

浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 高分子科学与技术重点实验室 生态环境高分子材料重点实验室 长春 130022
2.中国科学技术大学应用化学与工程学院 合肥 230026
You-hua Tao, E-mail: youhua.tao@ciac.ac.cn
Received:28 July 2025,
Accepted:22 August 2025,
Published Online:15 October 2025,
Published:20 February 2026
移动端阅览
张桢, 陈金龙, 李茂盛, 陶友华. 阴离子结合催化的2,3-二氢呋喃可控阳离子聚合研究. 高分子学报, 2026, 57(2), 460-469.
Zhang, Z.; Chen, J. L.; Li, M. S.; Tao, Y. H. Anion-binding catalytic controlled cationic polymerization of 2,3-dihydrofuran. Acta Polymerica Sinica (in Chinese), 2026, 57(2), 460-469.
张桢, 陈金龙, 李茂盛, 陶友华. 阴离子结合催化的2,3-二氢呋喃可控阳离子聚合研究. 高分子学报, 2026, 57(2), 460-469. DOI: 10.11777/j.issn1000-3304.2025.25176. CSTR: 32057.14.GFZXB.2025.7460.
Zhang, Z.; Chen, J. L.; Li, M. S.; Tao, Y. H. Anion-binding catalytic controlled cationic polymerization of 2,3-dihydrofuran. Acta Polymerica Sinica (in Chinese), 2026, 57(2), 460-469. DOI: 10.11777/j.issn1000-3304.2025.25176. CSTR: 32057.14.GFZXB.2025.7460.
面向可持续高分子材料的迫切需求,发展同时兼具高性能与可降解性的新型聚合物体系,已成为高分子科学领域的研究热点之一. 聚2
3-二氢呋喃(PDHF),是一种通过阳离子聚合制备的可降解乙烯基聚合物,高分子量的PDHF展现出优异的力学性能. 然而,受限于传统阳离子聚合方法,合成高分子量PDHF依然面临挑战. 本工作报道了一种阴离子结合催化的2
3-二氢呋喃(DHF)可控阳离子聚合方法. 通过合理选择硒代环磷酰胺催化剂结构与阳离子引发物种,可控合成了数均分子量高达427 kg/mol的PDHF. 性能测试表明高分子量PDHF表现出优异的热机械性能、气体阻隔性以及光学透明性. 此外,进一步研究了最优催化体系下DHF的立体选择性聚合,成功合成了顺式构型重复单元比例达67%的PDHF,其玻璃化转变温度高达168 ℃,显著高于高反式构型的对应聚合物.
To address the pressing demand for sustainable polymeric materials
the development of novel polymer systems combining high performance with controllable degradation characteristics has become a significant challenge in polymer science. Poly-2
3-dihydrofuran (PDHF)
a degradable vinyl polymer synthesized
via
cationic polymerization
exhibits excellent service performance at high molecular weights. However
the synthesis of high-molecular-weight PDHF remains challenging due to inherent limitations in conventional cationic polymerization methods. Herein
we report a controlled cationic polymerization of DHF mediated by anion-binding catalysis. Through meticulous screening of anion-binding catalysts and cationic initiators
PDHF with molecular weight of 427 kg/mol was successfully synthesized for the first time. The resultant PDHF demonstrated outstanding thermomechanical properties
barrier performance
optical transparency
and adhesive characteristics. Furthermore
we explored the stereoselective polymerization of DHF under anion-binding catalytic conditions
achieving the synthesis of 67%
cis
-isomer-enriched PDHF with an elevated glass transition temperature (
T
g
) of 168 ℃
which was markedly higher than
trans
-isomer-enriched PDHF.
Manker L. P. ; Dick G. R. ; Demongeot A. ; Hedou M. A. ; Rayroud C. ; Rambert T. ; Jones M. J. ; Sulaeva I. ; Vieli M. ; Leterrier Y. ; Potthast A. ; Maréchal F. ; Michaud V. ; Klok H. A. ; Luterbacher J. S. Sustainable polyesters via direct functionalization of lignocellulosic sugars . Nat. Chem. , 2022 , 14 ( 9 ), 976 - 984 . doi: 10.1038/s41557-022-00974-5 http://dx.doi.org/10.1038/s41557-022-00974-5
Lu H. Y. ; Diaz D. J. ; Czarnecki N. J. ; Zhu C. Z. ; Kim W. ; Shroff R. ; Acosta D. J. ; Alexander B. R. ; Cole H. O. ; Zhang Y. ; Lynd N. A. ; Ellington A. D. ; Alper H. S. Machine learning-aided engineering of hydrolases for PET depolymerization . Nature , 2022 , 604 ( 7907 ), 662 - 667 . doi: 10.1038/s41586-022-04599-z http://dx.doi.org/10.1038/s41586-022-04599-z
Abel B. A. ; Snyder R. L. ; Coates G. W. Chemically recyclable thermoplastics from reversible-deactivation polymerization of cyclic acetals . Science , 2021 , 373 ( 6556 ), 783 - 789 . doi: 10.1126/science.abh0626 http://dx.doi.org/10.1126/science.abh0626
Hester H. G. ; Abel B. A. ; Coates G. W. Ultra-high-molecular-weight poly(dioxolane): enhancing the mechanical performance of a chemically recyclable polymer . J. Am. Chem. Soc. , 2023 , 145 ( 16 ), 8800 - 8804 . doi: 10.1021/jacs.3c01901 http://dx.doi.org/10.1021/jacs.3c01901
Li J. D. ; Liu F. S. ; Liu Y. L. ; Shen Y. ; Li Z. B. Functionalizable and chemically recyclable thermoplastics from chemoselective ring-opening polymerization of bio-renewable bifunctional α -methylene- δ -valerolactone . Angew. Chem. , 2022 , 134 ( 32 ), e 202207105 . doi: 10.1002/ange.202207105 http://dx.doi.org/10.1002/ange.202207105
MacLeod M. ; Arp H. P. H. ; Tekman M. B. ; Jahnke A. The global threat from plastic pollution . Science , 2021 , 373 ( 6550 ), 61 - 65 . doi: 10.1126/science.abg5433 http://dx.doi.org/10.1126/science.abg5433
Law K. L. ; Starr N. ; Siegler T. R. ; Jambeck J. R. ; Mallos N. J. ; Leonard G. H. The United States' contribution of plastic waste to land and ocean . Sci. Adv. , 2020 , 6 ( 44 ), eabd 0288 . doi: 10.1126/sciadv.abd0288 http://dx.doi.org/10.1126/sciadv.abd0288
Geyer R. ; Jambeck J. R. ; Law K. L. Production, use, and fate of all plastics ever made . Sci. Adv. , 2017 , 3 ( 7 ), e 1700782 . doi: 10.1126/sciadv.1700782 http://dx.doi.org/10.1126/sciadv.1700782
Spring S. W. ; Hsu J. H. ; Sifri R. J. ; Yang S. M. ; Cerione C. S. ; Lambert T. H. ; Ellison C. J. ; Fors B. P. Poly(2,3-dihydrofuran): a strong, biorenewable, and degradable thermoplastic synthesized via room temperature cationic polymerization . J. Am. Chem. Soc. , 2022 , 144 ( 34 ), 15727 - 15734 . doi: 10.1021/jacs.2c06103 http://dx.doi.org/10.1021/jacs.2c06103
Sanda F. ; Matsumoto M. Degradation behavior of poly(2,3-dihydrofuran) . J. Appl. Polym. Sci. , 1996 , 59 ( 2 ), 295 - 299 . doi: 10.1002/(sici)1097-4628(19960110)59:2<295::aid-app14>3.0.co;2-w http://dx.doi.org/10.1002/(sici)1097-4628(19960110)59:2<295::aid-app14>3.0.co;2-w
Aoshima S. ; Kanaoka S. A renaissance in living cationic polymerization . Chem. Rev. , 2009 , 109 ( 11 ), 5245 - 5287 . doi: 10.1021/cr900225g http://dx.doi.org/10.1021/cr900225g
Uchiyama M. ; Satoh K. ; Kamigaito M. Cationic RAFT and DT polymerization . Prog. Polym. Sci. , 2022 , 124 , 101485 . doi: 10.1016/j.progpolymsci.2021.101485 http://dx.doi.org/10.1016/j.progpolymsci.2021.101485
Faust R. ; Kennedy J. P. Living carbocationic polymerization . Polym. Bull. , 1986 , 15 ( 4 ), 317 - 323 . doi: 10.1007/bf00254850 http://dx.doi.org/10.1007/bf00254850
Barr D. A. ; Rose J. B. Cationic polymerisation of 2 , 3 -dihydrofurans . J. Chem. Soc., 1954, 3766 - 3769 . doi: 10.1039/jr9540003766 http://dx.doi.org/10.1039/jr9540003766
Goethals E. J. ; Du , PrezF . Carbocationic polymerizations . Prog. Polym. Sci. , 2007 , 32 ( 2 ), 220 - 246 . doi: 10.1016/j.progpolymsci.2007.01.001 http://dx.doi.org/10.1016/j.progpolymsci.2007.01.001
Faust R. ; Fehérvári A. ; Kennedy J. P. Quasiliving carbocationic polymerization. II. The discovery: the α -methylstyrene system . J. Macromol. Sci. Part A Chem. , 1982 , 18 ( 9 ), 1209 - 1228 . doi: 10.1080/00222338208077219 http://dx.doi.org/10.1080/00222338208077219
Sanda F. ; Matsumoto M. Cationic polymerization of 2,3-dihydrofuran. Study on the relationship between glass transition temperature and tacticity of the polymer . Macromolecules , 1995 , 28 ( 20 ), 6911 - 6914 . doi: 10.1021/ma00124a029 http://dx.doi.org/10.1021/ma00124a029
Yonezumi M. ; Kanaoka S. ; Aoshima S. Living cationic polymerization of dihydrofuran and its derivatives . J. Polym. Sci., Part A: Polym. Chem. , 2008 , 46 ( 13 ), 4495 - 4504 . doi: 10.1002/pola.22785 http://dx.doi.org/10.1002/pola.22785
Li M. S. ; Zhang Z. ; Yan Y. ; Lv W. X. ; Li Z. K. ; Wang X. H. ; Tao Y. H. Anion-binding catalysis enables living cationic polymerization . Nat. Synth. , 2022 , 1 ( 10 ), 815 - 823 . doi: 10.1038/s44160-022-00142-0 http://dx.doi.org/10.1038/s44160-022-00142-0
Li M. S. ; Li H. Y. ; Zhang X. Y. ; Wang X. H. ; Tao Y. H. Mechanistic insight into anion-binding catalytic living cationic polymerization . Angew. Chem. Int. Ed. , 2023 , 62 ( 26 ), e 202303237 . doi: 10.1002/anie.202303237 http://dx.doi.org/10.1002/anie.202303237
Matos-Pérez C. R. ; White J. D. ; Wilker J. J. Polymer composition and substrate influences on the adhesive bonding of a biomimetic, cross-linking polymer . J. Am. Chem. Soc. , 2012 , 134 ( 22 ), 9498 - 9505 . doi: 10.1021/ja303369p http://dx.doi.org/10.1021/ja303369p
Knutson P. C. ; Teator A. J. ; Varner T. P. ; Kozuszek C. T. ; Jacky P. E. ; Leibfarth F. A. Brønsted acid catalyzed stereoselective polymerization of vinyl ethers . J. Am. Chem. Soc. , 2021 , 143 ( 40 ), 16388 - 16393 . doi: 10.1021/jacs.1c08282 http://dx.doi.org/10.1021/jacs.1c08282
Teator A. J. ; Leibfarth F. A. Catalyst-controlled stereoselective cationic polymerization of vinyl ethers . Science , 2019 , 363 ( 6434 ), 1439 - 1443 . doi: 10.1126/science.aaw1703 http://dx.doi.org/10.1126/science.aaw1703
0
Views
347
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号