学院 先进纤维材料全国重点实验室 上海 201620
Jie Dong, E-mail: dj01@dhu.edu.cn
Received:14 March 2025,
Accepted:25 April 2025,
Published Online:30 June 2025,
Published:20 August 2025
移动端阅览
宋映晓, 唐傲, 张家霖, 董杰, 赵昕, 张清华. 含Tröger’s base结构聚(苯并噁唑-酰亚胺)热重排分离膜的制备与其气体分离特性研究. 高分子学报, 2025, 56(8), 1358-1368
Song, Y. X.; Tang, A.; Zhang, J. L.; Dong, J.; Zhao, X.; Zhang, Q. H. Preparation of thermally rearranged poly(benzoxazole-co-imide) membranes containing tröger’s base structure and their gas separation performances. Acta Polymerica Sinica, 2025, 56(8), 1358-1368
宋映晓, 唐傲, 张家霖, 董杰, 赵昕, 张清华. 含Tröger’s base结构聚(苯并噁唑-酰亚胺)热重排分离膜的制备与其气体分离特性研究. 高分子学报, 2025, 56(8), 1358-1368 DOI: 10.11777/j.issn1000-3304.2025.25045. CSTR: 32057.14.GFZXB.2025.7392.
Song, Y. X.; Tang, A.; Zhang, J. L.; Dong, J.; Zhao, X.; Zhang, Q. H. Preparation of thermally rearranged poly(benzoxazole-co-imide) membranes containing tröger’s base structure and their gas separation performances. Acta Polymerica Sinica, 2025, 56(8), 1358-1368 DOI: 10.11777/j.issn1000-3304.2025.25045. CSTR: 32057.14.GFZXB.2025.7392.
设计合成了一种新型含Tröger’s base (TB)结构的二胺单体—2
8-二氨基-4
10-二甲基-6
12-氢-5
11-亚甲二苯并[1
5
]
二氮辛(TBDA),并将其与2
2′-双(3
4-二羧酸)六氟丙烷二酐(6FDA)和2
2-双(3-氨基-4-羟基苯基)六氟丙烷(APAF)共聚反应,合成了一系列含邻羟基酰亚胺单元的聚酰亚胺(HPI). 在高温下对HPI膜进行热重排处理,获得了兼具TB自聚微孔结构和热重排结构的聚(苯并噁唑-酰亚胺)气体分离膜. 研究结果显示,TB自具微孔结构和热重排结构的协同作用抑制了分子链的规整堆砌,使分离膜自由体积增加,从而赋予其优异的气体分离特性. 经430 ℃热重排反应的6FTB1-TR430膜表现出最优异的综合气体分离性能,对CO
2
、CH
4
、O
2
和N
2
的渗透系数分别为267.6、7.0、57.2和12.5 Barrer (1 Barrer = 7.5×10
-14
cm
3
(STP)/(cm
2
·s·Pa),STP表示标准状态,即0 ℃,1.01×10
5
Pa),同时,选择性分别达到
α
(CO
2
/CH
4
)=38.2及
α
(O
2
/N
2
)=4.6. 此外,该类分离膜的热分解温度为530~560 ℃,玻璃化转变温度(
T
g
)超过400 ℃,显示出优异的热稳定性. 该研究为设计和开发聚酰亚胺类高效气体分离膜提供了新的思路.
A novel diamine monomer containing a Tröger's base (TB) structure
2
8-diamino-4
10-dimethyl-6
12-hydrogen-5
11 methylene dibenzo [1
5
]
diazo octane (TBDA)
was designed and synthesized. This monomer was then copolymerized with 4
4′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) and 2
2′-bis(3-amino-4-hydroxyl-phenyl) hexafluoropropane (APAF) to synthesize a series of polyimides (HPI) containing
ortho
-hydroxyamide units. The HPI membranes underwent thermal rearrangement (TR) at high temperatures to yield poly(benzoxazole-
co
-imide) (PBO-PI) gas separation membranes by the thermal rearrangement containing the TB structure and the thermally rearranged benzoxazole units. The results demonstrated that the synergistic effect of the inherent microporosity of TB moieties and thermal rearrangement inhibited the dense packing of molecular chains
providing the membrane with a rich free volume
thus imparting excellent gas separation properties. The gas permeation coefficients of the 6FTB1-TR membrane containing 10 mol% of TBDA and thermally rearranged at 430 ℃ demonstrated excellent gas separation performance with CO
2
CH
4
O
2
and N
2
permeation coefficients of 267.6
7.0
57.2
and 12.5 Barrer
respectively
with the ideal selectivities of
α
(CO
2
/CH
4
) and
α
(O
2
/N
2
) being 38.2 and 4.6
respectively. Moreover
its thermal degradation temperature is over 530 ℃ and glass transition temperature (
T
g
) exceedes 400 ℃
demonstrating excellent thermal stability. This study provides new insights into the design and development of novel high-performance gas separation membranes.
D'Alessandro D. ; Smit B. ; Long J. Carbon dioxide capture: Prospects for new materials . Angew. Chem. Int. Ed. , 2010 , 49 ( 35 ), 6058 - 6082 . doi: 10.1002/anie.201000431 http://dx.doi.org/10.1002/anie.201000431
Leung D. Y. C. ; Caramanna G. ; Maroto-Valer M. M. An overview of current status of carbon dioxide capture and storage technologies . Renew. Sustain. Energy Rev. , 2014 , 39 , 426 - 443 . doi: 10.1016/j.rser.2014.07.093 http://dx.doi.org/10.1016/j.rser.2014.07.093
Dalane K. ; Dai Z. D. ; Mogseth G. ; Hillestad M. ; Deng L. Y. Potential applications of membrane separation for subsea natural gas processing: a review . J. Nat. Gas Sci. Eng. , 2017 , 39 , 101 - 117 . doi: 10.1016/j.jngse.2017.01.023 http://dx.doi.org/10.1016/j.jngse.2017.01.023
王湛 , 王志 , 高学理 . 膜分离技术基础 . 第3版 . 北京 化学工业出版社 . 2019 , 269 - 281 .
Baker R. W. ; Low B. T. Gas separation membrane materials: a perspective . Macromolecules , 2014 , 47 ( 20 ), 6999 - 7013 . doi: 10.1021/ma501488s http://dx.doi.org/10.1021/ma501488s
Alentiev A. Y. ; Ryzhikh V. E. ; Syrtsova D. A. ; Belov N. A. Polymer materials for solving actual problems of membrane gas . Russ. Chem. Rev. , 2023 , 92 ( 6 ), RCR 5083 . doi: 10.59761/rcr5083 http://dx.doi.org/10.59761/rcr5083
Wang M. H. ; Zhao J. J. ; Wang X. X. ; Liu A. D. ; Gleason K. K. Recent progress on submicron gas-selective polymeric membranes . J. Mater. Chem. A , 2017 , 5 ( 19 ), 8860 - 8886 . doi: 10.1039/c7ta01862b http://dx.doi.org/10.1039/c7ta01862b
Guan J. ; Lu Y. Q. ; Du L. J. ; Liang C. Z. ; Wu J. ; Li D. F. ; Zhang S. An aromatic fluoropolymer for hydrogen separation from hydrocarbons . Macromol. Rapid Commun. , 2022 , 43 ( 6 ), 2100796 . doi: 10.1002/marc.202100796 http://dx.doi.org/10.1002/marc.202100796
Medentseva E. I. ; Khrychikova A. P. ; Bermesheva E. V. ; Borisov I. L. ; Petukhov D. I. ; Karpov G. O. ; Morontsev A. A. ; Nesterova O. V. ; Bermeshev M. V. CO 2 -separation performance of vinyl-addition polynorbornenes with ester functionalities . J. Membr. Sci. , 2024 , 705 , 122916 . doi: 10.1016/j.memsci.2024.122916 http://dx.doi.org/10.1016/j.memsci.2024.122916
刘懿韬 , 蔡治礼 , 单玲珑 , 罗双江 . 蝶烯基微孔聚合物气体分离膜的研究进展 . 膜科学与技术 , 2022 , 42 ( 1 ), 145 - 154 .
Robeson L. M. The upper bound revisited . J. Membr. Sci. , 2008 , 320 ( 1-2 ), 390 - 400 . doi: 10.1016/j.memsci.2008.04.030 http://dx.doi.org/10.1016/j.memsci.2008.04.030
Liaw D. J. ; Wang K. L. ; Huang Y. C. ; Lee K. R. ; Lai J. Y. ; Ha C. S. Advanced polyimide materials: syntheses, physical properties and applications . Prog. Polym. Sci. , 2012 , 37 ( 7 ), 907 - 974 . doi: 10.1016/j.progpolymsci.2012.02.005 http://dx.doi.org/10.1016/j.progpolymsci.2012.02.005
Rufford T. E. ; Smart S. ; Watson G. C. Y. ; Graham B. F. ; Boxall J. ; Diniz da Costa J. C. ; May E. F. The removal of CO 2 and N 2 from natural gas: a review of conventional and emerging process technologies. J. Petrol. Sci. Eng. , 2012 , 94 , 123 - 154 . doi: 10.1016/j.petrol.2012.06.016 http://dx.doi.org/10.1016/j.petrol.2012.06.016
Jue M. L. ; Lively R. P. Targeted gas separations through polymer membrane functionalization . React. Funct. Polym. , 2015 , 86 , 88 - 110 . doi: 10.1016/j.reactfunctpolym.2014.09.002 http://dx.doi.org/10.1016/j.reactfunctpolym.2014.09.002
Belov N. ; Chatterjee R. ; Nikiforov R. ; Ryzhikh V. ; Bisoi S. ; Kumar A. G. ; Banerjee S. ; Yampolskii Y. New poly(ether imide)s with pendant di-tert-butyl groups: synthesis, characterization and gas transport properties . Sep. Purif. Technol. , 2019 , 217 , 183 - 194 . doi: 10.1016/j.seppur.2019.02.017 http://dx.doi.org/10.1016/j.seppur.2019.02.017
Guiver M. D. ; Lee Y. M. Polymer rigidity improves microporous membranes . Science , 2013 , 339 ( 6117 ), 284 - 285 . doi: 10.1126/science.1232714 http://dx.doi.org/10.1126/science.1232714
Tong H. ; Hu C. C. ; Yang S. Y. ; Ma Y. P. ; Guo H. X. ; Fan L. Preparation of fluorinated polyimides with bulky structure and their gas separation performance correlated with microstructure . Polymer , 2015 , 69 , 138 - 147 . doi: 10.1016/j.polymer.2015.05.045 http://dx.doi.org/10.1016/j.polymer.2015.05.045
袁清 , 李庚鸿 , 李苏爽 , 高雪 , 周浩力 . 基于三蝶烯结构聚酰亚胺膜的制备及其H 2 /轻烃分离性能 . 石油炼制与化工 , 2023 , 54 ( 3 ), 101 - 106 .
Carta M. ; Malpass-Evans R. ; Croad M. ; Rogan Y. ; Jansen J. C. ; Bernardo P. ; Bazzarelli F. ; McKeown N. B. An efficient polymer molecular sieve for membrane gas separations . Science , 2013 , 339 ( 6117 ), 303 - 307 . doi: 10.1126/science.1228032 http://dx.doi.org/10.1126/science.1228032
Lee W. H. ; Seong J. G. ; Hu X. F. ; Lee Y. M. Recent progress in microporous polymers from thermally rearranged polymers and polymers of intrinsic microporosity for membrane gas separation: pushing performance limits and revisiting trade-off lines . J. Polym. Sci. , 2020 , 58 ( 18 ), 2450 - 2466 . doi: 10.1002/pol.20200110 http://dx.doi.org/10.1002/pol.20200110
Kim S. ; Lee Y. M. Rigid and microporous polymers for gas separation membranes . Prog. Polym. Sci. , 2015 , 43 , 1 - 32 . doi: 10.1016/j.progpolymsci.2014.10.005 http://dx.doi.org/10.1016/j.progpolymsci.2014.10.005
Park H. B. ; Jung C. H. ; Lee Y. M. ; Hill A. J. ; Pas S. J. ; Mudie S. T. ; Van Wagner E. ; Freeman B. D. ; Cookson D. J. Polymers with cavities tuned for fast selective transport of small molecules and ions . Science , 2007 , 318 ( 5848 ), 254 - 258 . doi: 10.1126/science.1146744 http://dx.doi.org/10.1126/science.1146744
魏鲁鹏 , 鲁云华 , 姜宗岭 , 肖国勇 , 李琳 , 王同华 . 含异构化萘环结构的热重排膜材料的制备及其气体分离性能 . 高分子材料科学与工程 , 2024 , 40 ( 7 ), 136 - 144 . doi: 10.16865/j.cnki.1000-7555.2024.0119 http://dx.doi.org/10.16865/j.cnki.1000-7555.2024.0119
Carta M. ; Croad M. ; Malpass-Evans R. ; Jansen J. C. ; Bernardo P. ; Clarizia G. ; Friess K. ; Lanč M. ; McKeown N. B. Triptycene induced enhancement of membrane gas selectivity for microporous tröger's base polymers . Adv. Mater. , 2014 , 26 ( 21 ), 3526 - 3531 . doi: 10.1002/adma.201305783 http://dx.doi.org/10.1002/adma.201305783
Wang Z. G. ; Wang D. ; Zhang F. ; Jin J. Tröger's base-based microporous polyimide membranes for high-performance gas separation . ACS Macro Lett. , 2014 , 3 ( 7 ), 597 - 601 . doi: 10.1021/mz500184z http://dx.doi.org/10.1021/mz500184z
郭欣 , 衣华磊 , 段翠佳 , 郝蕴 , 李恩尚 , 骆鑫雨 . BTDA/6FDA-DAM/2, 6DAT嵌段聚酰亚胺膜制备及其气体分离性能研究 . 膜科学与技术 , 2022 , 42 ( 1 ), 80 - 87 . doi: 10.16159/j.cnki.issn1007-8924.2022.01.011 http://dx.doi.org/10.16159/j.cnki.issn1007-8924.2022.01.011
向艳丽 , 曹世杰 , 翁晓文 , 李坚 , 任强 , 汪称意 . 含取代侧基和芴结构可溶性聚酰亚胺的制备及其性能 . 石油炼制与化工 , 2024 , 55 ( 11 ), 138 - 143 .
衣华磊 , 郭欣 , 杨涛 , 高鹏 , 段翠佳 , 骆鑫雨 . 超支化共聚聚酰亚胺膜制备及其CO 2 /CH 4 气体分离性能研究 . 膜科学与技术 , 2023 , 43 ( 4 ), 54 - 59 .
邹永兰 , 贾宏葛 , 徐蕊 , 赵士君 , 周俊康 . 共聚聚酰亚胺热重排改性薄膜的制备及气体分离性能 . 膜科学与技术 , 2023 , 43 ( 3 ), 87 - 93 .
0
Views
22
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution