

浏览全部资源
扫码关注微信
1.贵州大学材料与冶金学院 贵阳 550025
2.贵州轮胎股份有限公司 贵阳 550008
Yu-zhu Xiong, E-mail: yzxiong@gzu.edu.cn
Received:03 July 2025,
Accepted:01 September 2025,
Published Online:15 October 2025,
Published:20 February 2026
移动端阅览
袁成, 李鑫, 崔凌峰, 黄舸舸, 熊玉竹. 氢键网络与硫键互穿结构协同提高溶聚丁苯橡胶/环氧天然橡胶复合材料强度及延展性. 高分子学报, 2026, 57(2), 570-585.
Yuan, C.; Li, X.; Cui, L. F.; Huang, G. G.; Xiong, Y. Z. Synergistic enhancement of strength and ductility in solution-polymerized styrene-butadiene rubber/epoxidized natural rubber composites through interpenetrating hydrogen bonding and sulfur networks. Acta Polymerica Sinica (in Chinese), 2026, 57(2), 570-585.
袁成, 李鑫, 崔凌峰, 黄舸舸, 熊玉竹. 氢键网络与硫键互穿结构协同提高溶聚丁苯橡胶/环氧天然橡胶复合材料强度及延展性. 高分子学报, 2026, 57(2), 570-585. DOI: 10.11777/j.issn1000-3304.2025.25162. CSTR: 32057.14.GFZXB.2025.7458.
Yuan, C.; Li, X.; Cui, L. F.; Huang, G. G.; Xiong, Y. Z. Synergistic enhancement of strength and ductility in solution-polymerized styrene-butadiene rubber/epoxidized natural rubber composites through interpenetrating hydrogen bonding and sulfur networks. Acta Polymerica Sinica (in Chinese), 2026, 57(2), 570-585. DOI: 10.11777/j.issn1000-3304.2025.25162. CSTR: 32057.14.GFZXB.2025.7458.
针对传统橡胶复合材料中强度与延展性难以同时提升的问题,提出氢键网络与共价键网络协同作用解决这一难题. 通过氨基-环氧基团开环反应制备含八重氢键的环氧天然橡胶(ENR),与溶聚丁苯橡胶(SSBR)共混后,利用硫键桥接构建互穿网络结构. 共价键提供刚性骨架,动态八重氢键通过断裂-重组机制耗散能量,改善局部应力集中,实现强度与延展性协同优化. 结果表明:在SSBR/ENR复合材料中引入少量氢键即可使拉伸强度从2.1 MPa增至4.88 MPa,断裂伸长率由240%提升至500%,断裂韧性从3.2 MJ/m
3
跃升至12.4 MJ/m
3
,耐磨性和耐疲劳性也显著提升. 氢键密度可通过反应条件精准调控,满足多样化需求. 该技术采用常规混炼硫化工艺,与现有橡胶工业生产可完全兼容,全有机组分设计规避了加工流动性劣化问题,为开发绿色高性能橡胶复合材料提供了创新技术路径.
Currently
rubber composites are primarily reinforced by adding traditional fillers
but excessive filler content makes it difficult to balance both strength and elongation simultaneously. In this study
a novel filler-free reinforced rubber composite system was developed using a synergistic strategy of bioinspired hydrogen bond networks and covalent bonds. First
based on the ring-opening reaction between amino and epoxy groups
epoxidized natural rubber (ENR) with an octuple hydrogen bond structure was designed and prepared. It was then blended with non-polar rubber (solution-polymerized styrene-butadiene rubber
SSBR)
using sulfur bonds as bridges to connect the molecular chains of the two rubbers
forming a three-dimensional interpenetrating network structure. In this system
covalent bonds ensure the structural integrity and rigid support of the rubber composite
while the octuple hydrogen bonds act as sacrificial bonds. Through their reversible break-recombination behavior
they effectively enhance the mechanical properties and elongation of the rubber composite
while also imparting a certain degree of self-recovery capability. Experimental results showed that with only a small amount of the octuple hydrogen bond structure added
the tensile strength of the rubber composite increased from 2.1 MPa to 4.88 MPa
the elongation at break improved from 240% to 500%
and the fracture toughness rose from 3.2 MJ/m
3
to 12.4 MJ/m
3
. The wear resistance and fatigue resistance were also significantly enhanced. The density of the octuple hydrogen bonds could be controllably adjusted according to practical application requirements. Notably
this technology employed conventional mixing and vulcanization processes
making it compatible with existing rubber industry production lines. The all-organic component desig
n avoided the processing fluidity degradation issues caused by traditional fillers. This study provides new theoretical guidance and technical pathways for developing environmentally friendly high-performance rubber materials
holding significant importance for promoting the green upgrade of the rubber industry.
Lee S. P. ; Kwon O. S. ; Kang Y. G. ; Song S. H. Styrene butadiene rubber/clay nanocomposites for tire tread application . Plast. Rubber Compos. , 2016 , 45 ( 9 ), 382 - 388 . doi: 10.1080/14658011.2016.1209622 http://dx.doi.org/10.1080/14658011.2016.1209622
Jin H. ; Wang Z. H. ; Zhao C. ; Xiao J. H. Effect of rubber surface treatment on damping performance of rubber-mortar ITZ in rubberized concrete . J. Build. Eng. , 2024 , 83 , 108441 . doi: 10.1016/j.jobe.2024.108441 http://dx.doi.org/10.1016/j.jobe.2024.108441
Wang K. Z. ; Oe H. ; Nakaji Y. ; Wang Y. ; Nakaji-Hirabayashi T. ; Tsubaki N. Carbon-neutral butadiene rubber from CO 2 . Chem , 2024 , 10 ( 2 ), 419 - 426 . doi: 10.1016/j.chempr.2024.01.004 http://dx.doi.org/10.1016/j.chempr.2024.01.004
Wang Q. Q. ; Xu P. W. ; Yang W. J. ; Liu T. X. ; Hoch M. ; Ma P. M. A green cross-link strategy to rubber composites using water as a crosslinking agent . Compos. Sci. Technol. , 2022 , 221 , 109339 . doi: 10.1016/j.compscitech.2022.109339 http://dx.doi.org/10.1016/j.compscitech.2022.109339
Fan Y. R. ; Fowler G. D. ; Zhao M. The past, present and future of carbon black as a rubber reinforcing filler—a review . J. Clean. Prod. , 2020 , 247 , 119115 . doi: 10.1016/j.jclepro.2019.119115 http://dx.doi.org/10.1016/j.jclepro.2019.119115
Wilke L. A. ; Robertson C. G. ; Karsten D. A. ; Hardman N. J. Detailed understanding of the carbon black-polymer interface in filled rubber composites . Carbon , 2023 , 201 , 520 - 528 . doi: 10.1016/j.carbon.2022.09.032 http://dx.doi.org/10.1016/j.carbon.2022.09.032
Xu T. W. ; Jia Z. X. ; Luo Y. F. ; Jia D. M. ; Peng Z. Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites . Appl. Surf. Sci. , 2015 , 328 , 306 - 313 . doi: 10.1016/j.apsusc.2014.12.029 http://dx.doi.org/10.1016/j.apsusc.2014.12.029
Olejnik O. ; Masek A. Natural phenolic compounds as modifiers for epoxidized natural rubber/silica hybrids . Molecules , 2022 , 27 ( 7 ), 2214 . doi: 10.3390/molecules27072214 http://dx.doi.org/10.3390/molecules27072214
Meera A. P. ; Thomas S. ; Zachariah A. K. ; Yang W. M. Effect of organoclay on the solvent diffusion behavior and mechanical properties of natural rubber nanocomposites . Polym. Compos. , 2018 , 39 ( 9 ), 3110 - 3118 . doi: 10.1002/pc.24317 http://dx.doi.org/10.1002/pc.24317
Jiang H. ; Shao J. A. ; Zhu Y. J. ; Yu J. ; Cheng W. ; Yang H. P. ; Zhang X. ; Chen H. P. Production mechanism of high-quality carbon black from high-temperature pyrolysis of waste tire . J. Hazard. Mater. , 2023 , 443 , 130350 . doi: 10.1016/j.jhazmat.2022.130350 http://dx.doi.org/10.1016/j.jhazmat.2022.130350
Urrego-Yepes W. ; Cardona-Uribe N. ; Vargas-Isaza C. A. ; Martínez J. D. Incorporating the recovered carbon black produced in an industrial-scale waste tire pyrolysis plant into a natural rubber formulation . J. Environ. Manag. , 2021 , 287 , 112292 . doi: 10.1016/j.jenvman.2021.112292 http://dx.doi.org/10.1016/j.jenvman.2021.112292
Duan X. Q. ; Lu S. Y. ; Fu Y. X. ; Zhang J. Z. ; Liu T. ; Ma J. Ash removal from inferior coal via ammonium fluoride roasting and simultaneous yield of white carbon black . Int. J. Min. Sci. Technol. , 2024 , 34 ( 2 ), 261 - 279 . doi: 10.1016/j.ijmst.2024.01.005 http://dx.doi.org/10.1016/j.ijmst.2024.01.005
Yarger J. L. ; Cherry B. R. ; van der Vaart A. Uncovering the structure-function relationship in spider silk . Nat. Rev. Mater. , 2018 , 3 , 18008 . doi: 10.1038/natrevmats.2018.8 http://dx.doi.org/10.1038/natrevmats.2018.8
Asakura T. Structure and dynamics of spider silk studied with solid-state nuclear magnetic resonance and molecular dynamics simulation . Molecules , 2020 , 25 ( 11 ), 2634 . doi: 10.3390/molecules25112634 http://dx.doi.org/10.3390/molecules25112634
Youssef L. ; Renner-Rao M. ; Eren E. D. ; Jehle F. ; Harrington M. J. Fabrication of tunable mechanical gradients by mussels via bottom-up self-assembly of collagenous precursors . ACS Nano , 2023 , 17 ( 3 ), 2294 - 2305 . doi: 10.1021/acsnano.2c08801 http://dx.doi.org/10.1021/acsnano.2c08801
Tertuliano O. A. ; Greer J. R. The nanocomposite nature of bone drives its strength and damage resistance . Nat. Mater. , 2016 , 15 ( 11 ), 1195 - 1202 . doi: 10.1038/nmat4719 http://dx.doi.org/10.1038/nmat4719
Meyers M. A. ; McKittrick J. ; Chen P. Y. Structural biological materials: critical mechanics-materials connections . Science , 2013 , 339 ( 6121 ), 773 - 779 . doi: 10.1126/science.1220854 http://dx.doi.org/10.1126/science.1220854
Zhou X. X. ; Guo B. C. ; Zhang L. Q. ; Hu G. H. Progress in bio-inspired sacrificial bonds in artificial polymeric materials . Chem. Soc. Rev. , 2017 , 46 ( 20 ), 6301 - 6329 . doi: 10.1039/c7cs00276a http://dx.doi.org/10.1039/c7cs00276a
Huang J. ; Zhang L. J. ; Tang Z. H. ; Guo B. C. Bioinspired engineering of sacrificial bonds into rubber networks towards high-performance and functional elastomers . Compos. Commun. , 2018 , 8 , 65 - 73 . doi: 10.1016/j.coco.2017.11.002 http://dx.doi.org/10.1016/j.coco.2017.11.002
Zou S. B. ; Therriault D. ; Gosselin F. P. Toughening elastomers via microstructured thermoplastic fibers with sacrificial bonds and hidden lengths . Extreme Mech. Lett. , 2021 , 43 , 101208 . doi: 10.1016/j.eml.2021.101208 http://dx.doi.org/10.1016/j.eml.2021.101208
Shen Q. ; Wu M. L. ; Xu C. H. ; Wang Y. Q. ; Wang Q. F. ; Liu W. J. Sodium alginate crosslinked oxidized natural rubber supramolecular network with rapid self-healing at room temperature and improved mechanical properties . Compos. Part A Appl. Sci. Manuf. , 2021 , 150 , 106601 . doi: 10.1016/j.compositesa.2021.106601 http://dx.doi.org/10.1016/j.compositesa.2021.106601
Cui L. F. ; Zeng G. Y. ; Li X. ; Bian F. ; Xiong Y. Z. Reinforced, self-healing, recyclable rubber materials based on multiple dynamic bond constructs crosslinked with chemical groups . Compos. Part A Appl. Sci. Manuf. , 2024 , 179 , 108007 . doi: 10.1016/j.compositesa.2024.108007 http://dx.doi.org/10.1016/j.compositesa.2024.108007
Cui L. F. ; Zeng G. Y. ; Li X. ; Bian F. ; Xiong Y. Z. Enhanced design of dual dynamic cross-linked rubber composites: Achieving self-healing and recyclability through imine and metal-ligand bonding . Compos. Sci. Technol. , 2024 , 246 , 110382 . doi: 10.1016/j.compscitech.2023.110382 http://dx.doi.org/10.1016/j.compscitech.2023.110382
Wu J. R. ; Cai L. H. ; Weitz D. A. Tough self-healing elastomers by molecular enforced integration of covalent and reversible networks . Adv. Mater. , 2017 , 29 ( 38 ), 1702616 . doi: 10.1002/adma.201770274 http://dx.doi.org/10.1002/adma.201770274
Liu Y. J. ; Tang Z. H. ; Wu S. W. ; Guo B. C. Integrating sacrificial bonds into dynamic covalent networks toward mechanically robust and malleable elastomers . ACS Macro Lett. , 2019 , 8 ( 2 ), 193 - 199 . doi: 10.1021/acsmacrolett.9b00012 http://dx.doi.org/10.1021/acsmacrolett.9b00012
Xu M. H. ; Zhang K. Y. ; Wang L. ; Wang Q. F. Spider silk inspired bead-like aramid nanofibers via hydrogen-bond donor strategy for synergistic reinforcement of high-performance rubber composite . Compos. Part B Eng. , 2023 , 255 , 110616 . doi: 10.1016/j.compositesb.2023.110616 http://dx.doi.org/10.1016/j.compositesb.2023.110616
Lu Y. ; Wang J. C. ; Wang L. ; Song S. Q. Diphenolic acid-modified PAMAM/chlorinated butyl rubber nanocomposites with superior mechanical, damping, and self-healing properties . Sci. Technol. Adv. Mater. , 2021 , 22 ( 1 ), 14 - 25 . doi: 10.1080/14686996.2020.1861912 http://dx.doi.org/10.1080/14686996.2020.1861912
Huang Y. S. ; Li J. ; Qi M. Z. ; Si G. F. ; Tan C. In situ modification to reinforce isoprene rubber by sacrificial bonds . ACS Appl. Polym. Mater. , 2023 , 5 ( 6 ), 4080 - 4087 . doi: 10.1021/acsapm.3c00304 http://dx.doi.org/10.1021/acsapm.3c00304
Luo M. C. ; Zeng J. ; Fu X. ; Huang G. S. ; Wu J. R. Toughening diene elastomers by strong hydrogen bond interactions . Polymer , 2016 , 106 , 21 - 28 . doi: 10.1016/j.polymer.2016.10.056 http://dx.doi.org/10.1016/j.polymer.2016.10.056
Tang Z. H. ; Huang J. ; Guo B. C. ; Zhang L. Q. ; Liu F. Bioinspired engineering of sacrificial metal-ligand bonds into elastomers with supramechanical performance and adaptive recovery . Macromolecules , 2016 , 49 ( 5 ), 1781 - 1789 . doi: 10.1021/acs.macromol.5b02756 http://dx.doi.org/10.1021/acs.macromol.5b02756
Li C. J. ; Wang Y. J. ; Yuan Z. ; Ye L. Construction of sacrificial bonds and hybrid networks in EPDM rubber towards mechanical performance enhancement . Appl. Surf. Sci. , 2019 , 484 , 616 - 627 . doi: 10.1016/j.apsusc.2019.04.064 http://dx.doi.org/10.1016/j.apsusc.2019.04.064
Kong S. X. ; Yang H. X. ; Wu S. W. ; Tang Z. H. ; Guo B. C. ; Zhang L. Q. In-situ decorating diene-rubber with carbamyl maleamic handles as sacrificial units toward network reinforcement . Polymer , 2023 , 288 , 126453 . doi: 10.1016/j.polymer.2023.126453 http://dx.doi.org/10.1016/j.polymer.2023.126453
Zhang X. H. ; Tang Z. H. ; Guo B. C. ; Zhang L. Q. Enabling design of advanced elastomer with bioinspired metal-oxygen coordination . ACS Appl. Mater. Interfaces , 2016 , 8 ( 47 ), 32520 - 32527 . doi: 10.1021/acsami.6b10881 http://dx.doi.org/10.1021/acsami.6b10881
Lafitte V. G. H. ; Aliev A. E. ; Horton P. N. ; Hursthouse M. B. ; Bala K. ; Golding P. ; Hailes H. C. Quadruply hydrogen bonded cytosine modules for supramolecular applications . J. Am. Chem. Soc. , 2006 , 128 ( 20 ), 6544 - 6545 . doi: 10.1021/ja0587289 http://dx.doi.org/10.1021/ja0587289
Chen X. ; Zawaski C. E. ; Spiering G. A. ; Liu B. E. ; Orsino C. M. ; Moore R. B. ; Williams C. B. ; Long T. E. Quadruple hydrogen bonding supramolecular elastomers for melt extrusion additive manufacturing . ACS Appl. Mater. Interfaces , 2020 , 12 ( 28 ), 32006 - 32016 . doi: 10.1021/acsami.0c08958 http://dx.doi.org/10.1021/acsami.0c08958
Xu C. H. ; Nie J. D. ; Wu W. C. ; Fu L. H. ; Lin B. F. Design of self-healable supramolecular hybrid network based on carboxylated styrene butadiene rubber and nano-chitosan . Carbohydr. Polym. , 2019 , 205 , 410 - 419 . doi: 10.1016/j.carbpol.2018.10.080 http://dx.doi.org/10.1016/j.carbpol.2018.10.080
Liu C. ; Huang J. R. ; Yuan D. S. ; Chen Y. K. Design of a high-strength XSBR/Fe 3 O 4 /ZDMA shape-memory composite with dual responses. Ind. Eng. Chem. Res. , 2018 , 57 ( 43 ), 14527 - 14534 . doi: 10.1021/acs.iecr.8b03377 http://dx.doi.org/10.1021/acs.iecr.8b03377
Kaya İ. ; Kamacı M. Synthesis, optical, and thermal properties of polyimides containing flexible ether linkage . J. Appl. Polym. Sci. , 2018 , 135 ( 31 ), 46573 . doi: 10.1002/app.46573 http://dx.doi.org/10.1002/app.46573
Kirschbaum C. ; Young R. S. E. ; Greis K. ; Menzel J. P. ; Gewinner S. ; Schöllkopf W. ; Meijer G. ; von Helden G. ; Causon T. ; Narreddula V. R. ; Poad B. L. J. ; Blanksby S. J. ; Pagel K. Establishing carbon-carbon double bond position and configuration in unsaturated fatty acids by gas-phase infrared spectroscopy . Chem. Sci. , 2023 , 14 ( 10 ), 2518 - 2527 . doi: 10.1039/d2sc06487a http://dx.doi.org/10.1039/d2sc06487a
Deng G. D. ; Cavicchi K. A. Tuning the viscoelastic properties of poly( n -butyl acrylate) ionomer networks through the use of ion-pair comonomers . Macromolecules , 2017 , 50 ( 23 ), 9473 - 9481 . doi: 10.1021/acs.macromol.7b01529 http://dx.doi.org/10.1021/acs.macromol.7b01529
Hassanabadi M. ; Najafi M. ; Hashemi Motlagh G. ; Saeedi Garakani S. Synthesis and characterization of end-functionalized solution polymerized styrene-butadiene rubber and study the impact of silica dispersion improvement on the wear behavior of the composite . Polym. Test. , 2020 , 85 , 106431 . doi: 10.1016/j.polymertesting.2020.106431 http://dx.doi.org/10.1016/j.polymertesting.2020.106431
Liu J. Y. ; Chen K. F. ; Zhang Y. ; Zhou L. Z. ; Wang F. L. ; Xiang X. Y. ; Wu H. Study on the chemical bonding at the interface between epoxy primer and polyurethane topcoat . Prog. Org. Coat. , 2024 , 196 , 108677 . doi: 10.1016/j.porgcoat.2024.108677 http://dx.doi.org/10.1016/j.porgcoat.2024.108677
Delliere P. ; Laborie D. ; Caillol S. ; Bakkali-Hassani C. Controlling hybrid polyhydroxyurethane adhesive and rheological properties by partial carbonation of biobased epoxy monomer . Macromol. Rapid Commun. , 2024 , 45 ( 23 ), 2400542 . doi: 10.1002/marc.202400542 http://dx.doi.org/10.1002/marc.202400542
Ahmad Saddique F. ; Zahoor A. F. ; Faiz S. ; Ali Raza Naqvi S. ; Usman M. ; Ahmad M. Recent trends in ring opening of epoxides by amines as nucleophiles . Synth. Commun. , 2016 , 46 ( 10 ), 831 - 868 . doi: 10.1080/00397911.2016.1170148 http://dx.doi.org/10.1080/00397911.2016.1170148
Radojčić D. ; Hong J. ; Ionescu M. ; Wan X. M. ; Javni I. ; Petrović Z. S. Study on the reaction of amines with internal epoxides . Eur. J. Lipid Sci. Technol. , 2016 , 118 ( 10 ), 1507 - 1511 . doi: 10.1002/ejlt.201500490 http://dx.doi.org/10.1002/ejlt.201500490
张文琪 , 范雯雯 , 张若涵 , 彭倩倩 , 李祥亮 , 雷岚 , 李辉 . 高强度二硫键/氢键双动态交联丁苯橡胶的设计及可回收、形状记忆性能研究 . 高分子学报 , 2025 , 56 ( 5 ), 845 - 860 .
Hu R. Y. ; Jiang X. ; Chen Y. X. ; Wang J. L. ; Guo Y. H. ; Zheng Q. ; Shangguan Y. G. Strain hysteresis and Mullins effect of rubber vulcanizates with a reversible sacrificial network . Soft Matter , 2025 , 21 ( 3 ), 399 - 410 . doi: 10.1039/d4sm01064g http://dx.doi.org/10.1039/d4sm01064g
Xu H. L. ; Fan X. P. ; Song Y. H. ; Zheng Q. Reinforcement and Payne effect of hydrophobic silica filled natural rubber nanocomposites . Compos. Sci. Technol. , 2020 , 187 , 107943 . doi: 10.1016/j.compscitech.2019.107943 http://dx.doi.org/10.1016/j.compscitech.2019.107943
Zheng H. ; Yue D. Effect of carboxyl content on mechanical properties of lignin/carboxylated nitrile rubber compounds . Polymers , 2025 , 17 ( 17 ): 16 . doi: 10.3390/polym17172332 http://dx.doi.org/10.3390/polym17172332
崔藏奎 , 蒋宁 . 异戊橡胶/天然橡胶共混材料的性能研究 . 辽宁化工 , 2023 , 52 ( 8 ), 1104 - 1106 .
Mnyango J. I. ; Hlangothi B. G. ; Mabuto B. ; Woolard C. D. ; Hlangothi S. P. Effect of Tulbaghia violacea -derived devulcanized rubber on the properties of natural rubber/styrene-butadiene rubber blends . Macromol. Mater. Eng. , 2024 , 309 ( 8 ), 2300410 . doi: 10.1002/mame.202300410 http://dx.doi.org/10.1002/mame.202300410
Diani J. ; Fayolle B. ; Gilormini P. A review on the Mullins effect . Eur. Polym. J. , 2009 , 45 ( 3 ), 601 - 612 . doi: 10.1016/j.eurpolymj.2008.11.017 http://dx.doi.org/10.1016/j.eurpolymj.2008.11.017
Yang J. W. ; Wang F. F. ; Liang C. B. ; Zhou S. F. ; Huang J. ; Zhao G. Z. ; Liu Y. Q. Trans-1,4-poly(isoprene-co-butadiene) rubber enhances abrasion resistance in natural rubber and polybutadiene composites . Polymer , 2025 , 316 , 127855 . doi: 10.1016/j.polymer.2024.127855 http://dx.doi.org/10.1016/j.polymer.2024.127855
Zhang X. M. ; Chen Y. ; Yin Q. ; Wu J. P. ; Song W. C. ; Mohamed A. ; Jia H. B. ; Yang F. F. ; Rui X. T. Highly improved compatibility and mechanical properties of carboxylated nitrile rubber/styrene butadiene rubber by incorporating modified Kevlar nanofibers . Mater. Chem. Phys. , 2019 , 238 , 121926 . doi: 10.1016/j.matchemphys.2019.121926 http://dx.doi.org/10.1016/j.matchemphys.2019.121926
Han Q. Y. ; Li X. ; Li Y. C. ; Wu Y. P. Influences of the compatibility of nr/ssbr and phase-selective distribution of silica on its static and dynamic properties . Rubber Chem. Technol. , 2020 , 93 ( 3 ), 588 - 604 . doi: 10.5254/rct.19.80439 http://dx.doi.org/10.5254/rct.19.80439
许婧婧 , 王君 , 罗宝玉 , 黄义钢 , 董康 , 陈亚婷 , 王鹭飞 , 刘文国 , 赵晓东 , 梁雪 , 王贵宾 . 溶聚丁苯橡胶/天然橡胶并用胶的性能研究 . 橡胶工业 , 2024 , 71 ( 10 ), 745 - 753 .
0
Views
345
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号