

浏览全部资源
扫码关注微信
1.江西理工大学化学化工学院 赣州 341000
2.广东石油化工学院化学工程学院 茂名 525000
Jin-hua Li, E-mail: lijh@jxust.edu.cn
Received:07 July 2025,
Accepted:04 September 2025,
Published Online:27 October 2025,
Published:20 February 2026
移动端阅览
戴一凡, 龚浩, 谢政辉, 郎灿, 李金华, 刘诗咏. 双供体与共轭工程协同优化D-π-D-A聚合物光催化析氢及析氧. 高分子学报, 2026, 57(2), 422-433.
Dai, Y. F.; Gong, H.; Xie, Z. H.; Lang, C.; Li, J. H.; Liu, S. Y. Synergistic dual donor and conjugation engineering boosts photocatalytic H2 and O2 evolution of D-π-D-A polymers. Acta Polymerica Sinica (in Chinese), 2026, 57(2), 422-433.
戴一凡, 龚浩, 谢政辉, 郎灿, 李金华, 刘诗咏. 双供体与共轭工程协同优化D-π-D-A聚合物光催化析氢及析氧. 高分子学报, 2026, 57(2), 422-433. DOI: 10.11777/j.issn1000-3304.2025.25165. CSTR: 32057.14.GFZXB.2025.7463.
Dai, Y. F.; Gong, H.; Xie, Z. H.; Lang, C.; Li, J. H.; Liu, S. Y. Synergistic dual donor and conjugation engineering boosts photocatalytic H2 and O2 evolution of D-π-D-A polymers. Acta Polymerica Sinica (in Chinese), 2026, 57(2), 422-433. DOI: 10.11777/j.issn1000-3304.2025.25165. CSTR: 32057.14.GFZXB.2025.7463.
线型共轭聚合物(LCPs)在光催化析氢反应(HER)领域近年被广泛应用,然而由于析氧反应(OER)动力学迟滞和热力学驱动力不足等特性,其在OER中的应用仍面临严峻挑战. 受三元共轭聚合物通过分子工程设计提升光催化析氢性能的启发,本研究提出双供体共轭工程策略,通过引入
π
桥构筑D-
π
-D-A型三元LCP,实现了对能带结构与氧化还原电位的协同调控,从而促进空穴富集,有效提升光生电子-空穴对(e
-
-h⁺)的分离效率. 采用C―H直接芳基化聚合反应,合成了2种由强供体单元(二联噻吩或三联噻吩)、
π
桥(1
4-二溴-2
5-二氟苯)及亲水性受体(3
7-二苯并噻吩-5
5-二氧化物)耦合而成的D-
π
-D-A型三元线型共聚物
CP-1
和
CP-2
. 研究表明,
CP-1
和
CP-2
均表现出双功能光催化分解水析氢和析氧性能,其中以三联噻吩为给体单元的
CP-2
具有更高的OER活性,析氧速率为4.7 mmol·g
-1
·h
-1
,相比于以二联噻吩为给体的
CP-1
,其析氧速率提升了2.9倍. 值得注意的是,
CP-2
在获得高OER活性的同时,仍表现出较高的光催化析氢性能,在无铂助催剂的条件下,HER速率为25.1 mmol·g
-1
·h
-1
. 本研究通过双供体共轭协同调控策略实现了D-
π
-D-A型聚合物光催化分解水析氢与析氧反应,为高效双功能LCP型光催化剂提供了新的设计策略.
Linear conjugated polymers (LCPs) have been widely applied in the field of photocatalytic hydrogen evolution
yet their application in photocatalytic water oxidation half-reactions (oxygen evolution reaction
OER) remains
challenging due to sluggish OER kinetics and insufficient thermodynamic driving force. Inspired by the enhanced photocatalytic hydrogen evolution performance in ternary conjugated polymers achieved through molecular engineering
this work proposed a dual-donor conjugation engineering strategy. By introducing a
π
-bridge
D-
π
-D-A type ternary LCPs were anticipated to be constructed with synergistically regulating the band structure and redox potentials
thereby promoting hole enrichment and effectively enhancing the separation efficiency of photogenerated electron-hole pairs (e⁻-h⁺). Employing direct C―H arylation polycondensation reaction
we precisely synthesized two D-
π
-D-A type ternary linear copolymers
CP-1
and
CP-2
. which comprise a strong donor unit (bithiophene or terthiophene)
a
π
-bridge (1
4-dibromo-2
5-difluorobenzene)
and a hydrophilic acceptor unit (dibenzothiophene sulfone
3
7-dibenzothiophene-5
5-dioxide). Experimental results showed that both
CP-1
and
CP-2
exhibited bifunctional photocatalytic water-splitting activity for H
2
and O
2
production. Notably
CP-2
featuring the terthiophene donor unit
demonstrated superior OER activity
achieving an oxygen evolution rate of 4.7 mmol·g⁻
1
·h⁻
1
which was 2.9 times higher than that of
CP-1
(1.6 mmol·g⁻
1
·h⁻
1
bithiophene donor). Importantly
CP-2
still maintained competitive photocatalytic hydrogen evolution performance (25.1 mmol·g⁻
1
·h⁻
1
) alongside its high OER performance. This work demonstrated efficient bifunctional water splitting (H
2
and O
2
evolution) in D-
π
-D-A polymers
via
synergistic dual-donor conjugation engineering
providing a novel design strategy for high-performance LCP photocatalysts.
Tao X. P. ; Zhao Y. ; Wang S. Y. ; Li C. ; Li R. G. Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts . Chem. Soc. Rev. , 2022 , 51 ( 9 ), 3561 - 3608 . doi: 10.1039/d1cs01182k http://dx.doi.org/10.1039/d1cs01182k
Rahman M. Z. ; Kibria M. G. ; Mullins C. B. Metal-free photocatalysts for hydrogen evolution . Chem. Soc. Rev. , 2020 , 49 ( 6 ), 1887 - 1931 . doi: 10.1039/c9cs00313d http://dx.doi.org/10.1039/c9cs00313d
Liao G. F. ; Gong Y. ; Zhang L. ; Gao H. Y. ; Yang G. J. ; Fang B. Z. Semiconductor polymeric graphitic carbon nitride photocatalysts: the "holy grail" for the photocatalytic hydrogen evolution reaction under visible light . Energy Environ. Sci. , 2019 , 12 ( 7 ), 2080 - 2147 . doi: 10.1039/c9ee00717b http://dx.doi.org/10.1039/c9ee00717b
Liu X. M. ; Wang Z. Q. ; Feng S. F. ; Zhang X. L. ; Xu H. H. ; Wei G. ; Gong X. Q. ; Wu X. F. ; Hua J. L. Covalent amide bonding interaction and π - π stacking constructed carboxyl-functionalized diketopyrrolopyrr ole heterojunctions with promoted photocatalysis performance . Macromolecules , 2023 , 56 ( 20 ), 8275 - 8289 . doi: 10.1021/acs.macromol.3c01496 http://dx.doi.org/10.1021/acs.macromol.3c01496
Zhang J. S. ; Chen Y. ; Wang X. C. Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications . Energy Environ. Sci. , 2015 , 8 ( 11 ), 3092 - 3108 . doi: 10.1039/c5ee01895a http://dx.doi.org/10.1039/c5ee01895a
Han K. ; Dong G. H. ; Saeed I. ; Dong T. T. ; Xiao C. Y. Morphology and photocatalytic tetracycline degradation of g-C 3 N 4 optimized by the coal gangue . Chin. J. Struct. Chem. , 2024 , 43 ( 2 ), 100208 . doi: 10.1016/j.cjsc.2023.100208 http://dx.doi.org/10.1016/j.cjsc.2023.100208
Cheng J. Z. ; Liu L. L. ; Liao G. F. ; Shen Z. Q. ; Tan Z. R. ; Xing Y. Q. ; Li X. X. ; Yang K. ; Chen L. ; Liu S. Y. Achieving an unprecedented hydrogen evolution rate by solvent-exfoliated CPP-based photocatalysts . J. Mater. Chem. A , 2020 , 8 ( 12 ), 5890 - 5899 . doi: 10.1039/c9ta13514f http://dx.doi.org/10.1039/c9ta13514f
Cheng J. Z. ; Tan Z. R. ; Xing Y. Q. ; Shen Z. Q. ; Zhang Y. J. ; Liu L. L. ; Yang K. ; Chen L. ; Liu S. Y. Exfoliated conjugated porous polymer nanosheets for highly efficient photocatalytic hydrogen evolution . J. Mater. Chem. A , 2021 , 9 ( 9 ), 5787 - 5795 . doi: 10.1039/d0ta11479k http://dx.doi.org/10.1039/d0ta11479k
Shu C. ; Han C. Z. ; Yang X. Y. ; Zhang C. ; Chen Y. ; Ren S. J. ; Wang F. ; Huang F. ; Jiang J. X. Boosting the photocatalytic hydrogen evolution activity for D- π -A conjuga ted microporous polymers by statistical copolymerization . Adv. Mater. , 2021 , 33 ( 26 ), 2008498 . doi: 10.1002/adma.202008498 http://dx.doi.org/10.1002/adma.202008498
Xu Y. F. ; Mao N. ; Zhang C. ; Wang X. ; Zeng J. H. ; Chen Y. ; Wang F. ; Jiang J. X. Rational design of donor- π -acceptor conjugated microporous polymers for photocatalytic hydrogen production . Appl. Catal. B Environ. , 2018 , 228 , 1 - 9 . doi: 10.1016/j.apcatb.2018.01.073 http://dx.doi.org/10.1016/j.apcatb.2018.01.073
Zhang W. J. ; Wang D. G. ; Xie Q. J. ; Xu C. ; Kuang G. C. ; Tang J. T. ; Pan C. Y. ; Yu G. P. Enhanced reducibility via altering exciton binding energy of conjugated microporous polymers for photocatalytic reduction . Macromolecules , 2023 , 56 ( 11 ), 4022 - 4029 . doi: 10.1021/acs.macromol.3c00241 http://dx.doi.org/10.1021/acs.macromol.3c00241
莫依天 , 刘衣铭 , 王晓鸽 , 童瑜洁 , 魏瑶 , 马玉国 . 锌卟啉共价有机框架和共轭微孔聚合物的光催化可逆加成-断裂链转移聚合 . 高分子学报 , 2023 , 54 ( 10 ), 1521 - 1532 .
Ming J. T. ; Liu A. ; Zhao J. W. ; Zhang P. ; Huang H. W. ; Lin H. ; Xu Z. T. ; Zhang X. M. ; Wang X. X. ; Hofkens J. ; Roeffaers M. B. J. ; Long J. L. Hot π -electron tunneling of metal-insulator-COF nanostructures for efficient hydrogen production . Angew. Chem. Int. Ed. , 2019 , 58 ( 50 ), 18290 - 18294 . doi: 10.1002/anie.201912344 http://dx.doi.org/10.1002/anie.201912344
Wang H. ; Wang H. ; Wang Z. W. ; Tang L. ; Zeng G. M. ; Xu P. ; Chen M. ; Xiong T. ; Zhou C. Y. ; Li X. Y. ; Huang D. L. ; Zhu Y. ; Wang Z. X. ; Tang J. W. Covalent organic framework photocatalysts: structures and applications . Chem. Soc. Rev. , 2020 , 49 ( 12 ), 4135 - 4165 . doi: 10.1039/d0cs00278j http://dx.doi.org/10.1039/d0cs00278j
Wu S. H. ; Li C. ; Wang Y. ; Zhuang Y. ; Pan Y. ; Wen N. ; Wang S. ; Zhang Z. Z. ; Ding Z. X. ; Yuan R. S. ; Dai W. X. ; Fu X. Z. ; Long J. L. The keto-switched photocatalysis of reconstructed covalent organic frameworks for efficient hydrogen evolution . Angew. Chem. Int. Ed. , 2023 , 62 ( 36 ), e 202309026 . doi: 10.1002/anie.202309026 http://dx.doi.org/10.1002/anie.202309026
袁乐汪 , 彭垚垚 , 管宗杰 , 方煜 . 二维共价有机框架作为光催化剂在有机合成中的研究进展 . 物理化学学报 , 2025 , 41 ( 8 ), 38 - 63 .
Ning J. Q. ; Huang J. H. ; Liu Y. H. ; Chen Y. L. ; Niu Q. ; Lin Q. Q. ; He Y. J. ; Liu Z. Y. ; Yu Y. ; Li L. Y. Alkyl-linked TiO 2 @COF heterostructure facilitating photocatalytic CO 2 reduction by targeted electron transport . Chin. J. Struct. Chem. , 2024 , 43 ( 12 ), 100453 . doi: 10.1016/j.cjsc.2024.100453 http://dx.doi.org/10.1016/j.cjsc.2024.100453
Yanagida S. ; Kabumoto A. ; Mizumoto K. ; Pac C. ; Yoshino K. Poly( p -phenylene)-catalysed photoreduction of water to hydrogen . J. Chem. Soc., Chem. Commun. , 1985 , ( 8 ), 474 . doi: 10.1039/c39850000474 http://dx.doi.org/10.1039/c39850000474
Bi J. H. ; Fang W. ; Li L. Y. ; Wang J. Y. ; Liang S. J. ; He Y. H. ; Liu M. H. ; Wu L. Covalent triazine-based frameworks as visible light photocatalysts for the splitting of water . Macromol. Rapid Commun. , 2015 , 36 ( 20 ), 1799 - 1805 . doi: 10.1002/marc.201500270 http://dx.doi.org/10.1002/marc.201500270
Liu M. Y. ; Wang X. Q. ; Liu J. ; Wang K. W. ; Jin S. B. ; Tan B. E. Palladium as a superior cocatalyst to platinum for hydrogen evolution using covalent triazine frameworks as a support . ACS Appl. Mater. Interfaces , 2020 , 12 ( 11 ), 12774 - 12782 . doi: 10.1021/acsami.9b21903 http://dx.doi.org/10.1021/acsami.9b21903
Wang K. W. ; Yang L. M. ; Wang X. ; Guo L. P. ; Cheng G. ; Zhang C. ; Jin S. B. ; Tan B. E. ; Cooper A. Covalent triazine frameworks via a low-temperature polycondensation approach . Angew. Chem. Int. Ed. , 2017 , 56 ( 45 ), 14149 - 14153 . doi: 10.1002/anie.201708548 http://dx.doi.org/10.1002/anie.201708548
Hu Z. C. ; Wang Z. F. ; Zhang X. ; Tang H. R. ; Liu X. C. ; Huang F. ; Cao Y. Conjugated polymers with oligoethylene glycol side chains for improved photocatalytic hydrogen evolution . iScience , 2019 , 13 , 33 - 42 . doi: 10.1016/j.isci.2019.02.007 http://dx.doi.org/10.1016/j.isci.2019.02.007
Hu Y. P. ; Ding X. ; Feng J. ; Yan Y. C. ; Shao C. C. ; Yu X. H. ; Shao J. F. ; Ji Y. J. ; Li Y. Y. ; Huang W. ; Li Y. G. Molecular regioisomerism of benzobisthiazole-based conjugated polymers promotes photocatalytic hydrogen production . Adv. Funct. Mater. , 2024 , 34 ( 30 ), 2400946 . doi: 10.1002/adfm.202400946 http://dx.doi.org/10.1002/adfm.202400946
Sachs M. ; Sprick R. S. ; Pearce D. ; Hillman S. A. J. ; Monti A. ; Guilbert A. A. Y. ; Brownbill N. J. ; Dimitrov S. ; Shi X. Y. ; Blanc F. ; Zwijnenburg M. A. ; Nelson J. ; Durrant J. R. ; Cooper A. I. Understanding structure-activity relationships in linear polymer photocatalysts for hydrogen evolution . Nat. Commun. , 2018 , 9 ( 1 ), 4968 . doi: 10.1038/s41467-018-07420-6 http://dx.doi.org/10.1038/s41467-018-07420-6
Bai Y. Q. ; Hu Z. C. ; Jiang J. X. ; Huang F. Hydrophilic conjugated materials for photocatalytic hydrogen evolution . Chem. , 2020 , 15 ( 12 ), 1780 - 1790 . doi: 10.1002/asia.202000247 http://dx.doi.org/10.1002/asia.202000247
Tan Z. R. ; Xing Y. Q. ; Cheng J. Z. ; Zhang G. ; Shen Z. Q. ; Zhang Y. J. ; Liao G. F. ; Chen L. ; Liu S. Y. Correction: EDOT-based conjugated polymers accessed via C―H direct arylation for efficient photocatalytic hydrogen production . Chem. Sci. , 2022 , 13 ( 8 ), 2495 . doi: 10.1039/d2sc90026b http://dx.doi.org/10.1039/d2sc90026b
Sheng Z. Q. ; Xing Y. Q. ; Chen Y. ; Zhang G. ; Liu S. Y. ; Chen L. Nanoporous and nonporous conjugated donor-acceptor polymer semiconductors for photocatalytic hydrogen production . Beilstein J. Nanotechnol. , 2021 , 12 , 607 - 623 . doi: 10.3762/bjnano.12.50 http://dx.doi.org/10.3762/bjnano.12.50
Wang J. ; Zhu W. B. ; Zhang Y. Z. ; Yang X. H. ; Bai G. Y. ; Zhang Q. F. ; Chen Y. ; Lan X. W. Structural engineering of donor- π -acceptor conjugated polymers for facilitating charge separation: a dual-functional photocatalysis . Macromolecules , 2022 , 55 ( 24 ), 10842 - 10853 . doi: 10.1021/acs.macromol.2c02014 http://dx.doi.org/10.1021/acs.macromol.2c02014
Zhao H. ; Dong Y. F. ; Sun P. Y. ; Bai Y. F. ; Ru C. L. ; Wu X. ; Li Z. H. ; Han X. N. ; Wu J. C. ; Pan X. B. Effect of D/A ratio on photocatalytic hydrogen evolution performance of conjugated polymer photocatalysts . ACS Appl. Energy Mater. , 2022 , 5 ( 4 ), 4631 - 4640 . doi: 10.1021/acsaem.2c00017 http://dx.doi.org/10.1021/acsaem.2c00017
Yang C. ; Ma B. C. ; Zhang L. Z. ; Lin S. ; Ghasimi S. ; Landfester K. ; Zhang K. ; Wang X. C. Molecular engineering of conjugated polybenzothiadiazoles for enhanced hydrogen production by photosynthesis . Angew. Chem. Int. Ed. , 2016 , 55 ( 32 ), 9202 - 9206 . doi: 10.1002/anie.201603532 http://dx.doi.org/10.1002/anie.201603532
张颖 , 王磊 , 徐航勋 . 高分子光催化材料表面活性位点及其反应机理探究 . 高分子学报 , 2020 , 51 ( 11 ), 1201 - 1213 .
Huang W. Y. ; Shen Z. Q. ; Cheng J. Z. ; Liu L. L. ; Yang K. ; Chen X. R. ; Wen H. R. ; Liu S. Y. C―H activation derived CPPs for photocatalytic hydrogen production excellently accelerated by a DMF cosolvent . J. Mater. Chem. A , 2019 , 7 ( 42 ), 24222 - 24230 . doi: 10.1039/c9ta06444c http://dx.doi.org/10.1039/c9ta06444c
Gong H. ; Li J. H. ; Xie Z. H. ; Lang C. ; Liu S. Y. Accessing poly(DA- ran -D π ) ternary copolymers via direct C―H arylation for ultrahigh photocatalytic hydrogen production . Macromolecules , 2024 , 57 ( 15 ), 7208 - 7218 . doi: 10.1021/acs.macromol.4c01290 http://dx.doi.org/10.1021/acs.macromol.4c01290
Xie Z. H. ; Ye G. ; Gong H. ; Murugan P. ; Lang C. ; Dai Y. F. ; Yang K. ; Liu S. Y. Ultrahigh photocatalytic hydrogen evolution of linear conjugated terpolymers enabled by an ultra-low ratio of the benzothiadiazole monomer . Chem. Sci. , 2025 , 16 ( 22 ), 9998 - 10009 . doi: 10.1039/d5sc01438g http://dx.doi.org/10.1039/d5sc01438g
Han C. Z. ; Hu L. W. ; Jin S. L. ; Ma J. X. ; Jiang J. X. ; Zhang C. Molecular engineering in D- π -A-A-type conjugated microporous polymers for boosting photocatalytic hydrogen evolution . ACS Appl. Mater. Interfaces , 2023 , 15 ( 30 ), 36404 - 36411 . doi: 10.1021/acsami.3c07699 http://dx.doi.org/10.1021/acsami.3c07699
Lang C. ; Gong H. ; Ye G. ; Murugan P. ; Xie Z. H. ; Dai Y. F. ; Yang K. ; Yu C. L. ; Liu S. Y. D1 - D 2 -A ternary conjugated microporous polymers synthesized via direct C―H arylation for enhancing photocatalytic hydrogen evolution . J. Colloid Interface Sci. , 2025, 688 , 818 - 829 . doi: 10.1016/j.jcis.2025.02.181 http://dx.doi.org/10.1016/j.jcis.2025.02.181
Kampouri S. ; Stylianou K. C. Dual-functional photocatalysis for simultaneous hydrogen production and oxidation of organic substances . ACS Catal. , 2019 , 9 ( 5 ), 4247 - 4270 . doi: 10.1021/acscatal.9b00332 http://dx.doi.org/10.1021/acscatal.9b00332
Zhao D. M. ; Dong C. L. ; Wang B. ; Chen C. ; Huang Y. C. ; Diao Z. D. ; Li S. Z. ; Guo L. J. ; Shen S. H. Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution . Adv. Mater. , 2019 , 31 ( 43 ), 1903545 . doi: 10.1002/adma.201903545 http://dx.doi.org/10.1002/adma.201903545
Liu D. ; Yang X. ; Chen P. Y. ; Zhang X. L. ; Chen G. Y. ; Guo Q. W. ; Hou H. ; Li Y. Rational design of PDI-based linear conjugated polymers for highly effective and long-term photocatalytic oxygen evolution . Adv. Mater. , 2023 , 35 ( 25 ), 2300655 . doi: 10.1002/adma.202300655 http://dx.doi.org/10.1002/adma.202300655
Zhou E. B. ; Zhang X. ; Zhu L. ; Chai E. C. ; Chen J. S. ; Li J. ; Yuan D. Q. ; Kang L. T. ; Sun Q. F. ; Wang Y. B. Ultrathin covalent organic framework nanosheets for enhanced photocatalytic water oxidation . Sci. Adv. , 2024 , 10 ( 3 ), eadk 8564 . doi: 10.1126/sciadv.adk8564 http://dx.doi.org/10.1126/sciadv.adk8564
Lan Z. A. ; Fang Y. X. ; Zhang Y. F. ; Wang X. C. Photocatalytic oxygen evolution from functional triazine-based polymers with tunable band structures . Angew. Chem. Int. Ed. , 2018 , 57 ( 2 ), 470 - 474 . doi: 10.1002/anie.201711155 http://dx.doi.org/10.1002/anie.201711155
He Y. J. ; Liu G. Y. ; Liu Z. Y. ; Bi J. H. ; Yu Y. ; Li L. Y. Photoinduced hydration boosts O 2 evolut ion on co-chelating covalent organic framework . ACS Energy Lett. , 2023 , 8 ( 4 ), 1857 - 1863 . doi: 10.1021/acsenergylett.3c00228 http://dx.doi.org/10.1021/acsenergylett.3c00228
Sprick R. S. ; Chen Z. ; Cowan A. J. ; Bai Y. ; Aitchison C. M. ; Fang Y. X. ; Zwijnenburg M. A. ; Cooper A. I. ; Wang X. C. Water oxidation with cobalt-loaded linear conjugated polymer photocatalysts . Angew. Chem. Int. Ed. , 2020 , 59 ( 42 ), 18695 - 18700 . doi: 10.1002/anie.202008000 http://dx.doi.org/10.1002/anie.202008000
Xu J. Y. ; Li W. L. ; Liu W. X. ; Jing J. F. ; Zhang K. F. ; Liu L. P. ; Yang J. ; Zhu E. W. ; Li J. S. ; Zhu Y. F. Efficient photocatalytic hydrogen and oxygen evolution by side-group engineered benzodiimidazole oligomers with strong built-in electric fields and short-range crystallinity . Angew. Chem. Int. Ed. , 2022 , 61 ( 45 ), e 202212243 . doi: 10.1002/anie.202212243 http://dx.doi.org/10.1002/anie.202212243
刘慧 , 陈妍 , 陈娜 , 刘诗咏 . C―H键直接芳基化合成共轭长度连续递增的氯代低聚物非富勒烯受体 . 高分子学报 , 2023 , 54 ( 7 ), 1122 - 1130 . doi: 10.11777/j.issn1000-3304.2022.22398 http://dx.doi.org/10.11777/j.issn1000-3304.2022.22398
黄飞 , 薄志山 , 耿延候 , 王献红 , 王利祥 , 马於光 , 侯剑辉 , 胡文平 , 裴坚 , 董焕丽 , 王树 , 李振 , 帅志刚 , 李永舫 , 曹镛 . 光电高分子材料的研究进展 . 高分子学报 , 2019 , 50 ( 10 ), 988 - 1046 . doi: 10.11777/j.issn1000-3304.2019.19110 http://dx.doi.org/10.11777/j.issn1000-3304.2019.19110
Wu S. H. ; Han W. Y. ; Wang Y. ; Zhuang Y. ; Niu H. ; Li L. R. ; Wang J. H. ; Liu Y. ; Lin H. ; Wu K. F. ; Shen J. N. ; Zhang Y. G. ; Leung M. K. H. ; Long J. L. Close π - π stacking facilitated intermolecular charge separation in self-assembled perylene monoimide for photocatalytic hydrogen production . Chin. J. Struct. Chem. , 2025 , 44 ( 6 ), 100592 . doi: 10.1016/j.cjsc.2025.100592 http://dx.doi.org/10.1016/j.cjsc.2025.100592
Lin W. C. ; Wu Y. H. ; Sun Y. E. ; Elsenety M. M. ; Lin W. C. ; Yen J. C. ; Hsu H. K. ; Chen B. H. ; Huang H. Y. ; Chang C. A. ; Huang T. F. ; Zhuang Y. R. ; Tseng Y. T. ; Lin K. H. ; Yang S. D. ; Yu C. H. ; Chou H. H. Symmetry-breaking of dibenzo [b, d ] thiophene sulfone enhancing polaron generation for boosted photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. , 2024 , 63 ( 32 ), e 202407702 . doi: 10.1002/anie.202407702 http://dx.doi.org/10.1002/anie.202407702
Yan H. J. ; Huang Y. Y. ; Shen M. H. ; Xu J. Q. ; Ye Y. X. ; Ouyang G. F. Enhancing solar-to-hydrogen peroxide conversion efficiency by promoting the two-electron water oxidation pathway via modulating the main electron transition orbital . Angew. Chem. Int. Ed. , 2025 , 64 ( 25 ), e 202425054 . doi: 10.1002/anie.202425054 http://dx.doi.org/10.1002/anie.202425054
0
Views
562
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号