

浏览全部资源
扫码关注微信
四川大学化学工程学院 制药与生物工程系 成都 610065
Zhi-lang Xu, E-mail: xuzhilang@scu.edu.cn
Received:12 September 2025,
Accepted:09 October 2025,
Published Online:26 December 2025,
Published:20 February 2026
移动端阅览
周廖敏, 郑好, 葛黎明, 李德富, 徐志朗, 穆畅道. 基于电纺膜骨架的压电抗菌壳聚糖水凝胶薄膜的研究. 高分子学报, 2026, 57(2), 490-501.
Zhou, L. M.; Zheng, H.; Ge, L. M.; Li, D. F.; Xu, Z. L.; Mu, C. D. Piezoelectric antibacterial chitosan hydrogel films based on electrospun membrane skeletons. Acta Polymerica Sinica (in Chinese), 2026, 57(2), 490-501.
周廖敏, 郑好, 葛黎明, 李德富, 徐志朗, 穆畅道. 基于电纺膜骨架的压电抗菌壳聚糖水凝胶薄膜的研究. 高分子学报, 2026, 57(2), 490-501. DOI: 10.11777/j.issn1000-3304.2025.25183. CSTR: 32057.14.GFZXB.2025.7485.
Zhou, L. M.; Zheng, H.; Ge, L. M.; Li, D. F.; Xu, Z. L.; Mu, C. D. Piezoelectric antibacterial chitosan hydrogel films based on electrospun membrane skeletons. Acta Polymerica Sinica (in Chinese), 2026, 57(2), 490-501. DOI: 10.11777/j.issn1000-3304.2025.25183. CSTR: 32057.14.GFZXB.2025.7485.
细菌感染会对人类健康造成持续性威胁,抗生素的滥用导致多重耐药细菌的产生,严重危害世界公共卫生安全,因此亟需发展新型可靠的抗菌功能材料. 具有机电转换能力的压电材料凭借独特的抗菌机理而受到不断的关注. 本研究使用静电纺丝技术制备了负载压电陶瓷钛酸钡纳米颗粒的聚(3-羟基丁酸酯)电纺膜,钛酸钡为电纺膜提供稳定的压电信号;再将电纺膜作为骨架,以甲基丙烯酸酐改性制备的双键壳聚糖在表面和内部光引发聚合形成水凝胶薄膜. 研究表明,制备的压电水凝胶薄膜具有优异的压电性能、机械性能、黏附性能,良好的热稳定性、溶胀性能、降解性能和生物相容性,并且对大肠杆菌(
E. coli
)和金黄色葡萄球菌(
S. aureus
)表现出显著的抗菌效果. 本研究构建了一种行之有效的压电抗菌水凝胶薄膜,为伤口感染及感染性骨缺损的治疗等提供了新思路.
Bacterial infections pose a persistent threat to human health
and the overuse of antibiotics has led to the emergence of multidrug-resistant bacteria
severely jeopardizing global public health security. Therefore
there is an urgent need to develop novel
reliable antimicrobial functional materials. Piezoelectric materials with electromechanical conversion capabilities have garnered increasing attention due to their unique antimicrobial mechanisms. In this study
poly(3-hydroxybutyrate) films loaded with piezoelectric ceramic barium titanate nanoparticles were prepared using electrospinning technology. The barium titanate provided a stable piezoelectric signal for the electrospun membrane; The electrospun membrane was then used as a scaffold
and hydrogel films was formed through photoinitiated polymerization of methacrylic acid-modified double-bonded chitosan on the surface and interior. The study demonstrated that the prepared piezoelectric hydrogel films exhibit excellent piezoelectric properties
mechanical properties
adhesive properties
good thermal stability
swelling properties
degradability
and biocompatibility
as well as significant antibacterial effects against
Escherichia coli
(
E. coli
) and
Staphylococcus aureus
(
S. aureus
). In summary
this study developed an effective piezoelectric antibacterial hydrogel film
providing new insights for the treatment of wound infections and infectious bone defects.
Zhong W. J. ; Handschuh-Wang S. ; Uthappa U. T. ; Shen J. ; Qiu M. ; Du S. W. ; Wang B. Miniature robots for battling bacterial infection . ACS Nano , 2024 , 18 ( 47 ), 32335 - 32363 . doi: 10.1021/acsnano.4c11430 http://dx.doi.org/10.1021/acsnano.4c11430
Shang S. Y. ; Zheng F. Y. ; Tan W. ; Xing Z. Y. ; Chen S. Y. ; Peng F. L. ; Lv X. ; Wang D. ; Zhu X. D. ; Wu J. G. ; Zhou Z. K. ; Zhang X. D. ; Yang X. Piezoelectric biomaterial with advanced design for tissue infection repair . Adv. Sci. , 2025 , 12 ( 10 ), 2413105 . doi: 10.1002/advs.202413105 http://dx.doi.org/10.1002/advs.202413105
Guliy O. I. ; Zaitsev B. D. ; Borodina I. A. Electroacoustic biosensor systems for evaluating antibiotic action on microbial cells . Sensors , 2023 , 23 ( 14 ), 6292 . doi: 10.3390/s23146292 http://dx.doi.org/10.3390/s23146292
Macesic N. ; Uhlemann A. C. ; Peleg A. Y. Multidrug-resistant gram-negative bacterial infections . Lancet , 2025 , 405 ( 10474 ), 257 - 272 . doi: 10.1016/s0140-6736(24)02081-6 http://dx.doi.org/10.1016/s0140-6736(24)02081-6
Zhou W. D. ; Wang Z. X. ; Pu Y. ; Li Y. T. ; Xin S. ; Li X. F. ; Chen J. F. ; Goodenough J. B. Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries . Adv. Mater. , 2019 , 31 ( 4 ), 1805574 . doi: 10.1002/adma.201805574 http://dx.doi.org/10.1002/adma.201805574
Zhang M. J. ; Wang Y. X. ; Zhou Y. J. ; Yuan H. H. ; Guo Q. ; Zhuang T. T. Amplifying inorganic chirality using liquid crystals . Nanoscale , 2022 , 14 ( 3 ), 592 - 601 . doi: 10.1039/d1nr06036h http://dx.doi.org/10.1039/d1nr06036h
Sun T. Y. ; Li J. N. ; Zeng C. ; Luo C. Y. ; Luo X. R. ; Li H. N. Banoxantrone coordinated metal-organic framework for photoacoustic imaging-guided high intensity focused ultrasound therapy . Adv. Healthc. Mater. , 2023 , 12 ( 2 ), 2202348 . doi: 10.1002/adhm.202202348 http://dx.doi.org/10.1002/adhm.202202348
Hwang G. ; Paula A. J. ; Hunter E. E. ; Liu Y. ; Babeer A. ; Karabucak B. ; Stebe K. ; Kumar V. ; Steager E. ; Koo H. Catalytic antimicrobial robots for biofilm eradication . Sci. Robot. , 2019 , 4 ( 29 ), eaaw 2388 . doi: 10.1126/scirobotics.aaw2388 http://dx.doi.org/10.1126/scirobotics.aaw2388
Chae I. ; Jeong C. K. ; Ounaies Z. ; Kim S. H. Review on electromechanical coupling properties of biomaterials . ACS Appl. Bio Mater. , 2018 , 1 ( 4 ), 936 - 953 . doi: 10.1021/acsabm.8b00309 http://dx.doi.org/10.1021/acsabm.8b00309
Wang C. F. ; Sun W. C. ; Xiang Y. M. ; Wu S. L. ; Zheng Y. F. ; Zhang Y. ; Shen J. ; Yang L. ; Liang C. Y. ; Liu X. M. Ultrasound-activated piezoelectric MoS 2 enhances sonodynamic for bacterial killing . Small Sci. , 2023 , 3 ( 7 ), 2300022 . doi: 10.1002/smsc.202300022 http://dx.doi.org/10.1002/smsc.202300022
Montoya C. ; Jain A. ; Londoño J. J. ; Correa S. ; Lelkes P. I. ; Melo M. A. ; Orrego S. Multifunctional dental composite with piezoelectric nanofillers for combined antibacterial and mineralization effects . ACS Appl. Mater. Interfaces , 2021 , 13 ( 37 ), 43868 - 43879 . doi: 10.1021/acsami.1c06331 http://dx.doi.org/10.1021/acsami.1c06331
Schrader S. M. ; Vaubourgeix J. ; Nathan C. Biology of antimicrobial resistance and approaches to combat it . Sci. Transl. Med. , 2020 , 12 ( 549 ), eaaz 6992 . doi: 10.1126/scitranslmed.aaz6992 http://dx.doi.org/10.1126/scitranslmed.aaz6992
Wang Y. ; Cao R. ; Wang C. ; Song X. Y. ; Wang R. N. ; Liu J. C. ; Zhang M. M. ; Huang J. Y. ; You T. T. ; Zhang Y. H. ; Yan D. P. ; Han W. D. ; Yan L. ; Xiao J. S. ; Li P. In situ embedding hydrogen-bonded organic frameworks nanocrystals in electrospinning nanofibers for ultrastable broad-spectrum antibacterial activity . Adv. Funct. Mater. , 2023 , 33 ( 20 ), 2214388 . doi: 10.1002/adfm.202214388 http://dx.doi.org/10.1002/adfm.202214388
Azimi B. ; Milazzo M. ; Lazzeri A. ; Berrettini S. ; Uddin M. J. ; Qin Z. ; Buehler M. J. ; Danti S. Electrospinning piezoelectric fibers for biocompatible devices . Adv. Healthc. Mater. , 2020 , 9 ( 1 ), 1901287 . doi: 10.1002/adhm.201901287 http://dx.doi.org/10.1002/adhm.201901287
Zviagin A. S. ; Chernozem R. V. ; Surmeneva M. A. ; Pyeon M. ; Frank M. ; Ludwig T. ; Tutacz P. ; Ivanov Y. F. ; Mathur S. ; Surmenev R. A. Enhanced piezoelectric response of hybrid biodegradable 3D poly(3-hydroxybutyrate) scaffolds coated with hydrothermally deposited ZnO for biomedical applications . Eur. Polym. J. , 2019 , 117 , 272 - 279 . doi: 10.1016/j.eurpolymj.2019.05.016 http://dx.doi.org/10.1016/j.eurpolymj.2019.05.016
Ramier J. ; Bouderlique T. ; Stoilova O. ; Manolova N. ; Rashkov I. ; Langlois V. ; Renard E. ; Albanese P. ; Grande D. Biocomposite scaffolds based on electrospun poly(3-hydroxybutyrate) nanofibers and electrosprayed hydroxyapatite nanoparticles for bone tissue engineering applications . Mater. Sci. Eng. C , 2014 , 38 , 161 - 169 . doi: 10.1016/j.msec.2014.01.046 http://dx.doi.org/10.1016/j.msec.2014.01.046
Sun S. ; Tan Y. Y. ; Cheng Q. K. ; Cai Y. C. ; Zheng J. Q. ; Wang W. ; Xu L. J. ; Li G. G. ; Wang D. ; Zhang L. ; Wang Y. M. Thermoplastic PHB-reinforced chitosan piezoelectric films for biodegradable pressure sensors . ACS Appl. Bio Mater. , 2024 , 7 ( 10 ), 6823 - 6831 . doi: 10.1021/acsabm.4c00966 http://dx.doi.org/10.1021/acsabm.4c00966
Chernozem R. V. ; Surmeneva M. A. ; Surmenev R. A. Hybrid biodegradable scaffolds of piezoelectric polyhydroxybutyrate and conductive polyaniline: piezocharge constants and electric potential study . Mater. Lett. , 2018 , 220 , 257 - 260 . doi: 10.1016/j.matlet.2018.03.022 http://dx.doi.org/10.1016/j.matlet.2018.03.022
Kapat K. ; Shubhra Q. T. H. ; Zhou M. ; Leeuwenburgh S. Piezoelectric nano-biomaterials for biomedicine and tissue regeneration . Adv. Funct. Mater. , 2020 , 30 ( 44 ), 1909045 . doi: 10.1002/adfm.201909045 http://dx.doi.org/10.1002/adfm.201909045
Ribeiro C. ; Sencadas V. ; Correia D. M. ; Lanceros-Méndez S. Piezoelectric polymers as biomaterials for tissue engineering applications . Colloids Surf. B Biointerfaces , 2015 , 136 , 46 - 55 . doi: 10.1016/j.colsurfb.2015.08.043 http://dx.doi.org/10.1016/j.colsurfb.2015.08.043
Tandon B. ; Blaker J. J. ; Cartmell S. H. Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair . Acta Biomater. , 2018 , 73 , 1 - 20 . doi: 10.1016/j.actbio.2018.04.026 http://dx.doi.org/10.1016/j.actbio.2018.04.026
Wei J. H. ; Igarashi T. ; Okumori N. ; Igarashi T. ; Maetani T. ; Liu B. L. ; Yoshinari M. Influence of surface wettability on competitive protein adsorption and initial attachment of osteoblasts . Biomed. Mater. , 2009 , 4 ( 4 ), 045002 . doi: 10.1088/1748-6041/4/4/045002 http://dx.doi.org/10.1088/1748-6041/4/4/045002
谭魏葳 , 雷苏苏 , 龙涛 , 徐志朗 , 李德富 , 穆畅道 , 葛黎明 . 具有葡萄糖响应性释药的多糖基可注射自愈合水凝胶 . 高分子学报 , 2023 , 54 ( 8 ), 1155 - 1165 . doi: 10.11777/j.issn1000-3304.2023.23024 http://dx.doi.org/10.11777/j.issn1000-3304.2023.23024
Wang R. X. ; Sui J. J. ; Wang X. D. Natural piezoelectric biomaterials: a biocompatible and sustainable building block for biomedical devices . ACS Nano , 2022 , 16 ( 11 ), 17708 - 17728 . doi: 10.1021/acsnano.2c08164 http://dx.doi.org/10.1021/acsnano.2c08164
Toalá C. U. ; Prokhorov E. ; Barcenas G. L. ; Hernández Landaverde M. A. ; Limón J. M. Y. ; Gervacio-Arciniega J. J. ; de Fuentes O. A. ; Garay Tapia A. M. Electrostrictive and piezoelectrical properties of chitosan-poly(3-hydroxybutyrate) blend films . Int. J. Biol. Macromol. , 2023 , 250 , 126251 . doi: 10.1016/j.ijbiomac.2023.126251 http://dx.doi.org/10.1016/j.ijbiomac.2023.126251
Wang W. Q. ; Meng Q. Y. ; Li Q. ; Liu J. B. ; Zhou M. ; Jin Z. ; Zhao K. Chitosan derivatives and their application in biomedicine . Int. J. Mol. Sci. , 2020 , 21 ( 2 ), 487 . doi: 10.3390/ijms21020487 http://dx.doi.org/10.3390/ijms21020487
Yan D. Z. ; Li Y. Z. ; Liu Y. L. ; Li N. ; Zhang X. ; Yan C. Antimicrobial properties of chitosan and chitosan derivatives in the treatment of enteric infections . Molecules , 2021 , 26 ( 23 ), 7136 . doi: 10.3390/molecules26237136 http://dx.doi.org/10.3390/molecules26237136
Praveen E. ; Murugan S. ; Jayakumar K. Investigations on the existence of piezoelectric property of a bio-polymer-chitosan and its application in vibration sensors . RSC Adv. , 2017 , 7 ( 56 ), 35490 - 35495 . doi: 10.1039/c7ra04752e http://dx.doi.org/10.1039/c7ra04752e
An P. ; Wei H. ; Zhang Y. S. ; Zhou Y. ; Zhang H. ; Li W. F. ; Niu B. L. ; Chen J. A mechanically adaptive "all-sugar" hydrogel for cell-laden injection . Eur. Polym. J. , 2022 , 174 , 111328 . doi: 10.1016/j.eurpolymj.2022.111328 http://dx.doi.org/10.1016/j.eurpolymj.2022.111328
Yuan L. ; Li X. Y. ; Ge L. M. ; Jia X. Q. ; Lei J. F. ; Mu C. D. ; Li D. F. Emulsion template method for the fabrication of gelatin-based scaffold with a controllable pore structure . ACS Appl. Mater. Interfaces , 2019 , 11 ( 1 ), 269 - 277 . doi: 10.1021/acsami.8b17555 http://dx.doi.org/10.1021/acsami.8b17555
Chang K. H. ; Wu C. H. ; Gao Z. J. ; Su Y. C. ; Wong K. T. ; Yeh Y. C. ; Yu J. ; Chou C. C. Molecular insights into the mechanism between the structural and mechanical properties of glycol chitosan methacrylate hydrogels . Carbohydr. Polym. , 2025 , 366 , 123872 . doi: 10.1016/j.carbpol.2025.123872 http://dx.doi.org/10.1016/j.carbpol.2025.123872
Li K. ; Xu W. X. ; Chen Y. ; Liu X. Y. ; Shen L. B. ; Feng J. K. ; Zhao W. W. ; Wang W. J. ; Wu J. L. ; Ma B. J. ; Ge S. H. ; Liu H. ; Li J. H. Piezoelectric nanostructured surface for ultrasound-driven immunoregulation to rescue titanium implant infection . Adv. Funct. Mater. , 2023 , 33 ( 28 ), 2214522 . doi: 10.1002/adfm.202214522 http://dx.doi.org/10.1002/adfm.202214522
Wang F. ; Qiu J. J. ; Guan S. W. ; Chen S. H. ; Nie X. S. ; Fu Z. Q. ; Yao F. Z. ; Gong W. ; Wang K. ; Liu X. Y. An ultrasound-responsive hydrogel with piezoelectric-enhanced electrokinetic effect accelerates neurovascular regeneration for diabetic wound healing . Mater. Today , 2025 , 84 , 48 - 64 . doi: 10.1016/j.mattod.2025.02.003 http://dx.doi.org/10.1016/j.mattod.2025.02.003
0
Views
552
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号