

浏览全部资源
扫码关注微信
1.太原理工大学材料科学与工程学院 太原 030024
2.浙江大学高分子科学与工程学系 杭州 310027
Lan Jia, E-mail: jialan@tyut.edu.cn
Wen-wen Yu, E-mail: yuwenwen@tyut.edu.cn
Received:10 July 2025,
Accepted:22 September 2025,
Published Online:12 December 2025,
Published:20 February 2026
移动端阅览
沈佳豪, 梁锐淼, 贾兰, 余雯雯, 郑强. 基于β晶型调控协同提升聚丙烯的韧性与耐电击穿性能. 高分子学报, 2026, 57(2), 595-607.
Shen, J. H.; Liang, R. M.; Jia, L.; Yu, W. W.; Zheng, Q. Synergistically enhance toughness and electrical breakdown resistance of polypropylene by β-crystal modification. Acta Polymerica Sinica (in Chinese), 2026, 57(2), 595-607.
沈佳豪, 梁锐淼, 贾兰, 余雯雯, 郑强. 基于β晶型调控协同提升聚丙烯的韧性与耐电击穿性能. 高分子学报, 2026, 57(2), 595-607. DOI: 10.11777/j.issn1000-3304.2025.25166. CSTR: 32057.14.GFZXB.2025.7466.
Shen, J. H.; Liang, R. M.; Jia, L.; Yu, W. W.; Zheng, Q. Synergistically enhance toughness and electrical breakdown resistance of polypropylene by β-crystal modification. Acta Polymerica Sinica (in Chinese), 2026, 57(2), 595-607. DOI: 10.11777/j.issn1000-3304.2025.25166. CSTR: 32057.14.GFZXB.2025.7466.
传统聚丙烯增韧通常采用引入弹性体增韧剂的方法,难以协同优化强度-韧性-电性能. 针对这一问题,本研究提出一种非添加型策略,通过熔融共混无规共聚聚丙烯(PPR)、等规聚丙烯(
i
PP)与成核剂,利用
i
PP与成核剂协同诱导PPR生成高
β
晶含量结晶相(
β
晶相对含量为42%). 经等温后处理
β
晶含量进一步提高到48%,并形成了多重晶界结构. 这种多重晶界结构通过抑制机械裂纹与导电裂纹的萌生,并增加界面极化作用,实现了强度-韧性-电性能三者的平衡优化. 在强度保持的同时,韧性达33.6 kJ/m
2
,击穿强度达455 kV/mm,介电常数提高至2.11. 其中,击穿强度与韧性的1/4次方成正比,符合Fothergill机械-电击穿理论. 此外,相较于常规橡胶增韧体系,该材料表现出更优异的耐机械损伤能力,经反复机械损伤后击穿强度仍超过300 kV/mm. 本研究为同时兼具高电性能与力学性能材料的设计与制备提供了新思路.
Traditional polypropylene toughening typically employs elastomeric toughening agents
which often compromises the synergistic optimization of strength
toughness
and electrical properties. To address this issue
this study adopted a non-additive strategy involving the melt blending of polypropylene random copolymer (PPR)
isotactic polypropylene (
i
PP)
and a
β
-nucleating agent. This approach leveraged the synergistic effect of
i
PP and the nucleating agent to induce the formation of a highly
β
-crystalline phase (achieving 42%
β
-crystal content). Subsequent isothermal post-treatment further increased the
β
-crystal content to 48% and established a multiple boundary structure. This multigrain boundary structure optimized material performance by suppressing the initiation of both mechanical and electrical cracks while enhancing interfacial polarization. Consequently
the material maintained its strength while achieving a toughness of 33.6 kJ/m
2
a breakdown strength of 455 kV/mm
and increased dielectric constant of 2.11
thereby achieving a balanced optimization of strength
toughness
and electrical properties. Furthermore
compared to conventional rubber-toughened systems
this material exhibited superior mechanical damage resistance
re
taining a breakdown strength exceeding 300 kV/mm after repeated mechanical damage. This work provides novel insights for designing and fabricating materials that simultaneously possess high electrical and mechanical performance.
Huang X. Y. ; Zhang J. ; Jiang P. K. ; Tanaka T. Material progress toward recyclable insulation of power cables part 2: polypropylene-based thermoplastic materials . IEEE Electr. Insul. Mag. , 2020 , 36 ( 1 ), 8 - 18 . doi: 10.1109/mei.2020.8932973 http://dx.doi.org/10.1109/mei.2020.8932973
Huang X. Y. ; Fan Y. Y. ; Zhang J. ; Jiang P. K. Polypropylene based thermoplastic polymers for potential recyclable HVDC cable insulation applications . IEEE Trans. Dielectr. Electr. Insul. , 2017 , 24 ( 3 ), 1446 - 1456 . doi: 10.1109/tdei.2017.006230 http://dx.doi.org/10.1109/tdei.2017.006230
Zhang C. ; Zha J. W. ; Yan H. D. ; Li W. K. ; Dang Z. M. High improvement i n trap level density and direct current breakdown strength of block polypropylene by doping with a β -nucleating agent . Appl. Phys. Lett. , 2018 , 112 ( 9 ), 091902 . doi: 10.1063/1.5020736 http://dx.doi.org/10.1063/1.5020736
Zhu L. H. ; Li M. Z. ; Zhao S. J. ; Bao S. H. ; Chen F. ; Shangguan Y. G. ; Wu Q. ; Zheng Q. Ultra-high impact PPR composites at low-temperature through enhanced preferential loading of nanoparticles at polymeric interface induced by properly vulcanized rubber dispersed phase . Compos. Sci. Technol. , 2022 , 227 , 109593 . doi: 10.1016/j.compscitech.2022.109593 http://dx.doi.org/10.1016/j.compscitech.2022.109593
Wang J. F. ; Zhang X. H. ; Jiang L. ; Qiao J. L. Advances in toughened polymer materials by structured rubber particles . Prog. Polym. Sci. , 2019 , 98 , 101160 . doi: 10.1016/j.progpolymsci.2019.101160 http://dx.doi.org/10.1016/j.progpolymsci.2019.101160
Argon A. S. ; Cohen , R. E. Toughenability of polymers . Polymer , 2003 , 44 ( 19 ), 6013 - 6032 . doi: 10.1016/s0032-3861(03)00546-9 http://dx.doi.org/10.1016/s0032-3861(03)00546-9
Shaw A. V. ; Ketsamee P. ; Andritsch T. ; Vaughan A. S. Effect of organoclay loading on the dielectric properties and charge dynamics of a PP-rubber nanocomposite . High Volt. , 2020 , 5 ( 6 ), 662 - 668 . doi: 10.1049/hve.2019.0376 http://dx.doi.org/10.1049/hve.2019.0376
Hosier I. L. ; Vaughan A. S. ; Swingler S. G. An investigation of the potential of ethylene vinyl acetate/polyethylene blends for use in recyclable high voltage cable insulation systems . J. Mater. Sci. , 2010 , 45 ( 10 ), 2747 - 2759 . doi: 10.1007/s10853-010-4262-5 http://dx.doi.org/10.1007/s10853-010-4262-5
Wu S. H. A generalized criterion for rubber toughening: the critical matrix ligament thickness . J. Appl. Polym. Sci. , 1988 , 35 ( 2 ), 549 - 561 . doi: 10.1002/app.1988.070350220 http://dx.doi.org/10.1002/app.1988.070350220
Liu Z. H. ; Zhang X. D. ; Zhu X. G. ; Qi Z. N. ; Wang F. S. Effect of morphology on the brittle ductile transition of polymer blends: a new equation for correlating morphological parameters . Polymer , 1997 , 38 ( 21 ), 5267 - 5273 . doi: 10.1016/s0032-3861(97)00075-x http://dx.doi.org/10.1016/s0032-3861(97)00075-x
van der Wal A. ; Mulder J. J. ; Oderkerk J. ; Gaymans R. J. Polypropylene-rubber blends: the effect of the matrix properties on the impact behaviour . Polymer , 1998 , 39 ( 26 ), 6781 - 6787 . doi: 10.1016/s0032-3861(98)00170-0 http://dx.doi.org/10.1016/s0032-3861(98)00170-0
van der Wal A. ; Nijhof R. ; Gaymans R. J. Polypropylene-rubber blends: the effect of the rubber content on the deformation and impact behaviour . Polymer , 1999 , 40 ( 22 ), 6031 - 6044 . doi: 10.1016/s0032-3861(99)00213-x http://dx.doi.org/10.1016/s0032-3861(99)00213-x
Shirvanimoghaddam K. ; Balaji K. V. ; Yadav R. ; Zabihi O. ; Ahmadi M. ; Adetunji P. ; Naebe M. Balancing the toughness and strength in polypropylene composites . Compos. Part B Eng. , 2021 , 223 , 109121 . doi: 10.1016/j.compositesb.2021.109121 http://dx.doi.org/10.1016/j.compositesb.2021.109121
Gao Y. ; Li J. ; Li Y. ; Yuan Y. Q. ; Huang S. H. ; Du B. X. Effect of elastomer type on electrical and mechanical properties of polypropylene/elastomer blends . 2017 International Symposium on Electrical Insulating Materials (ISEIM) , Toyohashi, Japan , 2017 , 574 - 577 . doi: 10.23919/iseim.2017.8166554 http://dx.doi.org/10.23919/iseim.2017.8166554
Pei J. Y. ; Zha J. W. ; Zhou W. Y. ; Wang S. J. ; Zhong S. L. ; Yin L. J. ; Zheng M. S. ; Cai H. W. ; Dang Z. M. Enhancement of breakdown strength of multilayer polymer film through electric field redistribution and defect modification . Appl. Phys. Lett. , 2019 , 114 ( 10 ), 103702 . doi: 10.1063/1.5088085 http://dx.doi.org/10.1063/1.5088085
Dang B. ; He J. L. ; Hu J. ; Zhou Y. Large improvement in trap level and space charge distribution of polypropylene by enhancing the crystalline-amorphous interface effect in blends . Polym. Int. , 2016 , 65 ( 4 ), 371 - 379 . doi: 10.1002/pi.5063 http://dx.doi.org/10.1002/pi.5063
Stark K. H. ; Garton C. G. Electric strength of irradiated polythene . Nature , 1955 , 176 ( 4495 ), 1225 - 1226 . doi: 10.1038/1761225a0 http://dx.doi.org/10.1038/1761225a0
Zeller H. R. ; Schneider W. R. Electrofracture mechanics of dielectric aging . J. Appl. Phys. , 1984 , 56 ( 2 ), 455 - 459 . doi: 10.1063/1.333931 http://dx.doi.org/10.1063/1.333931
Fothergill J. C. Filamentary electromechanical breakdown . IEEE Trans. Electr. Insul. , 1991 , 26 ( 6 ), 1124 - 1129 . doi: 10.1109/14.108149 http://dx.doi.org/10.1109/14.108149
Varga J. β -Modification of isotactic polypropylene: preparation, structure, processing, properties, and application . J. Macromol. Sci. Part B , 2002 , 41 ( 4-6 ), 1121 - 1171 . doi: 10.1081/mb-120013089 http://dx.doi.org/10.1081/mb-120013089
Papageorgiou D. G. ; Bikiaris D. N. ; Chrissafis K. Effect of crystalline structure of polypropylene random copolymers on mechanical properties and thermal degradation kinetics . Thermochim. Acta , 2012 , 543 , 288 - 294 . doi: 10.1016/j.tca.2012.06.007 http://dx.doi.org/10.1016/j.tca.2012.06.007
魏聪 , 施智勇 , 张华珅 , 徐剑 , 王亚明 , 刘春太 , 申长雨 , 邵春光 . 可控增压条件下等规聚丙烯/ β -成核剂的结晶行为研究 . 高分子学报 , 2024 , 55 ( 12 ), 1742 - 1753 .
乔泽爽 , 邹发生 , 宋文波 , 白红伟 , 傅强 . 基于结晶调控制备低收缩聚丙烯 . 高分子学报 , 2023 , 54 ( 8 ), 1186 - 1195 . doi: 10.11777/j.issn1000-3304.2022.22450 http://dx.doi.org/10.11777/j.issn1000-3304.2022.22450
Yang Z. R. ; Tong B. ; Wang H. ; Zhu P. X. ; Rao H. Y. ; Li Z. L. Enhanced electrical tree resistance of polypropylene cable insulation by introducing β -crystals . Energies , 2024 , 17 ( 18 ), 4610 . doi: 10.3390/en17184610 http://dx.doi.org/10.3390/en17184610
Liang R. M. ; Yu W. W. ; Shen J. H. ; Zhang Z. Y. ; Lin Z. F. ; Wang J. Y. ; Jia L. ; Chen F. ; Shangguan Y. G. ; Zheng Q. β -crystals aied greater energy absorbing ethylene-propylene rubber in polypropyle ne blends for outstanding low-temperature toughness . Polym. Test. , 2025 , 142 , 108670 . doi: 10.1016/j.polymertesting.2024.108670 http://dx.doi.org/10.1016/j.polymertesting.2024.108670
Guo J. J. ; Wu Y. ; Lu X. Y. ; Nie M. Toughening mechanism of α / β core-shell structure for high toughness polypropylene random copolymer . Polymer , 2024 , 298 , 126931 . doi: 10.1016/j.polymer.2024.126931 http://dx.doi.org/10.1016/j.polymer.2024.126931
Li Y. C. ; He S. ; He H. ; Yu P. ; Wang D. Q. Study on low temperature toughness and crystallization behavior of polypropylene random copolymer . J. Polym. Eng. , 2017 , 37 ( 7 ), 715 - 727 . doi: 10.1515/polyeng-2016-0169 http://dx.doi.org/10.1515/polyeng-2016-0169
Luo F. ; Wang J. W. ; Bai H. W. ; Wang K. ; Deng H. ; Zhang Q. ; Chen F. ; Fu Q. ; Na B. Synergistic toughening of polypropylene random copolymer at low temperature: β -Modification and annealing . Mater. Sci. Eng. A , 2011 , 528 ( 22-23 ), 7052 - 7059 . doi: 10.1016/j.msea.2011.05.030 http://dx.doi.org/10.1016/j.msea.2011.05.030
谭洪生 , 谢侃 , 刘文华 , 侯斌 , 上官勇刚 , 郑强 . 抗冲共聚聚丙烯的结晶与相形态 . 高分子学报 . 2006 , ( 9 ), 1106 - 1111 .
Mileva D. ; Androsch R. ; Zhuravlev E. ; Schick C. ; Wunderlich B. Homogeneous nucleation and mesophase formation in glassy isotactic polypropylene . Polymer , 2012 , 53 ( 2 ), 277 - 282 . doi: 10.1016/j.polymer.2011.11.064 http://dx.doi.org/10.1016/j.polymer.2011.11.064
Fan Z. Q. ; Zhang Y. Q. ; Xu J. T. ; Wang H. T. ; Feng L. X. Structure and properties of polypropylene/poly(ethylene- co -propylene) in situ blends synthesized by spherical Ziegler-Natta catalyst . Polymer , 2001 , 42 ( 13 ), 5559 - 5566 . doi: 10.1016/s0032-3861(01)00062-3 http://dx.doi.org/10.1016/s0032-3861(01)00062-3
Luo F. ; Zhu Y. L. ; Wang K. ; Deng H. ; Chen F. ; Zhang Q. ; Fu Q. Enhancement of β -nucleated crystallization in polypropylene random copolymer via adding isotactic polypropylene . Polymer , 2012 , 53 ( 21 ), 4861 - 4870 . doi: 10.1016/j.polymer.2012.08.037 http://dx.doi.org/10.1016/j.polymer.2012.08.037
Zhu Y. L. ; Luo F. ; Bai H. W. ; Wang K. ; Deng H. ; Chen F. ; Zhang Q. ; Fu Q. Synergistic effects of β -modification and impact polypropylene copolymer on brittle-ductile transition of polypropylene random copolymer . J. Appl. Polym. Sci. , 2013 , 129 ( 6 ), 3613 - 3622 . doi: 10.1002/app.39107 http://dx.doi.org/10.1002/app.39107
Jones A. T. ; Aizlewood J. M. ; Beckett D. R. Crystalline forms of isotactic polypropylene . Die Makromol. Chem. , 1964 , 75 ( 1 ), 134 - 158 . doi: 10.1002/macp.1964.020750113 http://dx.doi.org/10.1002/macp.1964.020750113
Jia E. W. ; Zhao S. J. ; Shangguan Y. G. ; Zheng Q. Toughening mechanism of polypropylene bends with polymer particles in core-shell structure: equivalent rubber content effect related to core-shell interfacial strength . Polymer , 2019 , 178 , 121602 . doi: 10.1016/j.polymer.2019.121602 http://dx.doi.org/10.1016/j.polymer.2019.121602
Jiang Q. Q. ; Wu Y. ; Lu X. Y. ; Wu J. Y. ; Liu L. X. ; Gao Y. ; Nie M. Stepwise crystallization method combining isotactic polypropylene-based plastic waste film to prepare high-performance polypropylene random copolymer . Polymer , 2024 , 308 , 127372 . doi: 10.1016/j.polymer.2024.127372 http://dx.doi.org/10.1016/j.polymer.2024.127372
Cai H. J. ; Luo X. L. ; Chen X. X. ; Ma D. Z. ; Wang J. M. ; Tan H. S. Structure and properties of impact copolymer polypropylene. II. Phase structure and crystalline morphology . J. Appl. Polym. Sci. , 1999 , 71 ( 1 ), 103 - 113 . doi: 10.1002/(sici)1097-4628(19990103)71:1<103::aid-app13>3.0.co;2-5 http://dx.doi.org/10.1002/(sici)1097-4628(19990103)71:1<103::aid-app13>3.0.co;2-5
Yu Y. B. ; Yang S. ; Yu H. N. ; Li J. ; Guo S. Y. Temperature-dependent alternating α - or β -transcrystalline layers in coextruded isotactic polypropylene multilayered films . Macromolecules , 2017 , 50 ( 13 ), 5098 - 5106 . doi: 10.1021/acs.macromol.7b01012 http://dx.doi.org/10.1021/acs.macromol.7b01012
Ai D. ; Li H. ; Zhou Y. ; Ren L. L. ; Han Z. B. ; Yao B. ; Zhou W. ; Zhao L. ; Xu J. M. ; Wang Q. Tuning nanofillers in in situ prepared polyimide nanocomposites for high-temperature capacitive energy storage . Adv. Energy Mater. , 2020 , 10 ( 16 ), 1903881 . doi: 10.1002/aenm.201903881 http://dx.doi.org/10.1002/aenm.201903881
Zhou Y. J. ; Zhang Z. W. ; Tang Q. F. ; Ma X. Y. ; Hou X. Enhancing the high-temperature energy storage properties of PEI dielectrics by constructing trap-rich covalently cross-linked netw orks via POSS-functionalized BNNS . Mater. Horiz. , 2024 , 11 ( 18 ), 4348 - 4358 . doi: 10.1039/d4mh00299g http://dx.doi.org/10.1039/d4mh00299g
Feng Y. ; Wang C. H. ; Liu S. X. Low dielectric constant of polymer based composites induced by the restricted polarizability in the interface . Mater. Lett. , 2016 , 185 , 491 - 494 . doi: 10.1016/j.matlet.2016.09.062 http://dx.doi.org/10.1016/j.matlet.2016.09.062
Wang N. ; Niu H. ; Li Y. A novel catalytic way of comprising a β -nucleating agent in isotactic polypropylene: catalyst design strategy and polymerization-assisted dispersion . Polymer , 2017 , 113 , 259 - 266 . doi: 10.1016/j.polymer.2017.02.075 http://dx.doi.org/10.1016/j.polymer.2017.02.075
Ho J. ; Jow T. R. High field conduction in biaxially oriented polypropylene at elevated temperature . IEEE Trans. Dielectr. Electr. Insul. , 2012 , 19 ( 3 ), 990 - 995 . doi: 10.1109/tdei.2012.6215104 http://dx.doi.org/10.1109/tdei.2012.6215104
Wang Z. K. ; Yu G. Y. ; Li H. ; Hong W. ; Du Q. J. ; Wang H. R. ; Guo S. Y. ; Li C. H. Toughening polypropylene pipe by tailoring the multilayer of β -transcrystallinity alternating β -spherulite . Macromolecules , 2025 , 58 ( 4 ), 2014 - 2025 . doi: 10.1021/acs.macromol.4c02985 http://dx.doi.org/10.1021/acs.macromol.4c02985
He G. H. ; Zhang W. ; Sun K. ; Qi J. L. ; Zhao J. H. ; Han J. Y. ; Zhu X. S. The impact of XLPE surface defects on electric field and breakdown voltage . Front. Energy Res. , 2024 , 12 , 1476046 . doi: 10.3389/fenrg.2024.1476046 http://dx.doi.org/10.3389/fenrg.2024.1476046
Gu M. Y. ; Cai H. W. ; Li W. G. ; Wan Y. ; Wang R. Z. Temperature and flaw size-dependent electrical breakdown strength of high-temperature polymer dielectric materials . J. Energy Storage , 2024 , 83 , 110681 . doi: 10.1016/j.est.2024.110681 http://dx.doi.org/10.1016/j.est.2024.110681
0
Views
233
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号