

浏览全部资源
扫码关注微信
1.成都飞机工业(集团)有限责任公司 成都 610092
2.北京航空航天大学化学学院 北京 100191
Long-cheng Gao, E-mail: lcgao@buaa.edu.cn
Received:26 July 2025,
Accepted:26 September 2025,
Published Online:18 December 2025,
Published:20 February 2026
移动端阅览
文蔚, 刘鹏祥, 郭玉蓉, 赵敏, 李良志, 高龙成. 嵌段共聚物自组装诱导微量离子基团构筑高密度通道阵列. 高分子学报, 2026, 57(2), 522-529.
Wen, W.; Liu, P. X.; Guo, Y. R.; Zhao, M.; Li, L. Z.; Gao, L. C. Minority groups in block copolymer self-assembled into high-density ion transport channels. Acta Polymerica Sinica (in Chinese), 2026, 57(2), 522-529.
文蔚, 刘鹏祥, 郭玉蓉, 赵敏, 李良志, 高龙成. 嵌段共聚物自组装诱导微量离子基团构筑高密度通道阵列. 高分子学报, 2026, 57(2), 522-529. DOI: 10.11777/j.issn1000-3304.2025.25175. CSTR: 32057.14.GFZXB.2025.7478.
Wen, W.; Liu, P. X.; Guo, Y. R.; Zhao, M.; Li, L. Z.; Gao, L. C. Minority groups in block copolymer self-assembled into high-density ion transport channels. Acta Polymerica Sinica (in Chinese), 2026, 57(2), 522-529. DOI: 10.11777/j.issn1000-3304.2025.25175. CSTR: 32057.14.GFZXB.2025.7478.
离子交换膜(IEMs)是多种电化学系统的核心部件. 离子选择性与离子通量是评价IEMs的2大关键性能指标,兼具高选择性与高通量的IEMs一直是科研界和工业界追求的目标. 在传统IEMs中,离子基团组装形成三维的离子通道网络,当离子基团含量较低时,难以形成连续通道,导致通量受限;而增加离子基团含量虽可提升通量,却会引发膜材料的过度溶胀,致使选择性衰减. 如何用微量离子基团构筑高密度离子传输通道存在很大困难. 针对这一难题,我们提出通过微量离子基团的诱导组装策略,构建高密度1D离子通道阵列膜. 利用4-氨基偶氮苯(Azo)与微量马来酸酐接枝的聚(苯乙烯-乙烯/丁烯-苯乙烯)嵌段共聚物(SEBS)反应,在接枝偶氮苯的同时,原位产生羧基. 尽管Azo接枝在乙烯/丁烯段,但与苯乙烯段的相容性更好. 因此,在SEBS自组装过程中,Azo具有向苯乙烯区域迁移的趋势,诱导了羧基在两相界面富集,形成了高密度的离子通道阵列. 这种“以少聚多”的构筑方法相异于传统材料的设计思路,实现了离子通量与选择性的协同优化,表现出优异的盐差能转换能力(9.35 W/m
2
,500倍浓度梯度),为下一代高性能IEMs的开发提供了新思路.
Ion exchange membranes (IEMs) are essential components in various electrochemical systems. Ion selectivity and ion flux are the two key parameters for evaluating IEM performance
and achieving both high selectivity and high flux has long been a major challenge in both academic and industrial communities. In conventional IEMs
ionic groups assemble into a three-dimensional ion transport network. However
at low ionic group content
the formation of continuous ion channels is limited
resulting in low ion flux. Increasing the ionic group content can enhance ion flux but often leads to excessive swelling
thereby compromising selectivity. Constructing high-density ion transport channels with a minimal number of ionic groups remains a significant difficulty. To address this issue
we proposed a strategy to fabricate high-density ion channels by using tiny amounts of ionic groups. 4-Aminoazobenzene (Azo) was grafted onto a styrene-ethylene/butylene-styrene (SEBS) block copolymer containing a small amount of maleic anhydride (MA). During the grafting reaction
carboxylic acid groups were introduced in situ. Although the Azo units are grafted onto the ethylene/butylene segment
their stronger compatibility with the polystyrene (PS) domains drives their migration toward the PS regions during self-assembly. This process induces the interfacial enrichment of carboxyl groups
resulting in the formation of a high-density ion channel array. This "less-to-more" design concept differs from conventional material strategies and enables a synergistic e
nhancement of both ion flux and selectivity. The resulting membrane exhibited excellent osmotic energy conversion performance
achieving a power density of 9.35 W/m
2
under a 500-fold salinity gradient
offering a novel pathway for the development of next-generation high-performance IEMs.
Luo T. ; Abdu S. ; Wessling M. Selectivity of ion exchange membranes: a review . J. Membr. Sci. , 2018 , 555 , 429 - 454 . doi: 10.1016/j.memsci.2018.03.051 http://dx.doi.org/10.1016/j.memsci.2018.03.051
Wang A. Q. ; Breakwell C. ; Foglia F. ; Tan R. ; Lovell L. ; Wei X. C. ; Wong T. ; Meng N. Q. ; Li H. D. ; Seel A. ; Sarter M. ; Smith K. ; Alvarez‐Fernandez A. ; Furedi M. ; Guldin S. ; Britton M. M. ; McKeown N. B. ; Jelfs K. E. ; Song Q. L. Selective ion transport through hydrated micropores in polymer membranes . Nature , 2024 , 635 ( 8038 ), 353 - 358 . doi: 10.1038/s41586-024-08140-2 http://dx.doi.org/10.1038/s41586-024-08140-2
Yan J. Y. ; Yu W. S. ; Wang Z. H. ; Wu L. ; Wang Y. M. ; Xu T. W. Review on high-performance polymeric bipolar membrane design and novel electrochemical applications . Aggregate , 2024 , 5 ( 4 ), e 527 . doi: 10.1002/agt2.527 http://dx.doi.org/10.1002/agt2.527
Kingsbury R. S. ; Flotron S. ; Zhu S. ; Call D. F. ; Coronell O. Junction potentials bias measurements of ion exchange membrane permselectivity . Environ. Sci. Technol. , 2018 , 52 ( 8 ), 4929 - 4936 . doi: 10.1021/acs.est.7b05317 http://dx.doi.org/10.1021/acs.est.7b05317
Peng K. ; Zhang C. ; Fang J. K. ; Cai H. Y. ; Ling R. E. ; Ma Y. X. ; Tang G. G. ; Zuo P. P. ; Yang Z. J. ; Xu T. W. Constructing microporous ion exchange membranes via simple hypercrosslinking for pH-neutral aqueous organic redox flow batteries . Angew. Chem. Int. Ed. , 2024 , 63 ( 37 ), e 202407372 . doi: 10.1002/anie.202407372 http://dx.doi.org/10.1002/anie.202407372
Ozkul S. ; Arbabzadeh O. ; Bisselink R. J. M. ; Kuipers N. J. M. ; Bruning H. ; Rijnaarts H. H. M. ; Dykstra J. E. Selective adsorption in ion exchange membranes: the effect of solution ion composition on ion partitioning . Water Res. , 2024 , 254 , 121382 . doi: 10.1016/j.watres.2024.121382 http://dx.doi.org/10.1016/j.watres.2024.121382
Liu P. X. ; Huang C. H. ; Guo Y. R. ; Zhai Y. ; Wu H. X. ; Jiang Q. ; Zhao H. W. ; Wang W. H. ; Man X. K. ; Gao L. C. ; Jiang L. Ionic-nanotube array membrane generating ultrahigh osmotic energy conversion . Adv. Mater. , 2025 , 37 ( 38 ), 2506913 . doi: 10.1002/adma.202506913 http://dx.doi.org/10.1002/adma.202506913
Wu Y. ; Lu C. H. ; Hu C. Z. ; Qu J. H. Combined effect of electrostatic interaction and steric sieving during ion transport in nanochannels . Environ. Sci. Technol. , 2025 , 59 ( 22 ), 11377 - 11388 . doi: 10.1021/acs.est.5c02112 http://dx.doi.org/10.1021/acs.est.5c02112
Hsu W. Y. ; Gierke T. D. Ion transport and clustering in nafion perfluorinated membranes . J. Membr. Sci. , 1983 , 13 ( 3 ), 307 - 326 . doi: 10.1016/s0376-7388(00)81563-x http://dx.doi.org/10.1016/s0376-7388(00)81563-x
Gierke T. D. ; Munn G. E. ; Wilson F. C. The morphology in nafion perfluorinated membrane products, as determined by wide- and small-angle X-ray studies . J. Polym. Sci. Polym. Phys. Ed. , 1981 , 19 ( 11 ), 1687 - 1704 . doi: 10.1002/pol.1981.180191103 http://dx.doi.org/10.1002/pol.1981.180191103
Zuo P. P. ; Xu Z. A. ; Zhu Q. ; Ran J. ; Ge L. ; Ge X. L. ; Wu L. ; Yang Z. J. ; Xu T. W. Ion exchange membranes: constructing and tuning ion transport channels . Adv. Funct. Mater. , 2022 , 32 ( 52 ), 2207366 . doi: 10.1002/adfm.202207366 http://dx.doi.org/10.1002/adfm.202207366
Ozkul S. ; van Daal J. J. ; Kuipers N. J. M. ; Bisselink R. J. M. ; Bruning H. ; Dykstra J. E. ; Rijnaarts H. H. M. Transport mechanisms in electrodialysis: the effect on selective ion transport in multi-ionic solutions . J. Membr. Sci. , 2023 , 665 , 121114 . doi: 10.1016/j.memsci.2022.121114 http://dx.doi.org/10.1016/j.memsci.2022.121114
Kamcev J. ; Freeman B. D. Cracks help membranes to stay hydrated . Nature , 2016 , 532 ( 7600 ), 445 - 446 . doi: 10.1038/532445a http://dx.doi.org/10.1038/532445a
Xiong P. ; Zhang L. Y. ; Chen Y. Y. ; Peng S. S. ; Yu G. H. A chemistry and microstructure perspective on ion-conducting membranes for redox flow batteries . Angew. Chem. Int. Ed. , 2021 , 60 ( 47 ), 24770 - 24798 . doi: 10.1002/anie.202105619 http://dx.doi.org/10.1002/anie.202105619
Xu J. F. ; Zhao H. ; Li W. H. ; Li P. ; Chen C. ; Yue Z. Y. ; Zou L. L. ; Yang H. Facile strategy for preparing a novel reinforced blend membrane with high cycling stability for vanadium redox flow batteries . Chem. Eng. J. , 2022 , 433 , 133197 . doi: 10.1016/j.cej.2021.133197 http://dx.doi.org/10.1016/j.cej.2021.133197
Carey C. ; Díaz J. C. ; Kitto D. ; Espinoza C. ; Ahn E. ; Kamcev J. Interfacial interactions between polymers and selective adsorbents influence ion transport properties of boron scavenging ion-exchange membranes . J. Membr. Sci. , 2023 , 669 , 121301 . doi: 10.1016/j.memsci.2022.121301 http://dx.doi.org/10.1016/j.memsci.2022.121301
Russell S. T. ; Pereira R. ; Vardner J. T. ; Jones G. N. ; Dimarco C. ; West A. C. ; Kumar S. K. Hydration effects on the permselectivity-conductivity trade-off in polymer electrolytes . Macromolecules , 2020 , 53 ( 3 ), 1014 - 1023 . doi: 10.1021/acs.macromol.9b02291 http://dx.doi.org/10.1021/acs.macromol.9b02291
Liu L. J. ; Li H. ; Zhang P. F. ; Zhou Y. B. ; Zhao J. P. ; Zhang G. Z. Hybrid anionic block copolymerization: from organocatalysis-streamlined crossover to internally microphase-separated aggregates . Aggregate , 2024 , 5 ( 4 ), e 541 . doi: 10.1002/agt2.541 http://dx.doi.org/10.1002/agt2.541
Gao L. C. Anti-entropy aggregation of minority groups in polymers: design and applications . ChemPlusChem , 2024 , 89 ( 5 ), e 202300638 . doi: 10.1002/cplu.202300638 http://dx.doi.org/10.1002/cplu.202300638
李超 , 高龙成 . 高分子微量基团的反熵聚集 . 高分子学报 , 2023 , 54 ( 7 ), 995 - 1011 .
Li C. ; Zhai Y. ; Jiang H. M. ; Li S. Q. ; Liu P. X. ; Gao L. C. ; Jiang L. Bioinspired light-driven chloride pump with helical porphyrin channels . Nat. Commun. , 2024 , 15 , 832 . doi: 10.1038/s41467-024-45117-1 http://dx.doi.org/10.1038/s41467-024-45117-1
Li S. Q. ; Li C. ; Zhao M. ; Yang J. ; Gao L. C. ; Jiang L. Chlorophyll-inspired magnesium porphyrin array membrane for vis-light-enhanced osmotic energy conversion . ACS Appl. Mater. Interfaces , 2024 , 16 ( 50 ), 70090 - 70096 . doi: 10.1021/acsami.4c17220 http://dx.doi.org/10.1021/acsami.4c17220
Vermaas D. A. ; Guler E. ; Saakes M. ; Nijmeijer K. Theoretical power density from salinity gradients using reverse electrodialysis . Energy Procedia , 2012 , 20 , 170 - 184 . doi: 10.1016/j.egypro.2012.03.018 http://dx.doi.org/10.1016/j.egypro.2012.03.018
0
Views
150
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号