

浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 高分子科学与技术全国重点实验室 长春 130022
2.中国科学技术大学应用化学与工程学院 合肥 230026
Dong-mei Cui, E-mail: dmcui@ciac.ac.cn
Received:13 September 2025,
Accepted:14 October 2025,
Published Online:19 December 2025,
Published:20 January 2026
移动端阅览
李敏, 刘新立, 崔冬梅. 硅烷封端液体聚丁二烯对二氧化硅填充丁苯橡胶/顺丁橡胶复合材料性能的影响. 高分子学报, 2026, 57(1), 119-128.
Li, M.; Liu, X. L.; Cui, D. M. Effect of silane terminated liquid polybutadiene on the properties of silica-filled styrene-butadiene rubber/butadiene rubber composites. Acta Polymerica Sinica (in Chinese), 2026, 57(1), 119-128.
李敏, 刘新立, 崔冬梅. 硅烷封端液体聚丁二烯对二氧化硅填充丁苯橡胶/顺丁橡胶复合材料性能的影响. 高分子学报, 2026, 57(1), 119-128. DOI: 10.11777/j.issn1000-3304.2025.25180. CSTR: 32057.14.GFZXB.2025.7487.
Li, M.; Liu, X. L.; Cui, D. M. Effect of silane terminated liquid polybutadiene on the properties of silica-filled styrene-butadiene rubber/butadiene rubber composites. Acta Polymerica Sinica (in Chinese), 2026, 57(1), 119-128. DOI: 10.11777/j.issn1000-3304.2025.25180. CSTR: 32057.14.GFZXB.2025.7487.
通过羰基的硅氢化反应实现液体聚丁二烯橡胶的精准封端,合成了三甲氧基硅烷封端(TMSLPB)与三乙氧基硅烷封端(TESLPB)的液体聚丁二烯橡胶. 研究了上述硅烷封端液体橡胶(SLPBs)作为二氧化硅填充的丁苯橡胶/顺丁橡胶(SBR/BR)的界面改性剂对橡胶复合材料性能的影响. 结果表明,SLPBs能显著减弱二氧化硅的团聚现象,改善填料分散性,增强橡胶复合材料性能. 此外,3份TESLPB作为界面改性剂时SBR/BR橡胶复合材料的力学性能最优异,60 ℃时损耗因子值最低,磨耗损失最小.
Precise capping of liquid polybutadiene was achieved by silica hydrogenation reaction
and trimethoxysilane terminated (TMSLPB) and triethoxysilane terminated (TESLPB) liquid polybutadiene rubbers were successfully synthesised. The effects of the above liquid rubbers as interfacial modifiers of silica-filled styrene-butadiene rubber/butadiene rubber (SBR/BR) on the properties of the composites were investigated. The results showed that TMSLPB and TESLPB could significantly attenuate the agglomeration phenomenon of silica
improve the dispersion of filler
and enhance the rubber composite properties. In addition
the mechanical properties of SBR/BR rubber composites were the best when 3 phr of TESLPB was used as plasticiser
with the lowest loss factor value at 60 ℃ and the smallest abrasion loss.
Shoul B. ; Marfavi Y. ; Sadeghi B. ; Kowsari E. ; Sadeghi P. ; Ramakrishna S. Investigating the potential of sustainable use of green silica in the green tire industry: a review . Environ. Sci. Pollut. Res. Int. , 2022 , 29 ( 34 ), 51298 - 51317 . doi: 10.1007/s11356-022-20894-8 http://dx.doi.org/10.1007/s11356-022-20894-8
Abraham E. ; Thomas M. S. ; John C. ; Pothen L. A. ; Shoseyov O. ; Thomas S. Green nanocomposites of natural rubber/nanocellulose: membrane transport, rheological and thermal degradation characterisations . Ind. Crops Prod. , 2013 , 51 , 415 - 424 . doi: 10.1016/j.indcrop.2013.09.022 http://dx.doi.org/10.1016/j.indcrop.2013.09.022
Ansari A. ; Mohanty T. R. ; Ramakrishnan S. ; Amarnath S. K. P. ; Singha N. K. Design of silyl functionalized emulsion SBR and its application in green tire . Ind. Eng. Chem. Res. , 2025 , 64 ( 7 ), 3795 - 3809 . doi: 10.1021/acs.iecr.4c04125 http://dx.doi.org/10.1021/acs.iecr.4c04125
Xiao Y. ; Li B. ; Diao P. F. ; Huang Y. G. ; Li X. X. ; Wang C. S. ; Bian H. G. Raw rubber network of acid-free natural rubber and its application with solution-polymerized styrene butadiene rubber in green tires . Polym. Test. , 2024 , 140 , 108605 . doi: 10.1016/j.polymertesting.2024.108605 http://dx.doi.org/10.1016/j.polymertesting.2024.108605
Sittiphan T. ; Prasassarakich P. ; Poompradub S. Styrene grafted natural rubber reinforced by in situ silica generated via sol-gel technique . Mater. Sci. Eng. B , 2014 , 181 , 39 - 45 . doi: 10.1016/j.mseb.2013.11.018 http://dx.doi.org/10.1016/j.mseb.2013.11.018
Lolage M. ; Parida P. ; Chaskar M. ; Gupta A. ; Rautaray D. Green Silica: industrially scalable & sustainable approach towards achieving improved "nano filler-Elastomer" interaction and reinforcement in tire tread compounds . Sustainable Mater. Technol. , 2020 , 26 , e00232 . doi: 10.1016/j.susmat.2020.e00232 http://dx.doi.org/10.1016/j.susmat.2020.e00232
Sęk M. ; Kaewsakul W. ; Anyszka R. ; Schultz S. ; Bandzierz K. ; Blume A. Interfacial coupling efficiency of functionalised rubbers on silica surfaces . Surf. Interfaces , 2024 , 44 , 103719 . doi: 10.1016/j.surfin.2023.103719 http://dx.doi.org/10.1016/j.surfin.2023.103719
Fröhlich J. ; Niedermeier W. ; Luginsland H. D. The effect of filler-filler and filler-elastomer interaction on rubber reinforcement . Compos. Part A Appl. Sci. Manuf. , 2005 , 36 ( 4 ), 449 - 460 . doi: 10.1016/j.compositesa.2004.10.004 http://dx.doi.org/10.1016/j.compositesa.2004.10.004
Tong Z. H. ; Jiang T. Y. ; Qiu R. ; Lin G. Z. ; Xie C. L. ; Bi M. Q. Effect of different silane coupling agent modified SiO 2 on the properties of silicone rubber composites: based on molecular dynamics . Colloids Surf. A Physicochem. Eng. Aspects , 2025 , 705 , 135615 . doi: 10.1016/j.colsurfa.2024.135615 http://dx.doi.org/10.1016/j.colsurfa.2024.135615
Kaewsakul W. ; Sahakaro K. ; Dierkes W. K. ; Noordermeer J. W. M. Mechanistic aspects of silane coupling agents with different functionalities on reinforcement of silica-filled natural rubber compounds . Polym. Eng. Sci. , 2015 , 55 ( 4 ), 836 - 842 . doi: 10.1002/pen.23949 http://dx.doi.org/10.1002/pen.23949
Yrieix M. ; Da Cruz-Boisson F. ; Majesté J. C. Rubber/silane reactions and grafting rates investigated by liquid-state NMR spectroscopy . Polymer , 2016 , 87 , 90 - 97 . doi: 10.1016/j.polymer.2016.01.055 http://dx.doi.org/10.1016/j.polymer.2016.01.055
Li S. Q. ; Zhai X. B. ; Chen Z. ; Han D. L. ; Ye X. ; Zhang L. Q. Balancing the "magic triangle" performance of tire rubber nanocomposites with novel low VOC silane coupling agents . Compos. Commun. , 2024 , 46 , 101836 . doi: 10.1016/j.coco.2024.101836 http://dx.doi.org/10.1016/j.coco.2024.101836
Aso O. ; Eguiazábal J. I. ; Nazábal J. The influence of surface modification on the structure and properties of a nanosilica filled thermoplastic elastomer . Compos. Sci. Technol. , 2007 , 67 ( 13 ), 2854 - 2863 . doi: 10.1016/j.compscitech.2007.01.021 http://dx.doi.org/10.1016/j.compscitech.2007.01.021
Liu X. Y. ; Lv X. H. ; Tian Q. F. ; AlMasoud N. ; Xu Y. F. ; Alomar T. S. ; El-Bahy Z. M. ; Li J. T. ; Algadi H. ; Roymahapatra G. ; Ding T. ; Guo J. ; Li X. H. Silica binary hybrid particles based on reduced graphene oxide for natural rubber composites with enhanced thermal conductivity and mechanical properties . Adv. Compos. Hybrid Mater. , 2023 , 6 ( 4 ), 141 . doi: 10.1007/s42114-023-00703-7 http://dx.doi.org/10.1007/s42114-023-00703-7
Castellano M. ; Conzatti L. ; Costa G. ; Falqui L. ; Turturro A. ; Valenti B. ; Negroni F. Surface modification of silica: 1. thermodynamic aspects and effect on elastomer reinforcement . Polymer , 2005 , 46 ( 3 ), 695 - 703 . doi: 10.1016/j.polymer.2004.11.010 http://dx.doi.org/10.1016/j.polymer.2004.11.010
Sun Z. ; Huang Q. ; Zhang L. Q. ; Wang Y. Z. ; Wu Y. P. Tailoring silica-rubber interactions by interface modifiers with multiple functional groups . RSC Adv. , 2017 , 7 ( 62 ), 38915 - 38922 . doi: 10.1039/c7ra07321f http://dx.doi.org/10.1039/c7ra07321f
Mohapatra S. ; Alex R. ; Nando G. B. Cardanol grafted natural rubber: a green substitute to natural rubber for enhancing silica filler dispersion . J. Appl. Polym. Sci. , 2016 , 133 ( 8 ), 43057 . doi: 10.1002/app.43057 http://dx.doi.org/10.1002/app.43057
Liu J. H. ; Li D. ; Fu Z. ; Geng J. T. ; Hua J. Preparation and properties of 1,2-polybutadiene grafting with poly(1,3-butadiene)-block-(dimethylsiloxane) . Polym. Adv. Technol. , 2019 , 30 ( 7 ), 1663 - 1672 . doi: 10.1002/pat.4597 http://dx.doi.org/10.1002/pat.4597
Ying W. L. ; Pan W. J. ; Gan Q. ; Jia X. Y. ; Grassi A. ; Gong D. R. Preparation and property investigation of chain end functionalized cis -1,4 polybutadienes via de-polymerization and cross metathesis of cis -1,4 polybutadienes . Polym. Chem. , 2019 , 10 ( 25 ), 3525 - 3534 . doi: 10.1039/c9py00485h http://dx.doi.org/10.1039/c9py00485h
Liu X. ; Zhao S. H. ; Zhang X. Y. ; Li X. L. ; Bai Y. Preparation, structure, and properties of solution-polymerized styrene-butadiene rubber with functionalized end-groups and its silica-filled composites . Polymer , 2014 , 55 ( 8 ), 1964 - 1976 . doi: 10.1016/j.polymer.2014.02.067 http://dx.doi.org/10.1016/j.polymer.2014.02.067
Xu T. W. ; Jia Z. X. ; Luo Y. F. ; Jia D. M. ; Peng Z. Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites . Appl. Surf. Sci. , 2015 , 328 , 306 - 313 . doi: 10.1016/j.apsusc.2014.12.029 http://dx.doi.org/10.1016/j.apsusc.2014.12.029
Pourhossaini M. R. ; Razzaghi-Kashani M. Grafting hydroxy-terminated polybutadiene onto nanosilica surface for styrene butadiene rubber compounds . J. Appl. Polym. Sci. , 2012 , 124 ( 6 ), 4721 - 4728 . doi: 10.1002/app.35514 http://dx.doi.org/10.1002/app.35514
Abd-El-Messieh S. L. ; Abd-El-Nour K. N. Effect of curing time and sulfur content on the dielectric relaxation of styrene butadiene rubber . J. Appl. Polym. Sci. , 2003 , 88 ( 7 ), 1613 - 1621 . doi: 10.1002/app.11686 http://dx.doi.org/10.1002/app.11686
Zhou Q. Z. ; Jie S. Y. ; Li B. G. Preparation of hydroxyl-terminated polybutadiene with high cis -1,4 content . Ind. Eng. Chem. Res. , 2014 , 53 ( 46 ), 17884 - 17893 . doi: 10.1021/ie503652g http://dx.doi.org/10.1021/ie503652g
Mukherjee D. ; Ellern A. ; Sadow A. D. Magnesium-catalyzed hydroboration of esters: evidence for a new zwitterionic mechanism . Chem. Sci. , 2014 , 5 ( 3 ), 959 - 964 . doi: 10.1039/c3sc52793j http://dx.doi.org/10.1039/c3sc52793j
Lampland N. L. ; Pindwal A. ; Neal S. R. ; Schlauderaff S. ; Ellern A. ; Sadow A. D. Magnesium-catalyzed hydrosilylation of α , β -unsaturated esters . Chem. Sci. , 2015 , 6 ( 12 ), 6901 - 6907 . doi: 10.1039/c5sc02435h http://dx.doi.org/10.1039/c5sc02435h
Rauch M. ; Ruccolo S. ; Parkin G. Synthesis , structure, and reactivity of a terminal magnesium hydride compound with a carbatrane motif, [TismPriBenz ] MgH : a multifunctional catalyst for hydrosilylation and hydroboration . J. Am. Chem. Soc., 2017 , 139 ( 38 ), 13264 - 13267 . doi: 10.1021/jacs.7b06719 http://dx.doi.org/10.1021/jacs.7b06719
Zhang X. G. ; Lu K. ; Chen X. ; Su G. X. ; Rong X. F. ; Ma M. T. Hydroboration and hydrosilylation of alkenes catalyzed by an unsymmetrical magnesium methyl complex . Org. Biomol. Chem. , 2024 , 22 ( 26 ), 5353 - 5360 . doi: 10.1039/d4ob00745j http://dx.doi.org/10.1039/d4ob00745j
Li M. ; Liu X. L. ; Cui D. M. Catalytic hydroboration of carbonyl derivatives by using phosphinimino amide ligated magnesium complexes . Dalton Trans. , 2021 , 50 ( 37 ), 13037 - 13041 . doi: 10.1039/d1dt00143d http://dx.doi.org/10.1039/d1dt00143d
Sreeja T. D. ; Kutty S. K. N. Cure characteristics and mechanical properties of natural rubber/reclaimed rubber blends . Polym. Plast. Technol. Eng. , 2000 , 39 ( 3 ), 501 - 512 . doi: 10.1081/ppt-100100043 http://dx.doi.org/10.1081/ppt-100100043
Sirisinha C. ; Sae-oui P. ; Suchiva K. ; Thaptong P. Properties of tire tread compounds based on functionalized styrene butadiene rubber and functionalized natural rubber . J. Appl. Polym. Sci. , 2020 , 137 ( 20 ), 48696 . doi: 10.1002/app.48696 http://dx.doi.org/10.1002/app.48696
Parameswaran S. K. ; Bhattacharya S. ; Mukhopadhyay R. ; Naskar K. ; Bhowmick A. K. Excavating the unique synergism of nanofibers and carbon black in Natural rubber based tire tread composition . J. Appl. Polym. Sci. , 2021 , 138 ( 3 ), 49682 . doi: 10.1002/app.49682 http://dx.doi.org/10.1002/app.49682
0
Views
184
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号