

浏览全部资源
扫码关注微信
电子科技大学材料与能源学院 四川省碳氮高分子新材料工程技术研究中心 成都 611731
Received:25 July 2025,
Accepted:29 September 2025,
Published Online:07 January 2026,
Published:20 January 2026
移动端阅览
肖倩, 张婷, 陈亚妮, 童利芬, 刘书宁, 刘孝波. 聚芳醚腈结构调控与结晶性能的研究进展. 高分子学报, 2026, 57(1), 47-65.
Xiao, Q.; Zhang, T.; Chen, Y. N.; Tong, L. F.; Liu, S. N.; Liu, X. B. Advances in structural regulation and crystallization properties of poly(arylene ether nitrile). Acta Polymerica Sinica (in Chinese), 2026, 57(1), 47-65.
肖倩, 张婷, 陈亚妮, 童利芬, 刘书宁, 刘孝波. 聚芳醚腈结构调控与结晶性能的研究进展. 高分子学报, 2026, 57(1), 47-65. DOI: 10.11777/j.issn1000-3304.2025.25174. CSTR: 32057.14.GFZXB.2025.7481.
Xiao, Q.; Zhang, T.; Chen, Y. N.; Tong, L. F.; Liu, S. N.; Liu, X. B. Advances in structural regulation and crystallization properties of poly(arylene ether nitrile). Acta Polymerica Sinica (in Chinese), 2026, 57(1), 47-65. DOI: 10.11777/j.issn1000-3304.2025.25174. CSTR: 32057.14.GFZXB.2025.7481.
结晶型聚芳醚腈作为高性能特种工程塑料,以其出色的力学强度、耐化学腐蚀性、柔韧性和电绝缘性,在电介质、光学器件、热管理材料等尖端领域展现出广阔的应用前景,其性能的优劣从根本上取决于分子链结构设计及聚集态结构的精确调控. 近年来,通过主链修饰、共聚改性等分子工程策略优化其结晶行为,借助成核剂调控、外场(热场、应力场)诱导等物理化学手段协同提升材料性能,成为该领域的研究热点. 本综述聚焦结晶型聚芳醚腈的最新研究进展,系统梳理了聚芳醚腈结晶行为的研究方法,深入探讨了结构调控对其热稳定性、机械性能及微观形貌的影响机制. 通过对比不同改性策略的优缺点,提出了“多尺度协同设计”的未来发展方向,旨在为新一代高性能聚芳醚腈材料的开发提供理论指导与技术支撑.
As a high-performance special engineering plastic
semi-crystalline poly(arylene ether nitrile) (PEN) has shown broad application prospects in cutting-edge fields such as dielectrics
optical devices
and thermal management materials owing to its excellent mechanical strength
chemical corrosion resistance
flexibility
and electrical insulation. The quality of its performance fundamentally depends on the design of the molecular chain structure and the precise regulation of the aggregated structure. In recent years
researchers have optimized its crystallization behavior through molecular engineering strategies
such as main chain modification and copolymerization modification
and synergistically improved material performance using physical and chemical methods
such as nucleating agent regulation and external field (thermal field
stress field) induction
which has become a research hotspot in this field. This paper systematically reviews the research methods of polyarylene ether nitrile crystallization behavior
focusing on the latest research progress of crystalline polyarylene ether nitrile
and discusses the influence mechanism of structural regulation on its thermal stability
mechanical properties
and micro-morphology. By comparing the advantages and disadvantages of different modification strategies
the future development direction of "multi-scale collaborative design" is proposed
aiming to provide theoretical guidance and technical support for the development of a new generation of high-performance polyarylene ether nitrile materials.
Liu S. N. ; Chen Y. N. ; Wu J. Q. ; Zhang T. ; Tong L. F. ; Liu X. B. Covalent interface and crosslinked network engineering enable polyarylene ether nitrile nanocomposites with enhanced thermal conductivity and high-temperature energy storage . Chem. Eng. J. , 2025 , 518 , 164719 . doi: 10.1016/j.cej.2025.164719 http://dx.doi.org/10.1016/j.cej.2025.164719
Tong L. F. ; Zhang J. H. ; He L. ; Liu X. B. ; Liu S. N. Interfacial optimization design and thermal conduction mechanism study of polyarylene ether nitrile composites based on condensed state structure regulation . Chem. Eng. J. , 2025 , 517 , 164502 . doi: 10.1016/j.cej.2025.164502 http://dx.doi.org/10.1016/j.cej.2025.164502
Zhang Z. J. ; Zhou L. Y. ; Wang L. L. ; Hao Q. Q. ; Hua X. F. ; Wei R. B. Enhancing energy storage density of poly(arylene ether nitrile) via incorporating modified barium titanate nanorods and hot-stretching . Nano Res. , 2024 , 17 ( 8 ), 7574 - 7584 . doi: 10.1007/s12274-024-6678-2 http://dx.doi.org/10.1007/s12274-024-6678-2
Zhang G. Y. ; Zhan Y. Q. ; He S. J. ; Zhang L. H. ; Zeng G. Y. ; Chiao Y. H. Construction of superhydrophilic/underwater superoleophobic polydopamine-modified h-BN/poly(arylene ether nitrile) composite membrane for stable oil-water emulsions separation . Polym. Adv. Technol. , 2020 , 31 ( 5 ), 1007 - 1018 . doi: 10.1002/pat.4835 http://dx.doi.org/10.1002/pat.4835
Yang X. L. ; Tang H. W. ; Li Y. ; Zhan Y. Q. ; Li Y. ; Zhong F. ; Wang P. ; Feng W. ; Li K. Synthesis, characterization, and thermal pyrolysis mechanism of high temperature resistant phenolphthalein-based poly(arylene ether nitrile) . Polym. Degrad. Stabil. , 2024 , 224 , 110754 . doi: 10.1016/j.polymdegradstab.2024.110754 http://dx.doi.org/10.1016/j.polymdegradstab.2024.110754
Chen S. Y. ; Yang S. ; Chen S. S. ; Zuo F. ; Wang P. ; You Y. Novel three-dimensional wintersweet-like BaTiO 3 -decorated halloysite nanotube nanohybrids/polyarylene ether nitrile nanocomposites for flexible thermal-resistant dielectrics . Appl. Surf. Sci. , 2024 , 656 , 159690 . doi: 10.1016/j.apsusc.2024.159690 http://dx.doi.org/10.1016/j.apsusc.2024.159690
Xiao Q. ; Han W. H. ; Yang R. Q. ; You Y. ; Wei R. B. ; Liu X. B. Mechanical, dielectric, and thermal properties of polyarylene ether nitrile and boron nitride nanosheets composites . Polym. Compos. , 2018 , 39 ( S3 ), E1598 - E1605 . doi: 10.1002/pc.24518 http://dx.doi.org/10.1002/pc.24518
Yang R. Q. ; Xiao Q. ; You Y. ; Wei R. B. ; Liu X. B. In situ catalyzed and reinforced high-temperature flexible crosslinked ZnO nano-whisker/polyarylene ether nitriles composite dielectric films . Polym. Compos. , 2018 , 39 ( 8 ), 2801 - 2811 . doi: 10.1002/pc.24272 http://dx.doi.org/10.1002/pc.24272
He L. ; Zhang J. H. ; Zheng Y. ; Liu S. N. ; Liu X. B. ; Tong L. F. Boosting thermal conductivity and tribological performance of polyarylene ether nitrile synergistically by fabricating SiCws-BNNS multidimensional networks . Compos. Part A Appl. Sci. Manuf. , 2025 , 194 , 108888 . doi: 10.1016/j.compositesa.2025.108888 http://dx.doi.org/10.1016/j.compositesa.2025.108888
Qi Q. ; Qin J. ; Zhang R. Y. ; Luo S. K. ; Liu X. B. ; Park C. B. ; Lei Y. J. Mechanically robust and thermally insulating polyarylene ether nitrile with a bone-like structure . Mater. Des. , 2020 , 196 , 109099 . doi: 10.1016/j.matdes.2020.109099 http://dx.doi.org/10.1016/j.matdes.2020.109099
Wang Q. ; Pu Z. J. ; Zheng X. Y. ; Tian Y. H. ; Li X. Y. ; Zhong J. C. Preparation and physical properties of intrinsic low-k polyarylene ether nitrile with enhanced thermo-stability . J. Polym. Res. , 2020 , 27 ( 11 ), 328 . doi: 10.1007/s10965-020-02311-1 http://dx.doi.org/10.1007/s10965-020-02311-1
Liu S. N. ; Wu J. Q. ; Chen Y. N. ; Zhang T. ; Tong L. F. ; Liu X. B. Polyarylene ether nitrile/modified hollow silica composite films for ultralow dielectric properties and enhanced thermal resistance . Polymers , 2025 , 17 ( 12 ), 1623 . doi: 10.3390/polym17121623 http://dx.doi.org/10.3390/polym17121623
You Y. ; Du X. Y. ; Mao H. ; Tang X. H. ; Wei R. B. ; Liu X. B. Synergistic enhancement of mechanical, crystalline and dielectric properties of polyarylene ether nitrile-based nanocomposites by unidirectional hot stretching-quenching . Polym. Int. , 2017 , 66 ( 8 ), 1151 - 1158 . doi: 10.1002/pi.5369 http://dx.doi.org/10.1002/pi.5369
Chen Z. M. ; Yao C. G. ; Yang G. S. Nonisothermal crystallization behavior, and morphology of poly(trimethylene terephthalate)/polyethylene glycol copolymers . Polym. Test. , 2012 , 31 ( 3 ), 393 - 403 . doi: 10.1016/j.polymertesting.2011.12.001 http://dx.doi.org/10.1016/j.polymertesting.2011.12.001
You Y. ; Tu L. ; Wang Y. J. ; Tong L. F. ; Wei R. B. ; Liu X. B. Achieving secondary dispersion of modified nanoparticles by hot-stretching to enhance dielectric and mechanical properties of polyarylene ether nitrile composites . Nanomaterials , 2019 , 9 ( 7 ), 1006 . doi: 10.3390/nano9071006 http://dx.doi.org/10.3390/nano9071006
Yang Y. H. ; Chen M. ; Li H. B. ; Li H. Y. The degree of crystallinity exhibiting a spatial distribution in polymer films . Eur. Polym. J. , 2018 , 107 , 303 - 307 . doi: 10.1016/j.eurpolymj.2018.08.041 http://dx.doi.org/10.1016/j.eurpolymj.2018.08.041
Sharma R. ; Maiti S. N. Effects of SEBS-g-MA copolymer on non-isothermal crystallization kinetics of polypropylene . J. Mater. Sci. , 2015 , 50 ( 1 ), 447 - 456 . doi: 10.1007/s10853-014-8604-6 http://dx.doi.org/10.1007/s10853-014-8604-6
Márquez Y. ; Franco L. ; Turon P. ; Martínez J. C. ; Puiggalí J. Study of non-isothermal crystallization of polydioxanone and analysis of morphological changes occurring during heating and cooling processes . Polymers , 2016 , 8 ( 10 ), 351 . doi: 10.3390/polym8100351 http://dx.doi.org/10.3390/polym8100351
Nagendra B. ; Mohan K. ; Gowd E. B. Polypropylene/layered double hydroxide (LDH) nanocomposites: influence of LDH particle size on the crystallization behavior of polypropylene . ACS Appl. Mater. Interfaces. , 2015 , 7 ( 23 ), 12399 - 12410 . doi: 10.1021/am5075826 http://dx.doi.org/10.1021/am5075826
Lambrigger M. Evaluation of data on the kinetics of isothermal polymer crystallization: Part II . Polym. Eng. Sci. , 1997 , 37 ( 2 ), 460 - 462 . doi: 10.1002/pen.11689 http://dx.doi.org/10.1002/pen.11689
Chen S. J. ; Wang L. M. Confined crystallization kinetics and scale of semicrystalline block copolymer via non-isothermal method . J. Therm. Anal. Calorim. , 2017 , 127 ( 3 ), 2341 - 2351 . doi: 10.1007/s10973-016-5761-7 http://dx.doi.org/10.1007/s10973-016-5761-7
Tong L. F. ; Wei R. B. ; You Y. ; Liu X. B. Post self-crosslinking of phthalonitrile-terminated polyarylene ether nitrile crystals . Polymers , 2018 , 10 ( 6 ), 640 . doi: 10.3390/polym10060640 http://dx.doi.org/10.3390/polym10060640
刘书宁 . 聚芳醚腈复合材料的微纳结构调控与介电性能研究 . 电子科技大学博士学位论文 , 2023 .
李逵 . 半结晶性聚芳醚腈的固相交联聚合反应研究 . 电子科技大学博士学位论文 , 2020 .
Wang Y. J. ; You Y. ; Tu L. ; Hu W. B. ; Tong L. F. ; Wei R. B. ; Liu X. B. Mechanical and dielectric properties of crystalline poly(arylene ether nitrile) copolymers . High Perform. Polym. , 2019 , 31 ( 3 ), 310 - 320 . doi: 10.1177/0954008318766217 http://dx.doi.org/10.1177/0954008318766217
Yu X. ; Wang N. ; Lv S. S. Crystal and multiple melting behaviors of PCL lamellae in ultrathin films . J. Cryst. Growth , 2016 , 438 , 11 - 18 . doi: 10.1016/j.jcrysgro.2015.12.021 http://dx.doi.org/10.1016/j.jcrysgro.2015.12.021
Puértolas J. A. ; Castro M. ; Morris J. A. ; Ríos R. ; Ansón-Casaos A. Tribological and mechanical properties of graphene nanoplatelet/PEEK composites . Carbon . 2019 , 141 , 107 - 122 . doi: 10.1016/j.carbon.2018.09.036 http://dx.doi.org/10.1016/j.carbon.2018.09.036
Zuo P. Y. ; Tcharkhtchi A. ; Shirinbayan M. ; Fitoussi J. ; Bakir F. Effect of thermal aging on crystallization behaviors and dynamic mechanical properties of glass fiber reinforced polyphenylene sulfide (PPS/GF) composites . Journal of Polymer Research . 2020 , 27 , 77 . doi: 10.1007/s10965-020-02051-2 http://dx.doi.org/10.1007/s10965-020-02051-2
Tu L. ; You Y. ; Tong L. F. ; Wang Y. J. ; Hu W. B. ; Wei R. B. ; Liu X. B. Crystallinity of poly(arylene ether nitrile) copolymers containing hydroquinone and bisphenol A segments . J. Appl. Polym. Sci. , 2018 , 135 ( 26 ), 46412 . doi: 10.1002/app.46412 http://dx.doi.org/10.1002/app.46412
Wu C. J. ; Tong L. F. ; Zhang W. X. ; Liu X. B. Synthesis, characterization, and properties of poly(arylene ether nitrile) with high crystallinity and high molecular weight . J. Phys. Chem. Solids , 2021 , 154 , 109945 . doi: 10.1016/j.jpcs.2021.109945 http://dx.doi.org/10.1016/j.jpcs.2021.109945
Nie M. ; Mo C. ; He L. ; Feng X. F. ; Liu X. B. ; Tong L. F. Strong and tough semi-crystalline poly(aryl ether nitrile) with low coefficient of thermal expansion . Polymer , 2024 , 308 , 127363 . doi: 10.1016/j.polymer.2024.127363 http://dx.doi.org/10.1016/j.polymer.2024.127363
He L. ; Lin G. ; Liu X. B. ; Tong L. F. Polyarylene ether nitrile composites film with self-reinforcing effect by cross-linking and crystallization synergy . Polymer , 2022 , 262 , 125457 . doi: 10.1016/j.polymer.2022.125457 http://dx.doi.org/10.1016/j.polymer.2022.125457
Li T. R. ; Lin G. ; He L. ; Xia Y. Q. ; Xu X. Q. ; Liu Y. F. ; Tong L. F. ; Liu X. B. Structural design and properties of crystalline polyarylene ether nitrile copolymer . Colloids Surf. A Physicochem. Eng. Aspects , 2023 , 659 , 130788 . doi: 10.1016/j.colsurfa.2022.130788 http://dx.doi.org/10.1016/j.colsurfa.2022.130788
Zhang W. R. ; He L. ; Wang T. ; Liu X. B. ; Tong L. F. Effect of molecular weight on properties of polyarylene ether nitrile-based flexible copper clad laminate . J. Appl. Polym. Sci. , 2023 , 140 ( 25 ), e 53947 . doi: 10.1002/app.53947 http://dx.doi.org/10.1002/app.53947
Hu W. B. The physics of polymer chain-folding . Phys. Rep. , 2018 , 747 , 1 - 50 . doi: 10.1016/j.physrep.2018.04.004 http://dx.doi.org/10.1016/j.physrep.2018.04.004
Li T. R. ; Wu C. J. ; Liu C. C. ; He L. ; Liu Y. F. ; Xia Y. Q. ; Lin G. ; Tong L. F. ; Liu X. B. Effect of carbon nanotubes on the crystallization and properties of semi-crystalline polyarylene ether nitrile . J. Mater. Sci. Mater. Electron. , 2022 , 33 ( 17 ), 13614 - 13624 . doi: 10.1007/s10854-022-08296-5 http://dx.doi.org/10.1007/s10854-022-08296-5
Yang X. L. ; Li K. ; Xu M. Z. ; Liu X. B. Crystallization behaviors and properties of poly(arylene ether nitrile) nanocomposites induced by aluminum oxide and multi-walled carbon nanotubes . J. Mater. Sci. , 2018 , 53 ( 20 ), 14361 - 14374 . doi: 10.1007/s10853-018-2648-y http://dx.doi.org/10.1007/s10853-018-2648-y
Li K. ; Tong L. F. ; Yang R. Q. ; Wei R. B. ; Liu X. B. In-situ preparation and dielectric properties of silver-polyarylene ether nitrile nanocomposite films . J. Mater. Sci. Mater. Electron. , 2016 , 27 ( 5 ), 4559 - 4565 . doi: 10.1007/s10854-016-4331-x http://dx.doi.org/10.1007/s10854-016-4331-x
Wang T. ; He L. ; Zhang J. H. ; Liu X. B. ; Tong L. F. Effects of ZnO morphology on tribological behaviors of polyarylene ether nitrile composites . Compos. Struct. , 2025 , 354 , 118810 . doi: 10.1016/j.compstruct.2024.118810 http://dx.doi.org/10.1016/j.compstruct.2024.118810
Ren W. M. ; Wang R. J. ; Ren B. H. ; Gu G. G. ; Yue T. J. Mechanism-inspired design of heterodinuclear catalysts for copolymerization of epoxide and lactone . Chinese J. Polym. Sci. , 2020 , 38 ( 9 ), 950 - 957 . doi: 10.1007/s10118-020-2413-y http://dx.doi.org/10.1007/s10118-020-2413-y
Tong L. F. ; Wang Y. J. ; You Y. ; Tu L. ; Wei R. B. ; Liu X. B. Effect of plasticizer and shearing field on the properties of poly(arylene ether nitrile) composites . ACS Omega , 2020 , 5 ( 4 ), 1870 - 1878 . doi: 10.1021/acsomega.9b03338 http://dx.doi.org/10.1021/acsomega.9b03338
Mo C. ; Wu C. J. ; He L. ; Wu H. R. ; Tong L. F. ; Liu X. B. Effect of thermal stretching on properties of poly(arylene ether nitrile)/aramid staple fiber composites . J. Appl. Polym. Sci. , 2023 , 140 ( 41 ), e 54518 . doi: 10.1002/app.54518 http://dx.doi.org/10.1002/app.54518
Xiao Q. ; Yang R. Q. ; You Y. ; Zhang H. X. ; Wei R. B. ; Liu X. B. Crystalline, mechanical and dielectric properties of polyarylene ether nitrile with multi-walled carbon nanotube filled with polyarylene ether nitrile . J. Nanosci. Nanotechnol. , 2018 , 18 ( 6 ), 4311 - 4317 . doi: 10.1166/jnn.2018.15262 http://dx.doi.org/10.1166/jnn.2018.15262
Wang Y. J. ; Tong L. F. ; You Y. ; Tu L. ; Zhou M. R. ; Liu X. B. Polyethylenimine assisted bio-inspired surface functionalization of hexagonal boron nitride for enhancing the crystallization and the properties of poly(arylene ether nitrile) . Nanomaterials , 2019 , 9 ( 5 ), 760 . doi: 10.3390/nano9050760 http://dx.doi.org/10.3390/nano9050760
Wang Y. J. ; Kai Y. ; Tong L. F. ; You Y. ; Huang Y. M. ; Liu X. B. The frequency independent functionalized MoS 2 nanosheet/poly(arylene ether nitrile) composites with improved dielectric and thermal properties via mussel inspired surface chemistry . Appl. Surf. Sci. , 2019 , 481 , 1239 - 1248 . doi: 10.1016/j.apsusc.2019.03.235 http://dx.doi.org/10.1016/j.apsusc.2019.03.235
Zhang T. ; Chen Y. N. ; Zhou S. Q. ; Wu J. Q. ; Guo Y. F. ; Hu J. B. ; Xiao Q. ; Tong L. F. ; Liu S. N. ; Liu X. B. Matrix crystallinity and nanofiller compatibility optimization of polyarylether nitrile nanocomposite films for enhanced high-temperature energy storage . Chem. Eng. J. , 2025 , 521 , 166848 . doi: 10.1016/j.cej.2025.166848 http://dx.doi.org/10.1016/j.cej.2025.166848
Li K. ; Zheng P. L. ; Tong L. F. ; Ren D. X. ; Xu M. Z. ; Tang X. Z. ; Liu X. B. Design and properties of poly(arylene ether nitriles) composites via incorporation of poly(arylene ether nitriles) grafted Fe 3 O 4 /Fe-phthalocyanine hybrid submicron-spheres . Compos. Part B Eng. , 2019 , 176 , 107202 . doi: 10.1016/j.compositesb.2019.107202 http://dx.doi.org/10.1016/j.compositesb.2019.107202
徐涛 , 于杰 , 金志浩 . 聚丙烯聚集态结构与力学性能间关系的研究进展 . 高分子材料科学与工程 , 2001 , 17 ( 3 ), 6 - 10 .
Yang X. L. ; Xu M. Z. ; Zou X. Q. ; Liu X. B. Graphene nanoplatelet-reinforced semi-crystal poly(arylene ether nitrile) nanocomposites prepared by the twin-screw extrusion . Polym. Compos. , 2014 , 35 ( 2 ), 404 - 411 . doi: 10.1002/pc.22674 http://dx.doi.org/10.1002/pc.22674
Zhu J. ; Mo C. ; Tong L. F. ; Liu X. B. Synthesis and properties of semicrystalline poly(ether nitrile ketone) copolymers . Polymers , 2024 , 16 ( 2 ), 251 . doi: 10.3390/polym16020251 http://dx.doi.org/10.3390/polym16020251
Zheng P. L. ; Pu Z. J. ; Yang W. ; Shen S. Z. ; Jia K. ; Liu X. B. Effect of multiwalled carbon nanotubes on the crystallization and dielectric properties of BP-PEN nanocomposites . J. Mater. Sci. Mater. Electron. , 2014 , 25 ( 9 ), 3833 - 3839 . doi: 10.1007/s10854-014-2096-7 http://dx.doi.org/10.1007/s10854-014-2096-7
Zhang J. H. ; He L. ; Nie M. ; Liu X. B. ; Tong L. F. Polyarylene ether nitrile dielectric material with a thermally conductive network connected by crystals and boron nitride nanosheets . Polym. Compos. , 2025 , 46 ( S1 ), S546 - S559 . doi: 10.1002/pc.29799 http://dx.doi.org/10.1002/pc.29799
Wei R. B. ; Tu L. ; You Y. ; Zhan C. H. ; Wang Y. J. ; Liu X. B. Fabrication of crosslinked single-component polyarylene ether nitrile composite with enhanced dielectric properties . Polymer , 2019 , 161 , 162 - 169 . doi: 10.1016/j.polymer.2018.12.017 http://dx.doi.org/10.1016/j.polymer.2018.12.017
Holme . VII . A description of a property of caoutchouc , or Indian rubber; with some reflections on the cause of the elasticity of this substance. in a letter to Dr. Philos. Mag., 1806 , 24 ( 93 ), 39 - 43 . doi: 10.1080/14786440608563329 http://dx.doi.org/10.1080/14786440608563329
You Y. ; Huang X. ; Pu Z. J. ; Jia K. ; Liu X. B. Enhanced crystallinity, mechanical and dielectric properties of biphenyl polyarylene ether nitriles by unidirectional hot-stretching . J. Polym. Res. , 2015 , 22 ( 11 ), 211 . doi: 10.1007/s10965-015-0859-3 http://dx.doi.org/10.1007/s10965-015-0859-3
Wu C. J. ; Zuo L. S. ; Tong L. F. ; Liu X. B. Effect of isothermal heat treatment and thermal stretching on the properties of crystalline poly(arylene ether nitrile) . J. Phys. Chem. Solids , 2022 , 160 , 110335 . doi: 10.1016/j.jpcs.2021.110335 http://dx.doi.org/10.1016/j.jpcs.2021.110335
Huang X. ; Wang K. ; Jia K. ; Liu X. B. Polymer-based composites with improved energy density and dielectric constants by monoaxial hot-stretching for organic film capacitor applications . RSC Adv. , 2015 , 5 ( 64 ), 51975 - 51982 . doi: 10.1039/c5ra05029d http://dx.doi.org/10.1039/c5ra05029d
Tong L. F. ; Jia K. ; Liu X. B. A novel single-component composite based on phthalonitrile end-capped polyarylene ether nitrile: crystallization and crosslinking . J. Polym. Res. , 2015 , 22 , 125 . doi: 10.1007/s10965-015-0736-0 http://dx.doi.org/10.1007/s10965-015-0736-0
Yu F. ; Xiao L. H. Non-isothermal crystallization kinetics of poly(ether sulfone) functionalized graphene reinforced poly(ether ether ketone) composites . Polym. Test. , 2021 , 97 , 107150 . doi: 10.1016/j.polymertesting.2021.107150 http://dx.doi.org/10.1016/j.polymertesting.2021.107150
Bhalwankar M. ; Mastud S. Impact strength enhancement of PPS polymer matrix by synthesis of nanocomposite with WS 2 , MoS2 nanofillers, and impact modifier PEGM. Polym. Plast. Technol. Mater., 2022, 62 ( 3 ), 260 - 269 . doi: 10.1080/25740881.2022.2101377 http://dx.doi.org/10.1080/25740881.2022.2101377
0
Views
48
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号