

浏览全部资源
扫码关注微信
山东师范大学化学化工与材料科学学院 济南 250014
Zhao-sheng Hou, E-mail: houzs@sdnu.edu.cn
Received:10 August 2025,
Accepted:09 October 2025,
Published Online:25 December 2025,
Published:20 February 2026
移动端阅览
郑恩浩, 张荣荣, 杨化功, 王作鹏, 高雅, 宋福阳, 杨冲, 侯昭升. 基于动态亚胺键的自愈合聚氨酯:亚胺键解离能对最佳自愈合温度的影响. 高分子学报, 2026, 57(2), 409-421.
Zheng, E. H.; Zhang, R. R.; Yang, H. G.; Wang, Z. P.; Gao, Y.; Song, F. Y.; Yang, C.; Hou, Z. S. Self-healing polyurethanes based on dynamic imine bonds: influence of imine bond dissociation energy on the optimal self-healing temperature. Acta Polymerica Sinica (in Chinese), 2026, 57(2), 409-421.
郑恩浩, 张荣荣, 杨化功, 王作鹏, 高雅, 宋福阳, 杨冲, 侯昭升. 基于动态亚胺键的自愈合聚氨酯:亚胺键解离能对最佳自愈合温度的影响. 高分子学报, 2026, 57(2), 409-421. DOI: 10.11777/j.issn1000-3304.2025.25187. CSTR: 32057.14.GFZXB.2025.7486.
Zheng, E. H.; Zhang, R. R.; Yang, H. G.; Wang, Z. P.; Gao, Y.; Song, F. Y.; Yang, C.; Hou, Z. S. Self-healing polyurethanes based on dynamic imine bonds: influence of imine bond dissociation energy on the optimal self-healing temperature. Acta Polymerica Sinica (in Chinese), 2026, 57(2), 409-421. DOI: 10.11777/j.issn1000-3304.2025.25187. CSTR: 32057.14.GFZXB.2025.7486.
将解离能(BDE)不同的动态亚胺键引入聚氨酯(PU)网络中,系统研究了亚胺键BDE与PU自愈合性能之间关系,从而实现对最佳自愈合温度的调控. 本工作通过一步醛胺缩合合成了5种BDE介于553.1~596.5 kJ/mol的亚胺型三羟基化合物,将其作为交联剂对基于聚乙二醇的PU预聚物进行交联,并通过溶剂挥发得到系列PU膜材料. 核磁共振、红外光谱表征证实交联剂和PUs的化学结构. 采用愈合—拉伸测试评价了PU膜的在不同温度下的自愈合性能
结果表明PU膜的最佳愈合温度随着亚胺键BDE的增加而逐渐升高:低亚胺BDE (553.1 kJ/mol)的PU膜在40 ℃即可实现86.3%的最大愈合效率(
η
m
);中等亚胺BDE (565.9 kJ/mol)的
η
m
可达82.7 %,最佳愈合温度为50 ℃;而较高亚胺BDE (596.
5 kJ/mol)的PU膜需60 ℃ 才能获得78.8%的最大愈合效率. 该研究初步揭示可通过调控动态亚胺键的 BDE值,从而为设计和制备适应不同温度的自愈合PU材料奠定理论基础.
Dynamic imine bonds with various bond dissociation energies (BDE) were incorporated into polyurethane (PU) networks to establish a correlation between imine BDE and self-healing performance
thereby tailoring the optimum self-healing temperature of PUs. In the study
five imine-contained trihydroxy compounds with BDE ranging from 553.1 kJ/mol to 596.5 kJ/mol were first synthesized
via
aldimine condensation
the trihydroxy compounds were then used as crosslinker to react with poly(ethylene glycol)-based PU prepolymers
followed by solvent evaporation to yield a series of self-healing PU films.
1
H-/
13
C-NMR and FTIR techniques were adopted to confirm the chemical structures of the crosslinkers and PUs. The self-healing capacity of the PU films was evaluated by tensile testing of pristine and self-healed films at different healing temperature
and the results revealed that the optimum healing temperature increased gradually with the increment of imine BDE. PUs with low imine BDE (553.1 kJ/mol) exhibited maximum self-healing eff
iciency (
η
m
) of 86.3 % at 40 ℃; those with medium imine BDE (565.9 kJ/mol) required 50 ℃ to achieve
η
m
of 82.7%; whereas the
η
m
of PU films containing high imine BDE (596.5 kJ/mol) was 78.8% at healing temperature of 60 ℃. These findings preliminarily demonstrated that imine BDE could serve as a simple molecular switch for programming the optimal healing temperature of self-healable PUs
providing a design principle for next-generation self-healing materials.
Wu S. ; Ma S. P. ; Zhang Q. H. ; Yang C. A comprehensive review of polyurethane: properties, applications and future perspectives . Polymer , 2025 , 327 , 128361 . doi: 10.1016/j.polymer.2025.128361 http://dx.doi.org/10.1016/j.polymer.2025.128361
Cheng B. X. ; Gao W. C. ; Ren X. M. ; Ouyang X. Y. ; Zhao Y. ; Zhao H. ; Wu W. ; Huang C. X. ; Liu Y. ; Liu X. Y. ; Li H. N. ; Li R. K. Y. A review of microphase separation of polyurethane: characterization and applications . Polym. Test. , 2022 , 107 , 107489 . doi: 10.1016/j.polymertesting.2022.107489 http://dx.doi.org/10.1016/j.polymertesting.2022.107489
熊勇 , 姜昀良 , 董育民 , 邓景月 , 周建萍 , 周炳华 , 梁红波 . 基于分级氢键的自修复聚氨酯弹性体的微相分离结构与性能研究 . 高分子学报 , 2025 , 56 ( 3 ), 487 - 500 .
Hu J. B. ; Huang M. M. ; Zhou X. ; Luo R. B. ; Li L. ; Li X. N. Research status of lignin-based polyurethane and its application in flexible electronics . Polymers , 2024 , 16 ( 16 ), 2340 . doi: 10.3390/polym16162340 http://dx.doi.org/10.3390/polym16162340
Zareanshahraki F. ; Asemani H. R. ; Skuza J. ; Mannari V. Synthesis of non-isocyanate polyurethanes and their application in radiation-curable aerospace coatings . Prog. Org. Coat. , 2020 , 138 , 105394 . doi: 10.1016/j.porgcoat.2019.105394 http://dx.doi.org/10.1016/j.porgcoat.2019.105394
Sikdar P. ; Dip T. M. ; Dhar A. K. ; Bhattacharjee M. ; Hoque M. S. ; Ali S. B. Polyurethane (PU) based multifunctional materials: emerging paradigm for functional textiles , smart, and biomedical applications. J. Appl. Polym. Sci., 2022 , 139 ( 38 ), e 52832 . doi: 10.1002/app.52832 http://dx.doi.org/10.1002/app.52832
Dang G. P. ; Gu J. T. ; Song J. H. ; Li Z. T. ; Hao J. X. ; Wang Y. Z. ; Wang C. Y. ; Ye T. ; Zhao F. ; Zhang Y. F. ; Tay F. R. ; Niu L. N. ; Xia L. Y. Multifunctional polyurethane materials in regenerative medicine and tissue engineering . Cell Rep. Phys. Sci. , 2024 , 5 ( 7 ), 102053 .
Hao T. T. ; Niu G. L. ; Zhang H. ; Zhu Y. Z. ; Zhang C. X. ; Kong F. Z. ; Xu J. ; Hou Z. S. Enhanced hemocompatibility and antibacterial activity of biodegradable poly(ester-urethane) modified with quercetin and phosphorylcholine for durable blood-contacting applications . J. Mater. Chem. B , 2023 , 11 ( 25 ), 5846 - 5855 . doi: 10.1039/d3tb00596h http://dx.doi.org/10.1039/d3tb00596h
Lei Z. P. ; Chen H. X. ; Huang S. F. ; Wayment L. J. ; Xu Q. C. ; Zhang W. New advances in covalent network polymers via dynamic covalent chemistry . Chem. Rev. , 2024 , 124 ( 12 ), 7829 - 7906 . doi: 10.1021/acs.chemrev.3c00926 http://dx.doi.org/10.1021/acs.chemrev.3c00926
Yao L. Y. ; Qian M. M. ; Chen L. ; Zhu Y. C. The polyhydrogen bond stretchable waterborne polyurethane film with excellent self-healing properties . Eur. Polym. J. , 2025 , 229 , 113879 . doi: 10.1016/j.eurpolymj.2025.113879 http://dx.doi.org/10.1016/j.eurpolymj.2025.113879
Peng H. Y. ; Du X. S. ; Cheng X. ; Wang H. B. ; Du Z. L. Room‐temperature self-healable and stretchable waterborne polyurethane film fabricated via multiple hydrogen bonds . Prog. Org. Coat. , 2021 , 151 , 106081 . doi: 10.1016/j.porgcoat.2020.106081 http://dx.doi.org/10.1016/j.porgcoat.2020.106081
Teng J. W. ; Qu L. ; Liu Z. Q. ; Qin Z. H. ; Xu J. ; Wang Z. N. ; Hou Z. S. Efficient, room-temperature self-healing polyurethane elastomers with superior tensile properties and solvatochromic capacities . ACS Appl. Polym. Mater. , 2022 , 4 ( 10 ), 7801 - 7811 . doi: 10.1021/acsapm.2c01343 http://dx.doi.org/10.1021/acsapm.2c01343
Mao H. Y. ; Zhang Q. ; Lin L. ; He X. M. ; Wang L. L. A self-healable and recyclable zwitterionic polyurethane based on dynamic ionic interactions . Polymers , 2023 , 15 ( 5 ), 1270 . doi: 10.3390/polym15051270 http://dx.doi.org/10.3390/polym15051270
Zhang E. D. ; Shi J. ; Xiao L. Q. ; Zhang Q. ; Lu M. P. ; Nan B. F. ; Wu K. ; Lu M. G. A highly efficient bionic self-healing flexible waterborne polyurethane elastic film based on a cyclodextrin-ferrocene host-guest interaction . Polym. Chem. , 2021 , 12 ( 6 ), 831 - 842 . doi: 10.1039/d0py01480j http://dx.doi.org/10.1039/d0py01480j
张文琪 , 范雯雯 , 张若涵 , 彭倩倩 , 李祥亮 , 雷岚 , 李辉 . 高强度二硫键/氢键双动态交联丁苯橡胶的设计及可回收、形状记忆性能研究 . 高分子学报 , 2025 , 56 ( 5 ), 845 - 860 .
杨兵 , 丁霞 , 徐钧 , 李烨 , 谷瑞 , 张会 , 侯昭升 . 动态二硫键/氢键双交联的高韧性自愈合聚氨酯水凝胶 . 高等学校化学学报 , 2025 , 46 ( 9 ), 158 - 169 .
Hu J. ; Mo R. B. ; Sheng X. X. ; Zhang X. Y. A self-healing polyurethane elastomer with excellent mechanical properties based on phase-locked dynamic imine bonds . Polym. Chem. , 2020 , 11 ( 14 ), 2585 - 2594 . doi: 10.1039/d0py00151a http://dx.doi.org/10.1039/d0py00151a
Yang Y. ; Du F. S. ; Li Z. C. Highly stretchable, self-healable, and adhesive polyurethane elastomers based on boronic ester bonds . ACS Appl. Polym. Mater. , 2020 , 2 ( 12 ), 5630 - 5640 . doi: 10.1021/acsapm.0c00941 http://dx.doi.org/10.1021/acsapm.0c00941
Du X. Y. ; Tong Y. F. ; Wang T. ; Zhang A. Q. ; Xu Q. H. Self-healing and recyclable polyurethane-based solid-state polymer electrolyte via Diels-Alder dynamic network . J. Mol. Struct. , 2025 , 1321 , 139793 . doi: 10.1016/j.molstruc.2024.139793 http://dx.doi.org/10.1016/j.molstruc.2024.139793
Heras-Mozos R. ; Hernández R. ; Gavara R. ; Hernández-Muñoz P. Dynamic covalent chemistry of imines for the development of stimuli-responsive chitosan films as carriers of sustainable antifungal volatiles . Food Hydrocoll. , 2022 , 125 , 107326 . doi: 10.1016/j.foodhyd.2021.107326 http://dx.doi.org/10.1016/j.foodhyd.2021.107326
Xu X. B. ; Ma X. Z. ; Cui M. H. ; Zhao H. L. ; Stott N. E. ; Zhu J. ; Yan N. ; Chen J. Fully biomass-derived polyurethane based on dynamic imine with self-healing, rapid degradability, and editable shape memory capabilities . Chem. Eng. J. , 2024 , 479 , 147823 . doi: 10.1016/j.cej.2023.147823 http://dx.doi.org/10.1016/j.cej.2023.147823
Zheng E. H. ; Zhang P. K. ; Wang J. L. ; Chen Y. K. ; Liu H. X. ; Xu J. ; Hou Z. S. Dual dynamic bonds enable biocompatible polyurethane hydrogels with superior toughness, fatigue and puncture resistance, pH-reversibility, and room-temperature self-healability . Polymer , 2025 , 327 , 128381 . doi: 10.1016/j.polymer.2025.128381 http://dx.doi.org/10.1016/j.polymer.2025.128381
Kim S. M. ; Jeon H. ; Shin S. H. ; Park S. A. ; Jegal J. ; Hwang S. Y. ; Oh D. X. ; Park J. Superior toughness and fast self-healing at room temperature engineered by transparent elastomers . Adv. Mater. , 2018 , 30 ( 1 ), 1705145 . doi: 10.1002/adma.201870001 http://dx.doi.org/10.1002/adma.201870001
Hao T. T. ; Gao Y. ; Zheng E. H. ; Yang H. G. ; Pan Y. T. ; Zhang P. K. ; Xu J. ; Hou Z. S. Multifunctional poly(ether‐urethane) elastomer based on dynamic phenol-urethane and disulfide bonds: simultaneously showing superior toughness, self-healing, shape memory, antibacterial, and antioxidative properties . Eur. Polym. J. , 2024 , 220 , 113494 . doi: 10.1016/j.eurpolymj.2024.113494 http://dx.doi.org/10.1016/j.eurpolymj.2024.113494
Lv C. ; Xue R. F. ; Zhang J. ; Chen X. L. ; Chen D. L. ; Wang F. F. ; Zhang F. M. ; Zhu W. D. Theoretical evidence on pyridinic nitrogen in N , S-coordinated Co single atom catalyst as dominant active site promoting H2 cleavage, diffusionH, and activityhydrogenation. J. Catal., 2024 , 435 , 115549 . doi: 10.1016/j.jcat.2024.115549 http://dx.doi.org/10.1016/j.jcat.2024.115549
Wei K. L. ; Wu Y. ; Cao X. J. ; Yang X. Y. ; Tang B. M. ; Deng L. Preparation and characterization of vanillin-based self-healing polyurethane-modified asphalts based on acylhydrazone chemistry . Eur. Polym. J. , 2024 , 211 , 113010 . doi: 10.1016/j.eurpolymj.2024.113010 http://dx.doi.org/10.1016/j.eurpolymj.2024.113010
Cui Y. Y. ; Sheng M. Q. ; Liu Y. ; Feng Y. ; Li H. J. ; Wu Y. C. Antifouling and self-healing performance of marine coatings based on hydrogen-bond interactions . ACS Appl. Mater. Interfaces , 2023 , 15 ( 50 ), 58967 - 58975 . doi: 10.1021/acsami.3c16130 http://dx.doi.org/10.1021/acsami.3c16130
Mestry S. U. ; Borse P. Y. ; Satdive A. M. ; Gadgeel A. A. ; Mhaske S. T. Development of vanillin-based crosslinking agent with phase-locked dynamic imine bonds for shape-memory polyurethanes . Mater. Today Commun. , 2023 , 37 , 107259 . doi: 10.1016/j.mtcomm.2023.107259 http://dx.doi.org/10.1016/j.mtcomm.2023.107259
Nowok A. ; Dulski M. ; Grelska J. ; Szeremeta A. Z. ; Jurkiewicz K. ; Grzybowska K. ; Musiał M. ; Pawlus S. Phenyl ring: a steric hindrance or a source of different hydrogen bonding patterns in self-organizing systems? J. Phys. Chem. Lett. , 2021 , 12 ( 8 ), 2142 - 2147 . doi: 10.1021/acs.jpclett.1c00186 http://dx.doi.org/10.1021/acs.jpclett.1c00186
Wang S. S. ; Chen X. Y. ; Guo L. Z. ; Wang S. S. ; Dong F. H. ; Liu H. ; Xu X. A human muscle-inspired, high strength, good elastic recoverability, room-temperature self-healing, and recyclable polyurethane elastomer based on dynamic bonds . Compos. Sci. Technol. , 2024 , 248 , 110457 . doi: 10.1016/j.compscitech.2024.110457 http://dx.doi.org/10.1016/j.compscitech.2024.110457
Chen S. S. ; Liu X. ; Miao Y. P. ; Ge S. B. ; Li S. X. ; Liu L. ; Hou L. ; Rezakazemi M. ; Aminabhavi T. M. ; Fan W. Self-healing polyurethane/cellulose nanocrystal composite fibers with fatigue and aging resistance for smart wearable elastic yarns . Adv. Compos. Hybrid Mater. , 2024 , 8 ( 1 ), 8 . doi: 10.1007/s42114-024-01089-w http://dx.doi.org/10.1007/s42114-024-01089-w
Rassolov V. A. ; Ratner M. A. ; Pople J. A. ; Redfern P. C. ; Curtiss L. A. 6-31G* basis set for third-row atoms . J. Comput. Chem. , 2001 , 22 ( 9 ), 976 - 984 . doi: 10.1002/jcc.1058 http://dx.doi.org/10.1002/jcc.1058
Lin Y. S. ; Li G. D. ; Mao S. P. ; Chai J. D. Long-range corrected hybrid density functionals with improved dispersion corrections . J. Chem. Theory Comput. , 2013 , 9 ( 1 ), 263 - 272 . doi: 10.1021/ct300715s http://dx.doi.org/10.1021/ct300715s
Shao Y. H. ; Gan Z. T. ; Epifanovsky E. ; Gilbert A. T. B. ; Wormit M. ; Kussmann J. ; Lange A. W. ; Behn A. ; Deng J. ; Feng X. T. ; Ghosh D. ; Goldey M. ; Horn P. R. ; Jacobson L. D. ; Kaliman I. ; Khaliullin R. Z. ; Kuś T. ; Landau A. ; Liu J. ; Proynov E. I. ; Rhee Y. M. ; Richard R. M. ; Rohrdanz M. A. ; Steele R. P. ; Sundstrom E. J. ; Woodcock H. L. III , Zimmerman P. M. ; Zuev D. ; Albrecht B. ; Alguire E. ; Austin B. ; Beran G. J. O. ; Bernard Y. A. ; Berquist E. ; Brandhorst K. ; Bravaya K. B. ; Brown S. T. ; Casanova D. ; Chang C. M. ; Chen Y. Q. ; Chien S. H. ; Closser K. D. ; Crittenden D. L. ; Diedenhofen M. ; DiStasio R. A. Jr , Do H. ; Dutoi A. D. ; Edgar R. G. ; Fatehi S. ; Fusti-Molnar L. ; Ghysels A. ; Golubeva-Zadorozhnaya A. ; Gomes J. ; Hanson-Heine M. W. D. ; Harbach P. H. P. ; Hauser A. W. ; Hohenstein E. G. ; Holden Z. C. ; Jagau T. C. ; Ji H. ; Kaduk B. ; Khistyaev K. ; Kim J. ; Kim J. ; King R. A. ; Klunzinger P. ; Kosenkov D. ; Kowalczyk T. ; Krauter C. M. ; Lao K. U. ; Laurent A. D. ; Lawler K. V. ; Levchenko S. V. ; Lin C. Y. ; Liu F. L. ; Livshits E. ; Lochan R. C. ; Luenser A. ; Manohar P. ; Manzer S. F. ; Mao S. P. ; Mardirossian N. ; Marenich A. V. ; Maurer S. A. ; Mayhall N. J. ; Neuscamman E. ; Oana C. M. ; Olivares-Amaya R. ; O’Neill D. P. ; Parkhill J. A. ; Perrine T. M. ; Peverati R. ; Prociuk A. ; Rehn D. R. ; Rosta E. ; Russ N. J. ; Sharada S. M. ; Sharma S. ; Small D. W. ; Sodt A. ; Stein T. ; Stück D. ; Su Y. C. ; Thom A. J. W. ; Tsuchimochi T. ; Vanovschi V. ; Vogt L. ; Vydrov O. ; Wang T. ; Watson M. A. ; Wenzel J. ; White A. ; Williams C. F. ; Yang J. ; Yeganeh S. ; Yost S. R. ; You Z. Q. ; Zhang I. Y. ; Zhang X. ; Zhao Y. ; Brooks B. R. ; Chan G. K. L. ; Chipman D. M. ; Cramer C. J. ; Goddard W. A. III , Gordon, M. S.; Hehre, W. J.; Klamt, A.; Schaefer, H. F. III, SchmidtM. W.; SherrillC. D.; TruhlarD. G.; WarshelA.; XuX.; Aspuru-GuzikA.; BaerR.; BellA. T.; BesleyN. A.; ChaiJ. D.; DreuwA.; DunietzB. D.; FurlaniT. R.; GwaltneyS. R.; HsuC. P.; JungY.; KongJ.; LambrechtD. S.; LiangW. Z.; OchsenfeldC.; RassolovV. A.; SlipchenkoL. V.; SubotnikJ. E.; Van VoorhisT.; HerbertJ. M.; KrylovA. I.; GillP. M. W.; Head-GordonM. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package . Mol. Phys., 2015 , 113 ( 2 ), 184 - 215 . doi: 10.1080/00268976.2014.952696 http://dx.doi.org/10.1080/00268976.2014.952696
Wang B. C. ; Dou S. H. ; Wang S. ; Wang Y. ; Zhang S. F. ; Lin X. P. ; Ji C. F. ; Dong L. Molecular mechanism of saturated aldehyde oxidation: a DFT insight into volatiles forming from decanal thermal oxidation . Food Chem. , 2024 , 454 , 139751 . doi: 10.1016/j.foodchem.2024.139751 http://dx.doi.org/10.1016/j.foodchem.2024.139751
Ait Rass H. ; Essayem N. ; Besson M. Selective aerobic oxidation of 5 -HMF into 2 , 5 -furandicarboxylic acid with Pt catalysts supported on TiO 2 - and ZrO 2 -based supports. ChemSusChem, 2015, 8 ( 7 ), 1206 - 1217 . doi: 10.1002/cssc.201403390 http://dx.doi.org/10.1002/cssc.201403390
Wendler K. ; Thar J. ; Zahn S. ; Kirchner B. Estimating the hydrogen bond energy . J. Phys. Chem. A , 2010 , 114 ( 35 ), 9529 - 9536 . doi: 10.1021/jp103470e http://dx.doi.org/10.1021/jp103470e
0
Views
101
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号