

浏览全部资源
扫码关注微信
南京大学现代工程与应用科学学院 南京大学固体微结构物理全国重点实验室 南京 210023
Ye Zhang, E-mail: yezhang@nju.edu.cn
Received:23 July 2025,
Accepted:08 September 2025,
Published Online:27 October 2025,
Published:20 February 2026
移动端阅览
王远贞, 白泽袖, 陈科宇, 张晔. 兼具金属级电导率与优异韧性的聚氨酯金属凝胶. 高分子学报, 2026, 57(2), 388-397.
Wang, Y. Z.; Bai, Z. X.; Chen, K. Y.; Zhang, Y. Polyurethane metalgel with metallic electrical conductivity and excellent toughness. Acta Polymerica Sinica (in Chinese), 2026, 57(2), 388-397.
王远贞, 白泽袖, 陈科宇, 张晔. 兼具金属级电导率与优异韧性的聚氨酯金属凝胶. 高分子学报, 2026, 57(2), 388-397. DOI: 10.11777/j.issn1000-3304.2025.25171. CSTR: 32057.14.GFZXB.2025.7464.
Wang, Y. Z.; Bai, Z. X.; Chen, K. Y.; Zhang, Y. Polyurethane metalgel with metallic electrical conductivity and excellent toughness. Acta Polymerica Sinica (in Chinese), 2026, 57(2), 388-397. DOI: 10.11777/j.issn1000-3304.2025.25171. CSTR: 32057.14.GFZXB.2025.7464.
柔性电子技术的快速发展亟需兼具金属级电导率与优异韧性的材料,然而现有材料体系无法同时满足上述要求. 本研究设计了一种新型聚氨酯金属凝胶,通过相互作用将液态金属流体稳定固定于聚氨酯三维高分子网络中. 该金属凝胶实现了金属级电导率与超高断裂韧性,同时展现出优异的抗穿刺性能和压力稳定性. 此外,该材料可通过溶液法实现高效回收再利用,经5次循环回收利用后力学和电学性能保持率均超过80%. 本研究突破了传统材料体系的性能局限,为高性能柔性电子材料的设计提供了新范式.
The rapid advancement of flexible electronics has created an urgent demand for novel materials that exhibit metal-level electrical conductivity coupled with exceptional toughness. High electrical conductivity is the basis for the functioning of devices
while high toughness is key to adapting to the actual application environment and ensuring stable operation under complex working conditions. However
existing material systems still fail to meet these requirements simultaneously. A gel is defined as a semi-solid material consisting of a fluid fixed within a three-dimensional network; the original fluid is typically water
an organic liquid
or an ionic liquid. In this study
a novel gel material termed "metalgel" was designed
via
a fluid replacement strategy
which features a continuous liquid metal fluid phase stably immobilised within a three-dimensional porous polyurethane polymer network through hydrogen bonding interactions. This unique structure configuration endowed the polyurethane metalgel with metal-level electrical conductivity and ultra-high fracture toughness
while exhibiting excellent resistance to puncture and pressure stability. In addition
the material could be efficiently recycled through the process of solvent treatment
with the retention rate of mechanical and electrical properties being more than 80% after five recycling cycles. This study not only showed the potential to overcome the performance limitations of traditional material systems but also provided a novel paradigm for the design of high-performance flexible electronic materials.
Zhong D. L. ; Wu C. ; Jiang Y. W. ; Yuan Y. J. ; Kim M. G. ; Nishio Y. ; Shih C. C. ; Wang W. C. ; Lai J. C. ; Ji X. Z. ; Gao T. Z. ; Wang Y. X. ; Xu C. Y. ; Zheng Y. ; Yu Z. A. ; Gong H. X. ; Matsuhisa N. ; Zhao C. Z. ; Lei Y. S. ; Liu D. Y. ; Zhang S. ; Ochiai Y. ; Liu S. H. ; Wei S. Y. ; Tok J. B. H. ; Bao Z. N. High-speed and large-scale intrinsically stretchable integrated circuits . Nature , 2024 , 627 ( 8003 ), 313 - 320 . doi: 10.1038/s41586-024-07096-7 http://dx.doi.org/10.1038/s41586-024-07096-7
Kim K. ; Hong J. H. ; Bae K. ; Lee K. ; Lee D. J. ; Park J. ; Zhang H. Z. ; Sang M. Y. ; Ju J. E. ; Cho Y. U. ; Kang K. ; Park W. ; Jung S. ; Lee J. W. ; Xu B. X. ; Kim J. ; Yu K. J. Extremely durable electrical impedance tomography-based soft and ultrathin wearable e-skin for three-dimensional tactile interfaces . Sci. Adv. , 2024 , 10 ( 38 ), eadr 1099 . doi: 10.1126/sciadv.adr1099 http://dx.doi.org/10.1126/sciadv.adr1099
Peng , H. S. Wearable electronics . Natl. Sci. Rev. , 2023 , 10, nwac193. doi: 10.1093/nsr/nwac193 http://dx.doi.org/10.1093/nsr/nwac193
Zhou L. L. ;, Li, C. X. ; Luo, Y. F.; Liang, Q. M.; Chen, Y. Y.; Yan, Z. J.; Qiu, L. B.; He, S. S. An autonomous fabric electrochemical biosensor for efficient health monitoring. Natl. Sci. Rev., 2025 , 12 ( 6 ), nwaf155 . doi: 10.1093/nsr/nwaf155 http://dx.doi.org/10.1093/nsr/nwaf155
Makushko P. ; Ge J. ; Cañón Bermúdez G. S. ; Volkov O. ; Zabila Y. ; Avdoshenko S. ; Illing R. ; Ionov L. ; Kaltenbrunner M. ; Fassbender J. ; Xu R. ; Makarov D. Scalable magnetoreceptive e-skin for energy-efficient high-resolution interaction towards undisturbed extended reality . Nat. Commun. , 2025 , 16 , 1647 . doi: 10.1038/s41467-025-56805-x http://dx.doi.org/10.1038/s41467-025-56805-x
Carton M. ; Kowalewski J. F. ; Guo J. N. ; Alpert J. F. ; Garg A. ; Revier D. ; Lipton J. I. Bridging hard and soft: mechanical metamaterials enable rigid torque transmission in soft robots . Sci. Robot. , 2025 , 10 ( 100 ), eads 0548 . doi: 10.1126/scirobotics.ads0548 http://dx.doi.org/10.1126/scirobotics.ads0548
Jung D. ; Lim C. ; Shim H. J. ; Kim Y. ; Park C. ; Jung J. ; Han S. I. ; Sunwoo S. H. ; Cho K. W. ; Cha G. D. ; Kim D. C. ; Koo J. H. ; Kim J. H. ; Hyeon T. ; Kim D. H. Highly conductive and elastic nanomembrane for skin electronics . Science , 2021 , 373 ( 6558 ), 1022 - 1026 . doi: 10.1126/science.abh4357 http://dx.doi.org/10.1126/science.abh4357
Qiu J. H. ; Lu Y. Y. ; Qian X. Y. ; Yao J. X. ; Han C. C. ; Wu Z. L. ; Ye H. ; Shan G. R. ; Zheng Q. ; Xu K. C. ; Du M. Highly conductive polymer with vertical phase separation for enhanced bioelectronic interfaces . NPJ Flex. Electron. , 2025 , 9 , 69 . doi: 10.1038/s41528-025-00441-4 http://dx.doi.org/10.1038/s41528-025-00441-4
Lin M. Y. ; Hu H. J. ; Zhou S. ; Xu S. Soft wearable devices for deep-tissue sensing . Nat. Rev. Mater. , 2022 , 7 ( 11 ), 850 - 869 . doi: 10.1038/s41578-022-00427-y http://dx.doi.org/10.1038/s41578-022-00427-y
Li T. ; Qi H. B. ; Zhao C. C. ; Li Z. M. ; Zhou W. ; Li G. J. ; Zhuo H. ; Zhai W. Robust skin-integrated conductive biogel for high-fidelity detection under mechanical stress . Nat. Commun. , 2025 , 16 , 88 . doi: 10.1038/s41467-024-55417-1 http://dx.doi.org/10.1038/s41467-024-55417-1
Sun L. J. ; Huang H. F. ; Zhang L. Z. ; Neisiany R. E. ; Ma X. P. ; Tan H. ; You Z. W. Spider-silk-inspired tough, self-healing, and melt-spinnable ionogels . Adv. Sci. , 2024 , 11 ( 3 ), 2305697 . doi: 10.1002/advs.202305697 http://dx.doi.org/10.1002/advs.202305697
Xiong J. F. ; Wang X. W. ; Li L. L. ; Li Q. N. ; Zheng S. J. ; Liu Z. Y. ; Li W. Z. ; Yan F. Low-hysteresis and high-toughness hydrogels regulated by porous cationic polymers: the effect of counteranions . Angew. Chem. Int. Ed. , 2024 , 63 ( 1 ), e 202316375 . doi: 10.1002/anie.202316375 http://dx.doi.org/10.1002/anie.202316375
Li C. X. ; Jia K. K. ; Liang Q. M. ; Li Y. C. ; He S. S. Electrochemical biosensors and power supplies for wearable health-managing textile systems . Interdiscip. Mater. , 2024 , 3 ( 2 ), 270 - 296 . doi: 10.1002/idm2.12154 http://dx.doi.org/10.1002/idm2.12154
Deng W. W. ; Zhang Z. P. ; Rong M. Z. ; Zhang M. Q. Highly flexible yet strain-insensitive conjugated polymer . Mater. Horiz. , 2024 , 11 ( 18 ), 4507 - 4518 . doi: 10.1039/d4mh00587b http://dx.doi.org/10.1039/d4mh00587b
Du Y. J. ; Luo Y. ; Shi K. Y. ; Zuo P. J. ; Zhang Q. S. ; Zheng Z. Q. ; Sun B. Y. ; Xie J. Y. From metals to polymers: material evolution and functional advancements in current collectors . Adv. Mater. , 2025 , 37 ( 28 ), 2502095 . doi: 10.1002/adma.202502095 http://dx.doi.org/10.1002/adma.202502095
Uda Y. ; Zhang P. K. ; Travas-Sejdic J. Highly stretchable and aqueous solution-stable poly(3,4-ethylenedioxythiophene) doped with elastomeric sulfonated-SEBS . Polym. Chem. , 2024 , 15 ( 23 ), 2342 - 2353 . doi: 10.1039/d4py00083h http://dx.doi.org/10.1039/d4py00083h
Montazerian H. ; Davoodi E. ; Wang C. R. ; Lorestani F. ; Li J. H. ; Haghniaz R. ; Sampath R. R. ; Mohaghegh N. ; Khosravi S. ; Zehtabi F. ; Zhao Y. C. ; Hosseinzadeh N. ; Liu T. H. ; Hsiai T. K. ; Najafabadi A. H. ; Langer R. ; Anderson D. G. ; Weiss P. S. ; Khademhosseini A. ; Gao W. Boosting hydrogel conductivity via water-dispersible conducting polymers for injectable bioelectronics . Nat. Commun. , 2025 , 16 , 3755 . doi: 10.1038/s41467-025-60718-0 http://dx.doi.org/10.1038/s41467-025-60718-0
Wang X. W. ; Zheng S. J. ; Xiong J. F. ; Liu Z. Y. ; Li Q. N. ; Li W. Z. ; Yan F. Stretch-induced conductivity enhancement in highly conductive and tough hydrogels . Adv. Mater. , 2024 , 36 ( 25 ), 2313845 . doi: 10.1002/adma.202313845 http://dx.doi.org/10.1002/adma.202313845
Fang R. Y. ; Yao B. ; Chen T. W. ; Xu X. W. ; Xue D. C. ; Hong W. ; Wang H. ; Wang Q. ; Zhang S. L. 3D highly stretchable liquid metal/elastomer composites with strain-enhanced conductivity . Adv. Funct. Mater. , 2024 , 34 ( 31 ), 2310225 . doi: 10.1002/adfm.202310225 http://dx.doi.org/10.1002/adfm.202310225
Yu D. H. ; Liao Y. ; Song Y. C. ; Wang S. L. ; Wan H. Y. ; Zeng Y. H. ; Yin T. ; Yang W. H. ; He Z. Z. A super-stretchable liquid metal foamed elastomer for tunable control of electromagnetic waves and thermal transport . Adv. Sci. , 2020 , 7 ( 12 ), 2000177 . doi: 10.1002/advs.202070064 http://dx.doi.org/10.1002/advs.202070064
Alemán J. V. ; Chadwick A. V. ; He J. ; Hess M. ; Horie K. ; Jones R. G. ; Kratochvíl P. ; Meisel I. ; Mita I. ; Moad G. ; Penczek S. ; Stepto R. F. T. Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007) . Pure Appl. Chem. , 2007 , 79 ( 10 ), 1801 - 1829 . doi: 10.1351/pac200779101801 http://dx.doi.org/10.1351/pac200779101801
Wang M. X. ; Zhang P. Y. ; Shamsi M. ; Thelen J. L. ; Qian W. ; Truong V. K. ; Ma J. ; Hu J. ; Dickey M. D. Tough and stretchable ionogels by in situ phase s eparation . Nat. Mater. , 2022 , 21 ( 3 ), 359 - 365 . doi: 10.1038/s41563-022-01195-4 http://dx.doi.org/10.1038/s41563-022-01195-4
Wang J. C. ; Ye T. T. ; Jiao Y. D. ; Ren W. T. ; Li Y. R. ; Li X. S. ; Li Y. R. ; Li D. ; Li F. Y. ; Wang Y. Z. ; Song J. ; Zou K. Y. ; Mao W. ; Wu M. ; Tan R. Y. ; Lu J. ; He E. ; Wang L. ; Chen H. ; Li L. H. ; Li Q. M. ; Bai C. Y. ; Gao R. ; Ren J. Y. ; Li W. F. ; Cao Y. ; Zhang Y. A metalgel with liquid metal continuum immobilized in polymer network . Adv. Mater. , 2024 , 36 ( 49 ), 2409137 . doi: 10.1002/adma.202409137 http://dx.doi.org/10.1002/adma.202409137
Wang Y. Z. ; Jiao Y. D. ; Wang J. C. ; Zhang H. T. ; Ye T. T. ; Lu J. ; He E. ; Li L. H. ; Song J. ; Bai C. Y. ; Li X. S. ; Li Y. R. ; Li F. Y. ; Li F. Q. ; Jian J. R. ; Yang S. ; Hou X. X. ; Li Q. M. ; Zhao S. P. ; Tan R. Y. ; Zhang Y. Metalgel fiber with excellent electrical and mechanical properties . ACS Appl. Mater. Interfaces , 2025 , 17 ( 5 ), 8198 - 8208 . doi: 10.1021/acsami.4c19418 http://dx.doi.org/10.1021/acsami.4c19418
Lu J. ; Li Q. M. ; Huang Q. Y. ; Li D. ; Jiao Y. D. ; Wang Y. Z. ; Li Y. R. ; Zou K. Y. ; Chen Z. L. ; Gu J. Y. ; Zhang H. T. ; Wang J. C. ; Li F. Y. ; Yang S. ; Ye T. T. ; Song J. ; He E. ; Zhang Y. A highly sensitive surface electrode for electrophysiological monitoring . Adv. Funct. Mater. , 2025 , 35 ( 15 ), 2421132 . doi: 10.1002/adfm.202421132 http://dx.doi.org/10.1002/adfm.202421132
Li X. S. ; Wang J. C. ; Wang W. ; Zhang H. T. ; Jiao Y. D. ; Tao S. L. ; Wang Y. Z. ; Ye T. T. ; Song J. ; Bai C. Y. ; Yin H. T. ; Lu J. ; Li Y. R. ; Li F. Y. ; He E. ; Li Q. M. ; Zou K. Y. ; Wang H. D. ; Cao X. Y. ; Wang X. L. ; Zhang Y. A durable metalgel maintaining 3 × 10 6 s·m -1 conductivity under 1 000 000 stretching cycles. Adv. Mater., 2025, 37 ( 20 ), 2420628 . doi: 10.1002/adma.202420628 http://dx.doi.org/10.1002/adma.202420628
Song J. ; Ye T. T. ; Li Y. R. ; Bai C. Y. ; Wang J. C. ; Jiao Y. D. ; Wang Y. Z. ; He E. ; Li X. S. ; Lu J. ; Li Q. M. ; Li F. Y. ; Yang S. ; Zou K. Y. ; Zhao S. P. ; Hou X. X. ; Wu M. ; Zhang Y. A highly conductive and tough binary metalgel . Adv. Funct. Mater. , 2025 , 35 ( 19 ), 2419814 . doi: 10.1002/adfm.202419814 http://dx.doi.org/10.1002/adfm.202419814
Wang W. J. ; Li Y. X. ; Ma Z. W. ; Chen Q. ; Zhang W. K. ; Yang T. T. ; Xie Y. H. ; Sun J. Q. Ultra-tough poly(urea-urethane) plastics with superior impact resistance for cryogenic applications . Adv. Mater. , 2025 , 37 ( 39 ), 2509421 . doi: 10.1002/adma.202509421 http://dx.doi.org/10.1002/adma.202509421
Liu D. ; Fan C. J. ; Xiao Y. ; Yang K. K. ; Wang Y. Z. High strength, self-healing polyurethane elastomer based on synergistic multiple dynamic interactions in multiphase . Polymer , 2022 , 263 , 125513 . doi: 10.1016/j.polymer.2022.125513 http://dx.doi.org/10.1016/j.polymer.2022.125513
Wang L. P. ; Zhang K. Q. ; Zhang X. X. ; Tan Y. ; Guo L. F. ; Xia Y. G. ; Wang X. Mismatched supramolecular interactions facilitate the reprocessing of super-strong and ultratough thermoset elastomers . Adv. Mater. , 2024 , 36 ( 28 ), 2311758 . doi: 10.1002/adma.202311758 http://dx.doi.org/10.1002/adma.202311758
熊勇 , 姜昀良 , 董育民 , 邓景月 , 周建萍 , 周炳华 , 梁红波 . 基于分级氢键的自修复聚氨酯弹性体的微相分离结构与性能研究 . 高分子学报 , 2025 , 56 ( 3 ), 487 - 500 .
Liang X. Y. ; Chen G. D. ; Lei I. M. ; Zhang P. ; Wang Z. Y. ; Chen X. M. ; Lu M. Z. ; Zhang J. J. ; Wang Z. B. ; Sun T. L. ; Lan Y. ; Liu J. Impact-resistant hydrogels by harnessing 2D hierarchical structures . Adv. Mater. , 2023 , 35 ( 1 ), 2207587 . doi: 10.1002/adma.202370007 http://dx.doi.org/10.1002/adma.202370007
Chen X. B. ; Zhao S. W. ; Yuan A. Q. ; Chen S. L. ; Liao Y. S. ; Lei Y. ; Fu X. W. ; Lei J. X. ; Jiang L. Enabling high strength and toughness polyurethane through disordered-hydrogen bonds for printable, recyclable, ultra-fast responsive capacitive sensors . Adv. Sci. , 2024 , 11 ( 45 ), 2405941 . doi: 10.1002/advs.202405941 http://dx.doi.org/10.1002/advs.202405941
田佳 , 鞠浩 , 李光裕 , 陈嘉瑶 , 曹鹏飞 . 基于化学平衡原理设计热固性聚氨酯弹性体的闭环回收 . 高分子学报 , 2025 , 56 ( 4 ), 527 - 538 .
0
Views
155
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号