

浏览全部资源
扫码关注微信
1.广东海洋大学化学与环境学院 湛江 524088
2.中国热带农业科学院农产品加工研究所 湛江 524088
Cheng-peng Li, E-mail: lichengpeng@gdou.edu.cn
Received:18 May 2025,
Accepted:26 September 2025,
Published Online:15 December 2025,
Published:20 February 2026
移动端阅览
陈彩怡, 王頔, 李俊杰, 张彤, 李乐凡, 侯婷婷, 廖禄生, 王飞, 李程鹏. Kappa卡拉胶复合凝胶微针敷料的设计及感染创面应用. 高分子学报, 2026, 57(2), 502-521.
Chen, C. Y.; Wang, D.; Li, J. J.; Zhang, T.; Li, L. F.; Hou, T. T.; Liao, L. S.; Wang, F.; Li, C. P. Design of Kappa carrageenan composite gel microneedle dressing and application to infected wounds. Acta Polymerica Sinica (in Chinese), 2026, 57(2), 502-521.
陈彩怡, 王頔, 李俊杰, 张彤, 李乐凡, 侯婷婷, 廖禄生, 王飞, 李程鹏. Kappa卡拉胶复合凝胶微针敷料的设计及感染创面应用. 高分子学报, 2026, 57(2), 502-521. DOI: 10.11777/j.issn1000-3304.2025.25126. CSTR: 32057.14.GFZXB.2025.7480.
Chen, C. Y.; Wang, D.; Li, J. J.; Zhang, T.; Li, L. F.; Hou, T. T.; Liao, L. S.; Wang, F.; Li, C. P. Design of Kappa carrageenan composite gel microneedle dressing and application to infected wounds. Acta Polymerica Sinica (in Chinese), 2026, 57(2), 502-521. DOI: 10.11777/j.issn1000-3304.2025.25126. CSTR: 32057.14.GFZXB.2025.7480.
Kappa卡拉胶(KC)是一种线性硫酸化多糖,因其优异的凝胶性、生物相容性和溶解性,在创伤敷料和药物控释领域具有广阔的应用前景. 为解决传统敷料在感染创面治疗过程中存在的愈合时间长、感染风险高、患者依从性差等问题,本工作采用甲基丙烯酸酐衍生化的KC (MAKC)为大分子交联剂,以
N
-羟乙基丙烯酰胺(HEAA)为共聚单体,以肉桂醛-羟乙基-
β
-环糊精包合物为抗菌剂,开发了一种新型KC复合凝胶微针敷料,并对KC复合凝胶微针的力学性能、体外释放、抑菌性能和治疗效果进行了评价. 核磁共振与元素分析结果表明,MAKC中甲基丙烯酸酐的接枝率为32.02%. 力学性能测试表明,所得KC复合凝胶微针压缩强度在(0.07±0.02)~(0.25±0.02)
N
/needle之间,能满足皮肤穿透要求. 定量分析表明,包合物中肉桂醛的最大载药率可达(6.69±0.31)%;且KC复合凝胶微针中羟乙基-
β
-环糊精的释放遵从 Higuchi模型方程,为骨架扩散机制. 抗菌实验表明,KC复合凝胶微针对表皮葡萄球菌和大肠杆菌的抑菌率分别为(90.29±3.10)%和(93.16±2.42)%. 体外细胞及溶血实验证实KC复合凝胶微针具有良好的细胞和血液相容性. SD大鼠感染创面模型表明,KC复合凝胶微针的抗菌效果与模型药物莫匹罗星相当,创面愈合率第11天达(89.42±0.88)%. HE与Masson染色显示其可显著促进上皮增生与胶原有序沉积. 综上,KC复合凝胶微针兼具良好的抗菌、生物相容性和促修复功能,为感染性创面治疗提供了新的解决方案,具有广阔的临床应用前景.
Kappa carrageenan (KC)
a linear sulfated polysaccharide
has a broad application prospect in the field of trauma dressing and drug controlled release due to its excellent gelation
biocompatibility and solubility. In order to solve the problems of long healing time
hi
gh risk of infection
and poor patient compliance during the treatment of infected wounds with traditional dressings
this study employed methacrylic anhydride derivatised KC (MAKC) as a macromolecular cross-linking agent
N
-hydroxyethyl acrylamide (HEAA) as a copolymerising monomer
and cinnamaldehyde-hydroxyethyl-
β
-cyclodextrin inclusion compound as an antimicrobial agent
and developed a novel KC composite gel microneedle dressing
and the mechanical properties
in vitro release
antibacterial properties and therapeutic effects of KC composite gel microneedles were evaluated. The results of nuclear magnetic resonance (NMR) and elemental analysis showed that the grafting rate of methacrylic anhydride in MAKC was 32.02%. Mechanical property tests showed that the compressive strength of the resulting KC composite gel microneedles ranged from (0.07±0.02) N/needle to (0.25±0.02) N/needle
which could meet the skin penetration requirements. Quantitative analysis showed that the maximum drug loading rate of cinnamaldehyde in the inclusion complex could reach (6.69±0.31)%; and the release of hydroxyethyl-
β
-cyclodextrin from the KC composite gel microneedles followed the Higuchi model equation for a skeletal diffusion mechanism. Antibacterial experiments showed that the inhibition rates of KC composite gel microneedles against
Staphylococcus epidermidis
and
Escherichia coli
were (90.29±3.10)% and (93.16±2.42)%
respectively.
In vitro
cellular and haemolysis experiments confirmed that KC composite gel microneedles had good cellular and haematological compatibility. SD rats infected wound model showed that the antibacterial effect of KC composite gel microneedles was comparable to that of the model drug
mupirocin
and the wound healing rate reached (89.42±0.88)% on the 11
th
day. HE and Masson staining showed that it could significantly promote the proliferation of epithelium and the orderly deposition of coll
agen. In conclusion
KC composite gel microneedle has good antibacterial
biocompatibility and pro-repair functions
which provides a new solution for the treatment of infected wounds and has a broad clinical application prospect.
Allen C. E. ; Beverley P. C. L. ; Collin M. ; Diamond E. L. ; Egeler R. M. ; Ginhoux F. ; Glass C. ; Minkov M. ; Rollins B. J. ; van Halteren A. The coming of age of langerhans cell histiocytosis . Nat. Immunol , 2019 , 21 ( 1 ), 1 - 7 . doi: 10.1038/s41590-019-0558-z http://dx.doi.org/10.1038/s41590-019-0558-z
Long L. ; Liu W. ; Hu C. ; Yang L. ; Wang Y. Construction of multifunctional wound dressings with their application in chronic wound treatment . Biomater. Sci , 2022 , 10 ( 15 ), 4058 - 4076 . doi: 10.1039/d2bm00620k http://dx.doi.org/10.1039/d2bm00620k
Mahdavinia G. R. ; Mosallanezhad A. ; Soleymani M. ; Sabzi M. Magnetic- and pH-responsive κ -carrageenan/chitosan complexes for controlled release of methotrexate anticancer drug . Int. J. Biol. Macromol , 2017 , 97 , 209 - 217 . doi: 10.1016/j.ijbiomac.2017.01.012 http://dx.doi.org/10.1016/j.ijbiomac.2017.01.012
Dinh L. ; Hong J. ; Min Kim D. ; Lee G. ; Jung ParkE. ; Hyuk Baik S. ; Hwang S. J. A novel thermosensitive poloxamer-hyaluronic acid- kappa-carrageenan-based hydrogel anti-adhesive agent loaded with 5-fluorouracil: a preclinical study in sprague-dawley rats . Int. J. Pharm , 2022 , 621 , 121771 . doi: 10.1016/j.ijpharm.2022.121771 http://dx.doi.org/10.1016/j.ijpharm.2022.121771
Ijaz U. ; Sohail M. ; Usman Minhas M. ; Khan S. ; Hussain Z. ; Kazi M. ; Ahmed Shah S. ; Mahmood A. ; Maniruzzaman M. Biofunctional hyaluronic acid/ κ -carrageenan injectable hydrogels for improved drug delivery and wound healing . Polymers , 2022 , 14 ( 3 ), 376 . doi: 10.3390/polym14030376 http://dx.doi.org/10.3390/polym14030376
Rochas C. ; Rinaudo M. Activity coefficients of counterions and conformation in kappa-carrageenan systems . Biopolymers , 1980 , 19 ( 9 ), 1675 - 1687 . doi: 10.1002/bip.1980.360190911 http://dx.doi.org/10.1002/bip.1980.360190911
Şen M. ; Erboz E. N. Determination of critical gelation conditions of κ -carrageenan by viscosimetric and FT-IR analyses . Food Res. Int , 2010 , 43 ( 5 ), 1361 - 1364 . doi: 10.1016/j.foodres.2010.03.021 http://dx.doi.org/10.1016/j.foodres.2010.03.021
Yegappan R. ; Selvaprithiviraj V. ; Amirthalingam S. ; Jayakumar R. Carrageenan based hydrogels for drug delivery, tissue engineering and wound healing . Carbohydr. Polym , 2018 , 198 , 385 - 400 . doi: 10.1016/j.carbpol.2018.06.086 http://dx.doi.org/10.1016/j.carbpol.2018.06.086
Yu J. ; Zhang Y. ; Ye Y. ; DiSanto R. ; Sun W. ; Ranson D. ; Ligler F. S. ; Buse J. B. ; Gu Z. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery . Proc. Natl. Acad. Sci . U. S. A., 2015 , 112 ( 27 ), 8260 - 8265 . doi: 10.1073/pnas.1505405112 http://dx.doi.org/10.1073/pnas.1505405112
Rouphael N. G. ; Paine M. ; Mosley R. ; Henry S. ; McAllister D. V. ; Kalluri H. ; Pewin W. ; Frew P. M. ; Yu T. ; Thornburg N. J. ; Kabbani S. ; Lai L. ; Vassilieva E. V. ; Skountzou I. ; Compans R. W. ; Mulligan M. J. ; Prausnitz M. R. ; Group T.-M. S. The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): A randomised, partly blinded, placebo-controlled, phase 1 trial . Lancet , 2017 , 390 ( 10095 ), 649 - 658 . doi: 10.1016/s0140-6736(17)30575-5 http://dx.doi.org/10.1016/s0140-6736(17)30575-5
Donnelly R. F. ; McCrudden M. T. ; Zaid Alkilani A. ; Larraneta E. ; McAlister E. ; Courtenay A. J. ; Kearney M. C. ; Singh T. R. ; McCarthy H. O. ; Kett V. L. ; Caffarel-Salvador E. ; Al-Zahrani S. ; Woolfson A. D. Hydrogel-forming microneedles prepared from "super swelling" polymers combined with lyophilised wafers for transdermal drug delivery . PLOS One , 2014 , 9 ( 10 ), e 111547 . doi: 10.1371/journal.pone.0111547 http://dx.doi.org/10.1371/journal.pone.0111547
He R. ; Niu Y. ; Li Z. ; Li A. ; Yang H. ; Xu F. ; Li F. A hydrogel microneedle patch for point-of-care testing based on skin interstitial fluid . Adv. Healthc. Mater , 2020 , 9 ( 4 ), e 1901201 . doi: 10.1002/adhm.201901201 http://dx.doi.org/10.1002/adhm.201901201
Al Sulaiman D. ; Chang J. Y. H. ; Bennett N. R. ; Topouzi H. ; Higgins C. A. ; Irvine D. J. ; Ladame S. Hydrogel-coated microneedle arrays for minimally invasive sampling and sensing of specific circulating nucleic acids from skin interstitial fluid . ACS Nano , 2019 , 13 ( 8 ), 9620 - 9628 . doi: 10.1021/acsnano.9b04783 http://dx.doi.org/10.1021/acsnano.9b04783
Si W. ; Gong J. ; Chanas C. ; Cui S. ; Yu H. ; Caballero C. ; Friendship R. M. In vitro assessment of antimicrobial activity of carvacrol, thymol and cinnamaldehyde towards salmonella serotype typhimurium dt104: effects of pig diets and emulsification in hydrocolloids . J. Appl. Microbiol , 2006 , 101 ( 6 ), 1282 - 1291 . doi: 10.1111/j.1365-2672.2006.03045.x http://dx.doi.org/10.1111/j.1365-2672.2006.03045.x
Liang D. ; Feng B. ; Li N. ; Su L. ; Wang Z. ; Kong F. ; Bi Y. Preparation, characterization, and biological activity of cinnamomum cassia essential oil nano-emulsion . Ultrason. Sonochem , 2022 , 86 , 106009 . doi: 10.1016/j.ultsonch.2022.106009 http://dx.doi.org/10.1016/j.ultsonch.2022.106009
Lai W. ; Liu Y. ; Kuang Y. ; Zhang S. ; Zhang C. ; Li C. ; Guo B. Preparation and evaluation of microcapsules containing rimulus cinnamon and angelica sinenis essential oils . J. Dispersion Sci. Technol , 2023 , 44 ( 14 ), 2639 - 2650 . doi: 10.1080/01932691.2022.2116716 http://dx.doi.org/10.1080/01932691.2022.2116716
Lu Y. Y. ; Yu H. J. ; Wang L. ; Shen D. ; Liu J. Preparation of phenylboronic acid-based glucose-responsive hydrogels and microneedles for regulated delivery of insulin . Eur. Polym. J. , 2023 , 192 , 112061 . doi: 10.1016/j.eurpolymj.2023.112061 http://dx.doi.org/10.1016/j.eurpolymj.2023.112061
Yu W. ; Li X. ; He J. ; Chen Y. ; Qi L. ; Yuan P. ; Ou K. ; Liu F. ; Zhou Y. ; Qin X. Graphene oxide-silver nanocomposites embedded nanofiber core-spun yarns for durable antibacterial textiles . J. Colloid Interface Sci. , 2021 , 584 , 164 - 173 . doi: 10.1016/j.jcis.2020.09.092 http://dx.doi.org/10.1016/j.jcis.2020.09.092
Faria M. ; Geraldes V. ; de Pinho M. N. Surface characterization of asymmetric Bi-soft segment poly(ester urethane urea) membranes for blood-oxygenation medical devices . Int. J. Biomater. , 2012 , 2012 , 376321 . doi: 10.1155/2012/376321 http://dx.doi.org/10.1155/2012/376321
Liao J. ; Zheng H. ; Fei Z. ; Lu B. ; Zheng H. ; Li D. ; Xiong X. ; Yi Y. Tumor-targeting and ph-responsive nanoparticles from hyaluronic acid for the enhanced delivery of doxorubicin . Int. J. Biol. Macromol. , 2018 , 113 , 737 - 747 . doi: 10.1016/j.ijbiomac.2018.03.004 http://dx.doi.org/10.1016/j.ijbiomac.2018.03.004
Teparat-Burana T. ; Onsiri N. ; Jantarat J. Cytotoxicity and migration of fibroblasts on two types of calcium sulfate dihydrate . J. Investig. Clin. Dent. , 2017 , 8 ( 1 ), 26215703 . doi: 10.1111/jicd.12177 http://dx.doi.org/10.1111/jicd.12177
Walter M. N. ; Wright K. T. ; Fuller H. R. ; MacNeil S. ; Johnson W. E. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: an in vitro study of fibroblast and keratinocyte scratch assays . Exp. Cell Res. , 2010 , 316 ( 7 ), 1271 - 1281 . doi: 10.1016/j.yexcr.2010.02.026 http://dx.doi.org/10.1016/j.yexcr.2010.02.026
Rode H. ; Hanslo D. ; de Wet P. M. ; Millar A. J. ; Cywes S. Efficacy of mupirocin in methicillin-resistant staphylococcus aureus burn wound infection . Antimicrob. Agents Chemother. , 1989 , 33 ( 8 ), 1358 - 1361 . doi: 10.1128/aac.33.8.1358 http://dx.doi.org/10.1128/aac.33.8.1358
Hu S. ; Cai X. ; Qu X. ; Yu B. ; Yan C. ; Yang J. ; Li F. ; Zheng Y. ; Shi X. Preparation of biocompatible wound dressings with long-term antimicrobial activity through covalent bonding of antibiotic agents to natural polymers . Int. J. Biol. Macromol , 2019 , 123 , 1320 - 1330 . doi: 10.1016/j.ijbiomac.2018.09.122 http://dx.doi.org/10.1016/j.ijbiomac.2018.09.122
de Moraes F. M. ; Philippi J. V. ; Belle F. ; da Silva F. S. ; Morisso F. D. P. ; Volz D. R. ; Ziulkoski A. L. ; Bobinski F. ; Zepon Κ M. Iota-carrageenan/xyloglucan/serine powders loaded with tranexamic acid for simultaneously hemostatic, antibacterial, and antioxidant performance . Biomater. Adv. , 2022 , 137 , 212805 . doi: 10.1016/j.bioadv.2022.212805 http://dx.doi.org/10.1016/j.bioadv.2022.212805
Prado-Fernández J. ; Rodrı́guez-Vázquez J. A. ; Tojo E. ; Andrade J. M. Quantitation of κ -, ι - and λ -carrageenans by mid-infrared spectroscopy and PLS regression . Anal. Chim. Acta , 2003 , 480 ( 1 ), 23 - 37 . doi: 10.1016/s0003-2670(02)01592-1 http://dx.doi.org/10.1016/s0003-2670(02)01592-1
Noralian Z. ; Gashti M. P. ; Moghaddam M. R. ; Tayyeb H. ; Erfanian I. Ultrasonically developed silver/iota-carrageenan/cotton bionanocomposite as an efficient material for biomedical applications . Int. J. Biol. Macromol. , 2021 , 180 , 439 - 457 . doi: 10.1016/j.ijbiomac.2021.02.204 http://dx.doi.org/10.1016/j.ijbiomac.2021.02.204
Mihaila S. M. ; Gaharwar A. K. ; Reis R. L. ; Marques A. P. ; Gomes M. E. ; Khademhosseini A. Photocrosslinkable kappa‐carrageenan hydrogels for tissue engineering applications . Adv. Healthc. Mater , 2012 , 2 ( 6 ), 895 - 907 . doi: 10.1002/adhm.201200317 http://dx.doi.org/10.1002/adhm.201200317
Ungaro F. ; d'Emmanuele di Villa Bianca, R. ; Giovino C. ; Miro A. ; Sorrentino R. ; Quaglia F. ; La Rotonda M. I. Insulin-loaded PLGA/cyclodextrin large porous particles with improved aerosolization properties: in vivo deposition and hypoglycaemic activity after delivery to rat lungs . J. Control. Rel. , 2009 , 135 ( 1 ), 25 - 34 . doi: 10.1016/j.jconrel.2008.12.011 http://dx.doi.org/10.1016/j.jconrel.2008.12.011
Villaverde J. ; Morillo E. ; Pérez-Martínez J. I. ; Ginés J. M. ; Maqueda C. Preparation and characterization of inclusion complex of norflurazon and β -cyclodextrin to improve herbicide formulations . J. Agric. Food. Chem , 2004 , 52 ( 4 ), 864 - 869 . doi: 10.1021/jf0350358 http://dx.doi.org/10.1021/jf0350358
Tian Y. C. ; Yuan C. ; Cui B. ; Lu L. ; Zhao M. ; Liu P. F. ; Wu Z. Z. ; Li J. P. Pickering emulsions stabilized by β-cyclodextrin and cinnamaldehyde essential oil/β-cyclodextrin composite: A comparison study . Food Chem. , 2022 , 377 , 131995 . doi: 10.1016/j.foodchem.2021.131995 http://dx.doi.org/10.1016/j.foodchem.2021.131995
Zhu J. X. ; Zhou X. W. ; Kim H. J. ; Qu M. Y. ; Jiang X. ; Lee K. ; Ren L. ; Wu Q. Z. ; Wang C. R. ; Zhu X. M. ; Tebon P. ; Zhang S. M. ; Lee J. ; Ashammakhi N. ; Ahadian S. ; Dokmeci M. R. ; Gu Z. ; Sun W. J. ; Khademhosseini A. Gelatin methacryloyl microneedle patches for minimally invasive extraction of skin interstitial fluid . Small , 2020 , 16 ( 16 ), 1905910 . doi: 10.1002/smll.202070086 http://dx.doi.org/10.1002/smll.202070086
Zhu W. ; Mei J. ; Xianzuo Z. ; Zhou J. ; Xu D. ; Su Z. ; Fang S. ; Wang J. ; Zhang X. ; Zhu C. Photothermal nanozyme-based microneedle patch against refractory bacterial biofilm infection via iron-actuated janus ion therapy . Adv. Mater. , 2022 , 34 ( 51 ), 2207961 . doi: 10.1002/adma.202207961 http://dx.doi.org/10.1002/adma.202207961
Jiang S. ; Li J. N. ; Jiang Z. T. Inclusion reactions of β-cyclodextrin and its derivatives with cinnamaldehyde in cinnamomum loureirii essential oil . Eur. Food Res. Technol , 2010 , 230 ( 4 ), 543 - 550 . doi: 10.1007/s00217-009-1192-z http://dx.doi.org/10.1007/s00217-009-1192-z
杨艺 , 郭禹良 , 褚宏喆 , 周丽芸 , 宗益峰 , 刘杨 . 湿敏型二氧化氯缓释剂的制备和表征 . 包装工程 , 2024 , 45 ( 17 ), 87 - 95 .
吴春 , 张艳 , 徐丽萍 . 原花青素微胶囊释放动力学的研究 . 化学与粘合 , 2007 , ( 03 ), 172 - 175 .
Shu C. ; Ge L. ; Li Z. ; Chen B. ; Liao S. ; Lu L. ; Wu Q. ; Jiang X. ; An Y. ; Wang Z. ; Qu M. Antibacterial activity of cinnamon essential oil and its main component of cinnamaldehyde and the underlying mechanism . Front Pharmacol , 2024 , 15 , 1378434 - 1378434 . doi: 10.3389/fphar.2024.1378434 http://dx.doi.org/10.3389/fphar.2024.1378434
Choi Y. H. Trans-cinnamaldehyde protects C 2 C12 damagemyoblastsfrom DNA, mitochondrial dysfunction and apoptosis caused by oxidative stress through inhibiting ros production. Genes & genomics , 2021 , 43 ( 4 ), 303 - 312 . doi: 10.1007/s13258-020-00987-9 http://dx.doi.org/10.1007/s13258-020-00987-9
Liu X. ; Rodeheaver D. P. ; White J. C. ; Wright A. M. ; Walker L. M. ; Zhang F. ; Shannon S. A comparison of in vitro cytotoxicity assays in medical device regulatory studies . Regul. Toxicol. Pharm. , 2018 , 97 , 24 - 32 . doi: 10.1016/j.yrtph.2018.06.003 http://dx.doi.org/10.1016/j.yrtph.2018.06.003
Kravchenko A. O. ; Menchinskaya E. S. ; Isakov V. V. ; Glazunov V. P. ; Yermak I. M. Carrageenans and their oligosaccharides from red seaweeds ahnfeltiopsis flabelliformis and mastocarpus pacificus (phyllophoraceae) and their antiproliferative activity . Int. J. Mol. Sci. , 2023 , 24 ( 8 ), 7657 . doi: 10.3390/ijms24087657 http://dx.doi.org/10.3390/ijms24087657
Yang X. ; Jia M. ; Li Z. ; Ma Z. ; Lv J. ; Jia D. ; He D. ; Zeng R. ; Luo G. ; Yu Y. In-situ synthesis silver nanoparticles in chitosan/bletilla striata polysaccharide composited microneedles for infected and susceptible wound healing . Int. J. Biol. Macromol. , 2022 , 215 , 550 - 559 . doi: 10.1016/j.ijbiomac.2022.06.131 http://dx.doi.org/10.1016/j.ijbiomac.2022.06.131
Luo R. ; Xian D. ; Li F. ; Zhou G. ; Jiang L. ; Wu J. ; Lin L. ; Zheng Y. ; Liu G. ; Xu Q. ; Pan X. ; Wu C. ; Peng T. ; Quan G. ; Lu C. Epsilon-poly-l-lysine microneedle patch loaded with amorphous doxycycline nanoparticles for synergistic treatment of skin infection . Int. J. Biol. Macromol. , 2024 , 266 , 131383 . doi: 10.1016/j.ijbiomac.2024.131383 http://dx.doi.org/10.1016/j.ijbiomac.2024.131383
Tavakoli S. ; Klar A. S. Advanced hydrogels as wound dressings . Biomolecules , 2020 , 10 ( 8 ), 1169 . doi: 10.3390/biom10081169 http://dx.doi.org/10.3390/biom10081169
Alshammari O. A. O. ; Alhar M. S. O. ; Al-Otaibi A. ; AlRashidi A. A. ; Alshammari A. F. ; Alzahrani E. A. ; Elsayed N. H. ; Monier M. ; Youssef I. Synthesis of photo-responsive κ -carrageenan-based hydrogels for drug delivery application . Int. J. Biol. Macromol. , 2025 , 289 , 138797 . doi: 10.1016/j.ijbiomac.2024.138797 http://dx.doi.org/10.1016/j.ijbiomac.2024.138797
Lei X. L. ; Cheng K. ; Li Y. ; Zhong Z. T. ; Hou X. L. ; Song L. B. ; Zhang F. ; Wang J. H. ; Zhao Y. D. ; Xu Q. R. The eradication of biofilm for therapy of bacterial infected chronic wound based on pH-responsive micelle of antimicrobial peptide derived biodegradable microneedle patch . Chem. Eng. J. , 2023 , 462 , 142222 . doi: 10.1016/j.cej.2023.142222 http://dx.doi.org/10.1016/j.cej.2023.142222
Gao S. ; Rao Y. ; Wang X. ; Zhang Q. ; Zhang Z. ; Wang Y. ; Guo J. ; Yan F. Chlorella-loaded antibacterial microneedles for microacupuncture oxygen therapy of diabetic bacterial infected wounds . Adv. Mater. , 2024 , 36 ( 15 ), 2307585 . doi: 10.1002/adma.202307585 http://dx.doi.org/10.1002/adma.202307585
Tian S. ; Mei J. ; Zhang L. ; Wang S. ; Yuan Y. ; Li J. ; Liu H. ; Zhu W. ; Xu D. Multifunctional hydrogel microneedle patches modulating oxi‐inflamm‐aging for diabetic wound healing . Small , 2024 , 20 ( 51 ), e 2407340 . doi: 10.1002/smll.202407340 http://dx.doi.org/10.1002/smll.202407340
Lu X. ; Zhang J. ; Zuo W. ; Cheng B. ; Dong R. ; Wang W. ; Lu L. A dissolving microneedle patch loaded with plumbagin/hydroxypropyl- β -cyclodextrin inclusion complex for infected wound healing . Colloids Surf. B , 2025 , 246 , 114377 . doi: 10.1016/j.colsurfb.2024.114377 http://dx.doi.org/10.1016/j.colsurfb.2024.114377
Xue B. ; Yao Y. ; Luo E. ; Lessing D. J. ; Guo M. ; Chu W. An integrated therapeutic nanoparticles and quorum quenching-based microneedle patch for bacterial-infected wound healing . Advanced Therapeutics , 2025 , 8 ( 1 ), 2400405 . doi: 10.1002/adtp.202400405 http://dx.doi.org/10.1002/adtp.202400405
Qin K. ; Gui Y. ; Li Y. ; Li X. ; Meng F. ; Han D. ; Du L. ; Li S. ; Wang Y. ; Zhou H. ; Yan H. ; Peng Y. ; Gao Z. Biodegradable microneedle array-mediated transdermal delivery of dimethyloxalylglycine-functionalized zeolitic imidazolate framework-8 nanoparticles for bacteria-infected wound treatment . ACS Appl. Mater. Interfaces , 2023 , 15 ( 5 ), 6338 - 6353 . doi: 10.1021/acsami.2c17328 http://dx.doi.org/10.1021/acsami.2c17328
Ye G. ; Jimo R. ; Lu Y. ; Kong Z. ; Axi Y. ; Huang S. ; Xiong Y. ; Zhang L. ; Chen G. ; Xiao Y. ; Li P. ; Gou K. ; Zeng R. Multifunctional natural microneedles based methacrylated bletilla striata polysaccharide for repairing chronic wounds with bacterial infections . Int. J. Biol. Macromol , 2024 , 254 , 127914 . doi: 10.1016/j.ijbiomac.2023.127914 http://dx.doi.org/10.1016/j.ijbiomac.2023.127914
Lei X. ; Li M. ; Wang C. ; Cui P. ; Qiu L. ; Zhou S. ; Jiang P. ; Li H. ; Zhao D. ; Ni X. ; Wang J. ; Xia J. Degradable microneedle patches loaded with antibacterial gelatin nanoparticles to treat staphylococcal infection-induced chronic wounds . Int. J. Biol. Macromol , 2022 , 217 , 55 - 65 . doi: 10.1016/j.ijbiomac.2022.07.021 http://dx.doi.org/10.1016/j.ijbiomac.2022.07.021
Li Y. ; Gong J. Y. ; Wang P. ; Fu H. ; Yousef F. ; Xie R. ; Wang W. ; Liu Z. ; Pan D. W. ; Ju X. J. ; Chu L. Y. Dissolving microneedle system containing ag nanoparticle-decorated silk fibroin microspheres and antibiotics for synergistic therapy of bacterial biofilm infection . J. Colloid Interface Sci , 2024 , 661 , 123 - 138 . doi: 10.1016/j.jcis.2024.01.147 http://dx.doi.org/10.1016/j.jcis.2024.01.147
Krishnakumar A. ; Gallina N. L. F. ; Sarnaik D. ; McCain R. R. ; Crain C. ; Tipton M. ; Seleem M. ; Bhunia A. K. ; Rahimi R. Microneedles for enhanced bacterial pathogen inactivation and accelerated wound healing . Adv. Mater. Technol , 2024 , 9 ( 16 ), 2400219 . doi: 10.1002/admt.202400219 http://dx.doi.org/10.1002/admt.202400219
0
Views
531
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号