

浏览全部资源
扫码关注微信
1.青岛科技大学 化工学院 青岛 266042
2.山东省高等学校 生物基高分子材料重点实验室 青岛科技大学高分子科学与工程学院 青岛 266042
Yuan-chi Ma, E-mail: yuanchi.ma@qust.edu.cn
Zhi-bo Li, E-mail: zbli@qust.edu.cn
Received:30 March 2025,
Accepted:06 May 2025,
Published Online:23 June 2025,
Published:20 September 2025
移动端阅览
田娟, 李佳林, 宋红玮, 马远驰, 李志波. 基于立体异构氢键的高强高韧聚氨酯弹性体合成及性质研究. 高分子学报, 2025, 56(9), 1557-1572
Tian, J.; Li, J. L.; Song, H. W.; Ma, Y. C; Li, Z. B. Synthesis and characterization of high-strength and high-toughness polyurethane elastomers based on stereoisomeric hydrogen bonds. Acta Polymerica Sinica, 2025, 56(9), 1557-1572
田娟, 李佳林, 宋红玮, 马远驰, 李志波. 基于立体异构氢键的高强高韧聚氨酯弹性体合成及性质研究. 高分子学报, 2025, 56(9), 1557-1572 DOI: 10.11777/j.issn1000-3304.2025.25084. CSTR: 32057.14.GFZXB.2025.7410.
Tian, J.; Li, J. L.; Song, H. W.; Ma, Y. C; Li, Z. B. Synthesis and characterization of high-strength and high-toughness polyurethane elastomers based on stereoisomeric hydrogen bonds. Acta Polymerica Sinica, 2025, 56(9), 1557-1572 DOI: 10.11777/j.issn1000-3304.2025.25084. CSTR: 32057.14.GFZXB.2025.7410.
本研究以聚己内酯(PCL)为软段,通过引入手性二醇异山梨醇(IS)与异甘露醇(IM)构建了两种立体构型的热塑性聚氨酯弹性体(TPU-IM/TPU-IS),揭示了扩链剂分子构象对材料性能的影响. 研究发现,TPU-IM体系凭借其刚性三维构象形成更高密度的氢键交联网络,且氢键含量随硬段比例增加,呈线性增长.在力学性能方面,TPU-IM-30表现出71.0 MPa的拉伸强度和1312%断裂伸长率的高综合性能,其杨氏模量(45.3 MPa)相较对应的TPU-IS-30提升125%,且相较于TPU-IM-20而言,硬段含量增加未显著牺牲断裂伸长率. 循环拉伸测试表明,TPU-IM-30在低应变下表现出比TPU-IS-30更高的回弹性与优异的能量耗散能力.同时,TPU-IM和TPU-IS弹性体具有抗撕裂、应力松弛抗性、热稳定性和可再加工性. 本研究揭示了异甘露醇的立体构型在构建动态氢键网络中的独特优势,为设计兼具高强度、高韧性以及能量耗散的智能响应材料提供了新思路.
In this study
polycaprolactone (PCL) was used as the soft segment
and two kinds of thermoplastic polyurethane elastomers (TPU-IM and TPU-IS) with different stereoconfigurations were constructed by introducing chiral diols isosorbide (IS) and isomannide (IM)
revealing the influence of the molecular conformation of the chain extender on the properties of the materials. The study found that the TPU-IM system forms a higher density of hydrogen bond cross-linking network due to its rigid three-dimensional conformation
and the hydrogen bond content increases linearly with the increase of the hard segment ratio. In terms of mechanical properties
TPU-IM-30 exhibits high comprehensive properties with a tensile strength of 71.0 MPa and an elongation at break of 1312%. Its Young's modulus (45.3 MPa) is 125% higher than that of the corresponding TPU-IS-30. Moreover
compared with TPU-IM-20
the increase in the hard segment content does not significantly sacrifice the elongation at break. The cyclic tensile test shows that TPU-IM-30 exhibits higher resilience and excellent energy dissipation ability than TPU-IS-30 under low strain. Meanwhile
both TPU-IM and TPU-IS elastomers possess tear resistance
stress relaxation resistance
thermal stability
and reprocessability. This study reveals the unique advantages of the stereoconfiguration of isomannide in constructing a dynamic hydrogen bond network
providing new ideas for the design of intelligent responsive materials with high strength
high toughness
and energy dissipation capabilities.
Zhao J. B. ; Zhu J. S. ; Zhang J. F. ; Huang Z. C. ; Qi D. M. Review of research on thermoplastic self-healing polyurethanes . React. Funct. Polym. , 2024 , 199 , 105886 . doi: 10.1016/j.reactfunctpolym.2024.105886 http://dx.doi.org/10.1016/j.reactfunctpolym.2024.105886
Mouren A. ; Avérous L. Sustainable cycloaliphatic polyurethanes: from synthesis to applications . Chem. Soc. Rev. , 2023 , 52 ( 1 ), 277 - 317 . doi: 10.1039/d2cs00509c http://dx.doi.org/10.1039/d2cs00509c
Wang H. R. ; Li T. ; Li J. ; Zhao R. H. ; Ding A. ; Xu F. J. Structural engineering of polyurethanes for biomedical applications . Prog. Polym. Sci. , 2024 , 151 , 101803 . doi: 10.1016/j.progpolymsci.2024.101803 http://dx.doi.org/10.1016/j.progpolymsci.2024.101803
Delavarde A. ; Savin G. ; Derkenne P. ; Boursier M. ; Morales-Cerrada R. ; Nottelet B. ; Pinaud J. ; Caillol S. Sustainable polyurethanes: toward new cutting-edge opportunities . Prog. Polym. Sci. , 2024 , 151 , 101805 . doi: 10.1016/j.progpolymsci.2024.101805 http://dx.doi.org/10.1016/j.progpolymsci.2024.101805
Chu C. Z. ; Sun W. ; Chen S. ; Jia Y. J. ; Ni Y. F. ; Wang S. F. ; Han Y. F. ; Zuo H. ; Chen H. F. ; You Z. W. ; Zhu M. F. Squid-inspired anti-salt skin-like elastomers with superhigh damage resistance for aquatic soft robots . Adv. Mater. , 2024 , 36 ( 44 ), 2406480 . doi: 10.1002/adma.202406480 http://dx.doi.org/10.1002/adma.202406480
Cheng B. C. ; Wu P. Y. Scalable fabrication of kevlar/Ti 3 C 2 T x MXene intelligent wearable fabrics with multiple sensory capabilities . ACS Nano , 2021 , 15 ( 5 ), 8676 - 8685 . doi: 10.1021/acsnano.1c00749 http://dx.doi.org/10.1021/acsnano.1c00749
Wang L. P. ; Zhang M. G. ; Hao J. C. ; Wang X. Insertion of supramolecular segments into covalently crosslinked polyurethane networks towards the fabrication of recyclable elastomers . Chinese J. Polym. Sci. , 2022 , 40 ( 3 ), 321 - 330 . doi: 10.1007/s10118-022-2651-2 http://dx.doi.org/10.1007/s10118-022-2651-2
王振宇 , 牛文文 , 张卓强 , 刘小孔 . 氢键交联超分子聚合物材料: 从结构性能到功能应用 . 高分子学报 , 2023 , 54 ( 9 ), 1272 - 1289 . doi: 10.11777/j.issn1000-3304.2023.23064 http://dx.doi.org/10.11777/j.issn1000-3304.2023.23064
Qin Y. L. ; Zhu P. ; Ouyang C. X. ; Dong X. Chain extender-induced hydrogen bonding organization determines the morphology and properties of thermoplastic polycarbonate polyurethane . Chinese J. Polym. Sci. , 2024 , 42 ( 1 ), 87 - 96 . doi: 10.1007/s10118-023-3010-7 http://dx.doi.org/10.1007/s10118-023-3010-7
Wang J. Q. ; Wu B. H. ; Wei P. ; Sun S. T. ; Wu P. Y. Fatigue-free artificial ionic skin toughened by self-healable elastic nanomesh . Nat. Commun. , 2022 , 13 ( 1 ), 4411 . doi: 10.1038/s41467-022-32140-3 http://dx.doi.org/10.1038/s41467-022-32140-3
Wei M. ; Feng W. H. ; Yu C. ; Jiang Z. Y. ; Yin G. Q. ; Lu W. ; Chen T. Dynamic crosslinked phosphorescent poly(vinyl alcohol)-terpyridine films with enhanced mechanical properties and tunable shape memory . Chinese J. Polym. Sci. , 2024 , 42 ( 10 ), 1595 - 1601 . doi: 10.1007/s10118-024-3189-2 http://dx.doi.org/10.1007/s10118-024-3189-2
An Z. W. ; Xue R. ; Ye K. ; Zhao H. ; Liu Y. ; Li P. ; Chen Z. M. ; Huang C. X. ; Hu G. H. Recent advances in self-healing polyurethane based on dynamic covalent bonds combined with other self-healing methods . Nanoscale , 2023 , 15 ( 14 ), 6505 - 6520 . doi: 10.1039/d2nr07110j http://dx.doi.org/10.1039/d2nr07110j
陈学思 . 当可逆交联弹性体遇到碳纤维: 具有优异抗撕裂性能的柔性可回收复合材料 . 高分子学报 , 2024 , 55 ( 12 ), 1617 - 1621 . doi: 10.11777/j.issn1000-3304.2024.24234 http://dx.doi.org/10.11777/j.issn1000-3304.2024.24234
Yang B. ; Feng H. J. ; Ni T. T. ; Zhou X. R. ; Xie T. ; Zheng N. Catalyst-free and reprocessable aromatic polydithiourethanes . Chinese J. Polym. Sci. , 2024 , 42 ( 10 ), 1435 - 1441 . doi: 10.1007/s10118-024-3166-9 http://dx.doi.org/10.1007/s10118-024-3166-9
Xie M. ; Wang X. R. ; Wang Z. H. ; Xia H. S. Creep-resistant covalent adaptable networks with excellent self-healing and reprocessing performance via phase-locked dynamic covalent benzopyrazole-urea bonds . Chinese J. Polym. Sci. , 2024 , 42 ( 10 ), 1545 - 1556 . doi: 10.1007/s10118-024-3195-4 http://dx.doi.org/10.1007/s10118-024-3195-4
An X. M. ; Wang Y. P. ; Zhu T. S. ; Xing C. ; Jia X. D. ; Zhang Q. H. A self-healing elastomer with extremely high toughness achieved by acylsemicarbazide hydrogen bonding and Cu 2+ -neocuproine coordination interactions . Chinese J. Polym. Sci. , 2024 , 42 ( 10 ), 1425 - 1434 . doi: 10.1007/s10118-024-3129-1 http://dx.doi.org/10.1007/s10118-024-3129-1
Zhang L. Z. ; Guan Q. B. ; Shen A. ; Neisiany R. E. ; You Z. W. ; Zhu M. F. Supertough spontaneously self-healing polymer based on septuple dynamic bonds integrated in one chemical group . Sci. China Chem. , 2022 , 65 ( 2 ), 363 - 372 . doi: 10.1007/s11426-021-1157-9 http://dx.doi.org/10.1007/s11426-021-1157-9
万一 ; 李祥春 ; 薛倩 ; 赖文勇 , 氢键侧链修饰共轭聚合物骨架的自愈合发光弹性体的设计合成与性能研究 . 高分子学报 , 2024 , 55 ( 6 ), 688 - 697 .
Petersen S. R. ; Prydderch H. ; Worch J. C. ; Stubbs C. J. ; Wang Z. L. ; Yu J. Y. ; Arno M. C. ; Dobrynin A. V. ; Becker M. L. ; Dove A. P. Ultra-tough elastomers from stereochemistry-directed hydrogen bonding in isosorbide-based polymers . Angew. Chem. Int. Ed. , 2022 , 61 ( 17 ), e 202115904 . doi: 10.1002/anie.202115904 http://dx.doi.org/10.1002/anie.202115904
Stubbs C. J. ; Worch J. C. ; Prydderch H. ; Wang Z. L. ; Mathers R. T. ; Dobrynin A. V. ; Becker M. L. ; Dove A. P. Sugar-based polymers with stereochemistry-dependent degradability and mechanical properties . J. Am. Chem. Soc. , 2022 , 144 ( 3 ), 1243 - 1250 . doi: 10.1021/jacs.1c10278 http://dx.doi.org/10.1021/jacs.1c10278
Frisch M. J. ; Trucks G. W. ; Schlegel H. B. ; Scuseria G. E. ; Robb M. A. ; Cheeseman J. R. ; Scalmani G. ; Barone V. ; Petersson G. A. ; Nakatsuji H. ; Li X. ; Caricato M. ; Marenich A. V. ; Bloino J. ; Janesko B. G. ; Gomperts R. ; Mennucci B. ; Hratchian H. P. ; Ortiz J. V. ; Izmaylov A. F. ; Sonnenberg J. L. ; Williams ; Ding F. ; Lipparini F. ; Egidi F. ; Goings J. ; Peng B. ; Petrone A. ; Henderson T. ; Ranasinghe D. ; Zakrzewski V. G. ; Gao J. ; Rega N. ; Zheng G. ; Liang W. ; Hada M. ; Ehara M. ; Toyota K. ; Fukuda R. ; Hasegawa J. ; Ishida M. ; Nakajima T. ; Honda Y. ; Kitao O. ; Nakai H. ; Vreven T. ; Throssell K. ; Montgomery Jr. Peralta , J . A .; ; OgliaroF.; BearparkM. J.; HeydJ. J.; BrothersE. N.; KudinK. N.; StaroverovV. N.; KeithT. A.; KobayashiR.; NormandJ.; RaghavachariK.; RendellA. P.; BurantJ. C.; IyengarS. S.; TomasiJ.; CossiM.; MillamJ. M.; KleneM.; AdamoC.; CammiR.; OchterskiJ. W.; MartinR. L.; MorokumaK.; FarkasO.; ForesmanJ. B.; FoxD. J.Gaussian 16 Rev. C.01, Wallingford, CT, 2016 .
Zhao Y. ; Truhlar D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals . Theor. Chem. Acc. , 2008 , 120 ( 1 ), 215 - 241 . doi: 10.1007/s00214-007-0310-x http://dx.doi.org/10.1007/s00214-007-0310-x
Lu T. ; Chen F. W. Multiwfn: a multifunctional wavefunction analyzer . J. Comput. Chem. , 2012 , 33 ( 5 ), 580 - 592 . doi: 10.1002/jcc.22885 http://dx.doi.org/10.1002/jcc.22885
Humphrey W. ; Dalke A. ; Schulten K. VMD: visual molecular dynamics . J. Mol. Graph. , 1996 , 14 ( 1 ), 33 - 38 . doi: 10.1016/0263-7855(96)00018-5 http://dx.doi.org/10.1016/0263-7855(96)00018-5
Lu T. ; Chen Q. X. Independent gradient model based on hirshfeld partition: A new method for visual study of interactions in chemical systems . J. Comput. Chem. , 2022 , 43 ( 8 ), 539 - 555 . doi: 10.1002/jcc.26812 http://dx.doi.org/10.1002/jcc.26812
Zhang K. M. ; Wang Z. ; Liu Y. T. ; Zhao H. Y. ; Gao C. H. ; Wu Y. M. Cephalopods-inspired repairable MWCNTs/PDMS conductive elastomers for sensitive strain sensor . Chinese J. Polym. Sci. , 2022 , 40 ( 4 ), 384 - 393 . doi: 10.1007/s10118-022-2674-8 http://dx.doi.org/10.1007/s10118-022-2674-8
程博翔 , 王明倩 , 丁志强 , 马哲 , 王彬 , 李悦生 . 聚己内酯和聚碳酸酯型聚氨酯的合成及性能研究 . 高分子学报 , 2024 , 55 ( 10 ), 1346 - 1355 . doi: 10.11777/j.issn1000-3304.2024.24094 http://dx.doi.org/10.11777/j.issn1000-3304.2024.24094
Luo Y. L. ; Chen J. L. ; Situ G. H. ; Li C. C. ; Zhang C. R. ; Li F. Z. ; Li C. H. ; Luo Z. Y. ; Zhang X. Aromatic disulfide-induced self-reinforcing polyurethane elastomer with self-healability . Chem. Eng. J. , 2023 , 469 , 143958 . doi: 10.1016/j.cej.2023.143958 http://dx.doi.org/10.1016/j.cej.2023.143958
Jin B. Q. ; Wu W. Q. ; Wu H. T. Mechanically robust and self-healing polyurethane elastomer based on hierarchical hydrogen bonds . Macromol. Chem. Phys. , 2023 , 224 ( 22 ), 2300264 . doi: 10.1002/macp.202300264 http://dx.doi.org/10.1002/macp.202300264
Eom Y. ; Kim S. M. ; Lee M. ; Jeon H. ; Park J. ; Lee E. S. ; Hwang S. Y. ; Park J. ; Oh D. X. Mechano-responsive hydrogen-bonding array of thermoplastic polyurethane elastomer captures both strength and self-healing . Nat. Commun. , 2021 , 12 ( 1 ), 621 . doi: 10.1038/s41467-021-20931-z http://dx.doi.org/10.1038/s41467-021-20931-z
Li J. L. ; Song Y. H. ; Song G. J. ; Li Z. J. ; Yang X. R. ; Yin S. ; Li X. R. Synergistic enhancement of low-temperature self-repairing polyurethane elastomers through quadruple hydrogen bonds and coordination bonds . ACS Appl. Polym. Mater. , 2024 , 6 ( 4 ), 2284 - 2293 . doi: 10.1021/acsapm.3c02818 http://dx.doi.org/10.1021/acsapm.3c02818
Wang X. ; Wang L. G. ; Liu C. ; Cao Y. ; He P. ; Cui Y. ; Li H. Q. Self-healing polyurethane elastomers with superior tensile strength and elastic recovery based on dynamic oxime-carbamate and hydrogen bond interactions . Macromol. Rapid Commun. , 2024 , 45 ( 13 ), 2400022 . doi: 10.1002/marc.202400022 http://dx.doi.org/10.1002/marc.202400022
Qin J. L. ; Chen Y. F. ; Guo X. W. ; Huang Y. ; Chen G. Q. ; Zhang Q. ; He G. H. ; Zhu S. P. ; Ruan X. H. ; Zhu H. Regulation of hard segment cluster structures for high-performance poly(urethane-urea) elastomers . Adv. Sci. , 2024 , 11 ( 22 ), 2400255 . doi: 10.1002/advs.202400255 http://dx.doi.org/10.1002/advs.202400255
Su R. M. ; Huang P. ; Gan L. ; Zhou S. P. ; Li X. A. ; Li W. ; Huang J. ; He Y. Enhanced multifunction in polyurethane elastomers via regulation of triple-crosslinked network with dynamic covalent and noncovalent bonds . J. Appl. Polym. Sci. , 2025 , 142 ( 23 ), e 56981 . doi: 10.1002/app.56981 http://dx.doi.org/10.1002/app.56981
Sun C. Q. ; Yuan B. G. ; Han Z. ; Yang D. Z. ; Chen J. C. ; Xu H. J. ; Liu C. T. ; Shen C. Y. Transformation of the strengthening and toughening modes of a poly(urethane) elastomer with hard segments of Ti 3 C 2 MXene and its excellent triboelectric performance. J. Mater. Chem. A , 2024 , 12 ( 33 ), 22112 - 22119 . doi: 10.1039/d4ta03575e http://dx.doi.org/10.1039/d4ta03575e
Song Y. H. ; Li J. L. ; Song G. J. ; Zhang L. N. ; Liu Z. ; Jing X. H. ; Luo F. ; Zhang Y. D. ; Zhang Y. H. ; Li X. R. Self-healing polyurethane elastomers with high mechanical properties based on synergistically thermo-reversible and quadruple hydrogen bonds . ACS Appl. Polym. Mater. , 2023 , 5 ( 2 ), 1302 - 1311 . doi: 10.1021/acsapm.2c01849 http://dx.doi.org/10.1021/acsapm.2c01849
Di Z. ; Yue C. M. ; Li Q. R. ; Guo L. ; Li H. R. A super-tough and self-healing biomimetic luminescent elastomer enabled by hydrogen bonding arrays and lanthanide-bipyridine moieties . J. Mater. Chem. C , 2023 , 11 ( 40 ), 14018 - 14024 . doi: 10.1039/d3tc02691d http://dx.doi.org/10.1039/d3tc02691d
Fan J. F. ; Zhou X. Q. ; Chen Y. K. Multiple hierarchical dynamic interactions enabled a robust, stretchable and room temperature self-healing elastomer . Polym. Chem. , 2023 , 14 ( 17 ), 2117 - 2125 . doi: 10.1039/d3py00187c http://dx.doi.org/10.1039/d3py00187c
Jin Q. ; Du R. C. ; Tang H. ; Zhao Y. ; Peng W. S. ; Li Y. Y. ; Zhang J. ; Zhu T. S. ; Huang X. X. ; Kong D. S. ; He Y. C. ; Bao T. W. ; Kong D. S. ; Wang X. L. ; Wang R. ; Zhang Q. H. ; Jia X. D. Quadruple H-bonding and polyrotaxanes dual cross-linking supramolecular elastomer for high toughness and self-healing conductors . Angew. Chem. Int. Ed. , 2023 , 62 ( 26 ), e 202305282 . doi: 10.1002/anie.202305282 http://dx.doi.org/10.1002/anie.202305282
Wang Y. Q. ; Wang S. K. ; Li P. C. ; Cao S. T. ; Liu Y. T. ; Gao C. H. An antibacterial, highly stretched and self-healing polyurethane elastomer for flexible electronic devices . React. Funct. Polym. , 2023 , 192 , 105736 . doi: 10.1016/j.reactfunctpolym.2023.105736 http://dx.doi.org/10.1016/j.reactfunctpolym.2023.105736
Tian H. ; Lu W. T. ; Wang C. Y. ; Wang R. H. ; Zhou P. L. ; Fei F. ; Xu M. Y. ; Wang J. C. Development of highly robust polyurethane elastomers possessing self-healing capabilities for flexible sensors . Mater. Horiz. , 2025 , DOI: 10.1039/d5mh00022j http://dx.doi.org/10.1039/d5mh00022j
Wu S. L. ; Yang H. H. ; Chen Q. Linear viscoelasticity of ABA-type vitrimer based on dioxaborolane metathesis . Chinese J. Polym. Sci. , 2024 , 42 ( 10 ), 1495 - 1504 . doi: 10.1007/s10118-024-3184-7 http://dx.doi.org/10.1007/s10118-024-3184-7
0
Views
167
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802024621