

浏览全部资源
扫码关注微信
高分子合成与功能构造教育部重点实验室 浙江大学高分子科学与工程学系 杭州 310027
Yi-hu Song, E-mail: s_yh0411@zju.edu.cn
Qiang Zheng, E-mail: zhengqiang@zju.edu.cn
Received:12 August 2025,
Accepted:20 September 2025,
Published Online:27 November 2025,
Published:20 January 2026
移动端阅览
李志云, 宋义虎, 郑强. 共价和离子交联丁腈橡胶及其纳米复合材料的应变软化行为. 高分子学报, 2026, 57(1), 129-142.
Li, Z. Y.; Song, Y. H.; Zheng, Q. Strain softening behaviors of covalently and ionically crosslinked nitrile rubber vulcanizates and their nanocomposites. Acta Polymerica Sinica (in Chinese), 2026, 57(1), 129-142.
李志云, 宋义虎, 郑强. 共价和离子交联丁腈橡胶及其纳米复合材料的应变软化行为. 高分子学报, 2026, 57(1), 129-142. DOI: 10.11777/j.issn1000-3304.2025.25189. CSTR: 32057.14.GFZXB.2025.7468.
Li, Z. Y.; Song, Y. H.; Zheng, Q. Strain softening behaviors of covalently and ionically crosslinked nitrile rubber vulcanizates and their nanocomposites. Acta Polymerica Sinica (in Chinese), 2026, 57(1), 129-142. DOI: 10.11777/j.issn1000-3304.2025.25189. CSTR: 32057.14.GFZXB.2025.7468.
离子键等牺牲键常用于调控橡胶材料的力学性能和自愈合行为,但鲜有研究涉及离子键-共价键共交联硫化胶及其纳米复合材料的应变软化行为. 本工作采用2-丙烯酰胺基-2-甲基丙磺酸、氧化锌、氧化二异丙苯制备离子键-共价键共交联丁腈橡胶硫化胶及其炭黑复合材料,研究了离子交联键对交联密度、力学性能和应变软化行为(Payne效应和Mullins效应)的影响. 结果表明,离子交联键的引入可提高交联密度和模量,降低线性黏弹区储能模量的频率依赖性和Payne效应临界应变幅度,减弱非线性黏弹区应变软化程度,促进Payne效应所伴随的动态剪切周期内应变硬化和剪切增稠-变稀转变. 离子交联键可显著增强硫化胶及其纳米复合材料在循环拉伸过程中的Mullins效应,且循环形变材料经低温(60 ℃)短时(10 min)热处理后不再呈现软化特征;而离子键在循环拉伸和短时低温热处理过程中难以通过破坏—重建机理来降低滞后行为. 研究结果可为离子键-共价键共交联硫化胶及其纳米复合材料应变软化机理研究及交联网络结构构筑和非线性黏弹性调控提供实验依据.
Sacrificial bonds
including ionic bonds
are often used to regulate the mechanical properties and self-healing behavior of rubber materials. However
the strain-softening mechanism of vulcanizates and their nanocomposites involving ionic crosslinking bonds has rarely been studied. Herein
2-acrylamino-2-methylpropanesulfonic acid
zinc oxide
and dicumyl peroxide were used to prepare nitrile rubber vulcanizates and their carbon black nanocomposites cured by ionic and covalent crosslinks to investigate the effects of ionic crosslinking bonds on crosslinking density
mechanical properties
and strain softening behaviors (Payne effect and Mullins effect). The results showed that the introduction of ionic crosslinking bonds could improve the crosslinking density and modulus
reduce the frequency dependence of the storage modulus in the linear viscoelasticity region
weaken the strain softening behavior in the nonlinear viscoelasticity region
and promote the intracycle strain hardening and shear thickening-thinning transition accompanying the Payne effect. The ionic crosslinking bond also significantly enhanced the Mullins effect of the vulcanizates and their nanocomposites
and the cyclically deformed materials after a short-term (10 min) thermal treatment at a low temperature (60 ℃) do not soften when subjected to cyclic stretching. The results provided an experimental basis for studying the strain softening mechanism of covalently and ionically crosslinked rubbers and their nanocomposites for regulating nonlinear viscoelasticity.
Payne A. R. The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I . J. Appl. Polym. Sci. , 1962 , 6 ( 19 ), 57 - 63 . doi: 10.1002/app.1962.070061906 http://dx.doi.org/10.1002/app.1962.070061906
Mullins L. Effect of stretching on the properties of rubber . Rubber Chem. Technol. , 1948 , 21 ( 2 ), 281 - 300 . doi: 10.5254/1.3546914 http://dx.doi.org/10.5254/1.3546914
Houwink R. ; Janssen H. J. J. Filler reinforcement and tear resistance in the light of thixotropy . Rubber Chem. Technol. , 1956 , 29 ( 2 ), 409 - 418 . doi: 10.5254/1.3542537 http://dx.doi.org/10.5254/1.3542537
Merabia S. ; Sotta P. ; Long D. R. A microscopic model for the reinforcement and the nonlinear behavior of filled elastomers and thermoplastic elastomers (Payne and Mullins effects) . Macromolecules , 2008 , 41 ( 21 ), 8252 - 8266 . doi: 10.1021/ma8014728 http://dx.doi.org/10.1021/ma8014728
Song Y. H. ; Zheng Q. A guide for hydrodynamic reinforcement effect in nanoparticle-filled polymers . Crit. Rev. Solid State Mater. Sci. , 2016 , 41 ( 4 ), 318 - 346 . doi: 10.1080/10408436.2015.1135415 http://dx.doi.org/10.1080/10408436.2015.1135415
Xu H. L. ; Fan X. P. ; Song Y. H. ; Zheng Q. Reinforcement and Payne effect of hydrophobic silica filled natural rubber nanocomposites . Compos. Sci. Technol. , 2020 , 187 , 107943 . doi: 10.1016/j.compscitech.2019.107943 http://dx.doi.org/10.1016/j.compscitech.2019.107943
Hosseini S. M. ; Razzaghi-Kashani M. On the role of nano-silica in the kinetics of peroxide vulcanization of ethylene propylene diene rubber . Polymer , 2017 , 133 , 8 - 19 . doi: 10.1016/j.polymer.2017.10.061 http://dx.doi.org/10.1016/j.polymer.2017.10.061
Hosseini S. M. ; Razzaghi-Kashani M. Vulcanization kinetics of nano-silica filled styrene butadiene rubber . Polymer , 2014 , 55 ( 24 ), 6426 - 6434 . doi: 10.1016/j.polymer.2014.09.073 http://dx.doi.org/10.1016/j.polymer.2014.09.073
李承宇 , 宋义虎 . 离子液体对天然橡胶/丁腈橡胶/白炭黑纳米复合材料应变软化行为的影响 . 高分子学报 , 2024 , 55 , 1549 - 1560 .
Shen J. X. ; Lin X. S. ; Liu J. ; Li X. Effects of cross-link density and distribution on static and dynamic properties of chemically cross-linked polymers . Macromolecules , 2019 , 52 ( 1 ), 121 - 134 . doi: 10.1021/acs.macromol.8b01389 http://dx.doi.org/10.1021/acs.macromol.8b01389
Flory P. J. ; Rehner , J.Jr . Statistical mechanics of cross-linked polymer networks II. swelling . J. Chem. Phys. , 1943 , 11 ( 11 ), 521 - 526 . doi: 10.1063/1.1723792 http://dx.doi.org/10.1063/1.1723792
Harrington M. J. ; Masic A. ; Holten-Andersen N. ; Waite J. H. ; Fratzl P. Iron-clad fibers: a metal-based biological strategy for hard flexible coatings . Science , 2010 , 328 ( 5975 ), 216 - 220 . doi: 10.1126/science.1181044 http://dx.doi.org/10.1126/science.1181044
Becker N. ; Oroudjev E. ; Mutz S. ; Cleveland J. P. ; Hansma P. K. ; Hayashi C. Y. ; Makarov D. E. ; Hansma H. G. Molecular nanosprings in spider capture-silk threads . Nat. Mater. , 2003 , 2 ( 4 ), 278 - 283 . doi: 10.1038/nmat858 http://dx.doi.org/10.1038/nmat858
Currey, J. Sacrificial bonds heal bone . Nature , 2001 , 414 ( 6865 ), 699 . doi: 10.1038/414699a http://dx.doi.org/10.1038/414699a
Wirthl D. ; Pichler R. ; Drack M. ; Kettlguber G. ; Moser R. ; Gerstmayr R. ; Hartmann F. ; Bradt E. ; Kaltseis R. ; Siket C. M. ; Schausberger S. E. ; Hild S. ; Bauer S. ; Kaltenbrunner M. Instant tough bonding of hydrogels for soft machines and electronics . Sci. Adv. , 2017 , 3 ( 6 ), e 1700053 . doi: 10.1126/sciadv.1700053 http://dx.doi.org/10.1126/sciadv.1700053
Wang D. ; Guo J. ; Zhang H. ; Cheng B. C. ; Shen H. ; Zhao N. ; Xu J. Intelligent rubber with tailored properties for self-healing and shape memory . J. Mater. Chem. A , 2015 , 3 ( 24 ), 12864 - 12872 . doi: 10.1039/c5ta01915j http://dx.doi.org/10.1039/c5ta01915j
Chen Y. K. ; Xu C. H. Crosslink network evolution of nature rubber/zinc dimethacrylate composite during peroxide vulcanization . Polym. Compos. , 2011 , 32 ( 10 ), 1505 - 1514 . doi: 10.1002/pc.21179 http://dx.doi.org/10.1002/pc.21179
Kushner A. M. ; Gabuchian V. ; Johnson E. G. ; Guan Z. B. Biomimetic design of reversibly unfolding cross-linker to enhance mechanical properties of 3D network polymers . J. Am. Chem. Soc. , 2007 , 129 ( 46 ), 14110 - 14111 . doi: 10.1021/ja0742176 http://dx.doi.org/10.1021/ja0742176
Neal J. A. ; Mozhdehi D. ; Guan Z. B. Enhancing mechanical performance of a covalent self-healing material by sacrificial noncovalent bonds . J. Am. Chem. Soc. , 2015 , 137 ( 14 ), 4846 - 4850 . doi: 10.1021/jacs.5b01601 http://dx.doi.org/10.1021/jacs.5b01601
Luo M. C. ; Zeng J. ; Fu X. ; Huang G. S. ; Wu J. R. Toughening diene elastomers by strong hydrogen bond interactions . Polymer , 2016 , 106 , 21 - 28 . doi: 10.1016/j.polymer.2016.10.056 http://dx.doi.org/10.1016/j.polymer.2016.10.056
Li C. H. ; Wang C. ; Keplinger C. ; Zuo J. L. ; Jin L. H. ; Sun Y. ; Zheng P. ; Cao Y. ; Lissel F. ; Linder C. ; You X. Z. ; Bao Z. N. A highly stretchable autonomous self-healing elastomer . Nat. Chem. , 2016 , 8 ( 6 ), 618 - 624 . doi: 10.1038/nchem.2492 http://dx.doi.org/10.1038/nchem.2492
Huang J. ; Tang Z. H. ; Yang Z. J. ; Guo B. C. Bioinspired interface engineering in elastomer/graphene composites by constructing sacrificial metal-ligand bonds . Macromol. Rapid Commun. , 2016 , 37 ( 13 ), 1040 - 1045 . doi: 10.1002/marc.201600226 http://dx.doi.org/10.1002/marc.201600226
Rao Y. L. ; Chortos A. ; Pfattner R. ; Lissel F. ; Chiu Y. C. ; Feig V. ; Xu J. ; Kurosawa T. ; Gu X. D. ; Wang C. ; He M. Q. ; Chung J. W. ; Bao Z. N. Stretchable self-healing polymeric dielectrics cross-linked through metal-ligand coordination . J. Am. Chem. Soc. , 2016 , 138 ( 18 ), 6020 - 6027 . doi: 10.1021/jacs.6b02428 http://dx.doi.org/10.1021/jacs.6b02428
Vidavsky Y. ; Buche M. R. ; Sparrow Z. M. ; Zhang X. Y. ; Yang S. J. ; DiStasio R. A. Jr, Silberstein, M. N. Tuning the mechanical properties of metallopolymers via ligand interactions: a combined experimental and theoretical study . Macromolecules , 2020 , 53 ( 6 ), 2021 - 2030 . doi: 10.1021/acs.macromol.9b02756 http://dx.doi.org/10.1021/acs.macromol.9b02756
Li H. Y. ; Yang L. ; Weng G. S. ; Xing W. ; Wu J. R. ; Huang G. S. Toughening rubbers with a hybrid filler network of graphene and carbon nanotubes . J. Mater. Chem. A , 2015 , 3 ( 44 ), 22385 - 22392 . doi: 10.1039/c5ta05836h http://dx.doi.org/10.1039/c5ta05836h
Gold B. J. ; Hövelmann C. H. ; Weiss C. ; Radulescu A. ; Allgaier J. ; Pyckhout-Hintzen W. ; Wischnewski A. ; Richter D. Sacrificial bonds enhance toughness of dual polybutadiene networks . Polymer , 2016 , 87 , 123 - 128 . doi: 10.1016/j.polymer.2016.01.077 http://dx.doi.org/10.1016/j.polymer.2016.01.077
Chen Y. ; Tang Z. H. ; Liu Y. J. ; Wu S. W. ; Guo B. C. Mechanically robust, self-healable, and reprocessable elastomers enabled by dynamic dual cross-links . Macromolecules , 2019 , 52 ( 10 ), 3805 - 3812 . doi: 10.1021/acs.macromol.9b00419 http://dx.doi.org/10.1021/acs.macromol.9b00419
Liu J. ; Tang Z. H. ; Huang J. ; Guo B. C. ; Huang G. S. Promoted strain-induced-crystallization in synthetic cis -1,4-polyisoprene via constructing sacrificial bonds . Polymer , 2016 , 97 , 580 - 588 . doi: 10.1016/j.polymer.2016.06.001 http://dx.doi.org/10.1016/j.polymer.2016.06.001
Zhang J. Q. ; Huang C. ; Zhu Y. ; Huang G. S. ; Wu J. R. Toughening polyisoprene rubber with sacrificial bonds: the interplay between molecular mobility, energy dissipation and strain-induced crystallization . Polymer , 2021 , 231 , 124114 . doi: 10.1016/j.polymer.2021.124114 http://dx.doi.org/10.1016/j.polymer.2021.124114
Meyers M. A. ; McKittrick J. ; Chen P. Y. Structural biological materials: critical mechanics-materials connections . Science , 2013 , 339 ( 6121 ), 773 - 779 . doi: 10.1126/science.1220854 http://dx.doi.org/10.1126/science.1220854
Fantner G. E. ; Oroudjev E. ; Schitter G. ; Golde L. S. ; Thurner P. ; Finch M. M. ; Turner P. ; Gutsmann T. ; Morse D. E. ; Hansma H. ; Hansma P. K. Sacrificial bonds and hidden length: unraveling molecular mesostructures in tough materials . Biophys. J. , 2006 , 90 ( 4 ), 1411 - 1418 . doi: 10.1529/biophysj.105.069344 http://dx.doi.org/10.1529/biophysj.105.069344
Li H. B. ; Oberhauser A. F. ; Fowler S. B. ; Clarke J. ; Fernandez J. M. Atomic force microscopy reveals the mechanical design of a modular protein . Proc. Natl. Acad. Sci . U. S. A., 2000 , 97 ( 12 ), 6527 - 6531 . doi: 10.1073/pnas.120048697 http://dx.doi.org/10.1073/pnas.120048697
Yokochi H. ; O'Neill R. T. ; Abe T. ; Aoki D. ; Boulatov R. ; Otsuka H. Sacrificial mechanical bond is as effective as a sacrificial covalent bond in increasing cross-linked polymer toughness . J. Am. Chem. Soc. , 2023 , 145 ( 43 ), 23794 - 23801 . doi: 10.1021/jacs.3c08595 http://dx.doi.org/10.1021/jacs.3c08595
Lei J. J. ; Mo J. B. ; Zhang Y. P. ; Wang J. ; Liu W. F. ; Qiu X. Q. Reinforcement and toughening mechanisms of ionic clusters in ethylene-propylene-diene monomer rubber . Polymer , 2025 , 329 , 128498 . doi: 10.1016/j.polymer.2025.128498 http://dx.doi.org/10.1016/j.polymer.2025.128498
Xu C. H. ; Cao L. M. ; Huang X. H. ; Chen Y. K. ; Lin B. F. ; Fu L. H. Self-healing natural rubber with tailorable mechanical properties based on ionic supramolecular hybrid network . ACS Appl. Mater. Interfaces , 2017 , 9 ( 34 ), 29363 - 29373 . doi: 10.1021/acsami.7b09997 http://dx.doi.org/10.1021/acsami.7b09997
Tang Z. H. ; Huang J. ; Guo B. C. ; Zhang L. Q. ; Liu F. Bioinspired engineering of sacrificial metal-ligand bonds into elastomers with supramechanical performance and adaptive recovery . Macromolecules , 2016 , 49 ( 5 ), 1781 - 1789 . doi: 10.1021/acs.macromol.5b02756 http://dx.doi.org/10.1021/acs.macromol.5b02756
Liu J. ; Wang S. ; Tang Z. H. ; Huang J. ; Guo B. C. ; Huang G. S. Bioinspired engineering of two different types of sacrificial bonds into chemically cross-linked cis -1,4-polyisoprene toward a high-performance elastomer . Macromolecules , 2016 , 49 ( 22 ), 8593 - 8604 . doi: 10.1021/acs.macromol.6b01576 http://dx.doi.org/10.1021/acs.macromol.6b01576
Shakun A. ; Kemppainen N. ; Sarlin E. Secondary network formation in epoxidized natural rubber with alternative curatives . ACS Omega , 2024 , 9 ( 34 ), 36326 - 36340 .
Hu R. Y. ; Zhao S. J. ; Chen F. ; Shangguan Y. G. ; Zheng Q. Effect of sacrificial bond on molecular dynamics and rheological behavior of hybrid butadiene-styrene-vinylpyridine rubber vulcanizates with reversible sacrificial network . J. Polym. Sci. , 2022 , 60 ( 15 ), E1 - E12 . doi: 10.1002/pol.20210905 http://dx.doi.org/10.1002/pol.20210905
Lu T. Q. ; Wang Z. T. ; Tang J. D. ; Zhang W. L. ; Wang T. J. A pseudo-elasticity theory to model the strain-softening behavior of tough hydrogels . J. Mech. Phys. Solids , 2020 , 137 , 103832 . doi: 10.1016/j.jmps.2019.103832 http://dx.doi.org/10.1016/j.jmps.2019.103832
Cui K. P. ; Sun T. L. ; Liang X. B. ; Nakajima K. ; Ye Y. N. ; Chen L. ; Kurokawa T. ; Gong J. P. Multiscale energy dissipation mechanism in tough and self-healing hydrogels . Phys. Rev. Lett. , 2018 , 121 ( 18 ), 185501 . doi: 10.1103/physrevlett.121.185501 http://dx.doi.org/10.1103/physrevlett.121.185501
Zheng S. Y. ; Ding H. Y. ; Qian J. ; Yin J. ; Wu Z. L. ; Song Y. H. ; Zheng Q. Metal-coordination complexes mediated physical hydrogels with high toughness, stick-slip tearing behavior, and good processability . Macromolecules , 2016 , 49 ( 24 ), 9637 - 9646 . doi: 10.1021/acs.macromol.6b02150 http://dx.doi.org/10.1021/acs.macromol.6b02150
Valentín J. L. ; Posadas P. ; Fernández-Torres A. ; Malmierca M. A. ; González L. ; Chassé W. ; Saalwächter K. Inhomogeneities and chain dynamics in diene rubbers vulcanized with different cure systems . Macromolecules , 2010 , 43 ( 9 ), 4210 - 4222 . doi: 10.1021/ma1003437 http://dx.doi.org/10.1021/ma1003437
Posadas P. ; Malmierca M. A. ; Gonzalez-Jimenez A. ; Ibarra L. ; Rodriguez A. ; Valentin J. L. ; Nagaoka T. ; Yajima H. ; Toki S. ; Che J. ; Rong L. ; Hsiao B. S. ESR investigation of NR and IR rubber vulcanized with different cross-link agents . Express Polym. Lett. , 2016 , 10 ( 1 ), 2 - 14 . doi: 10.3144/expresspolymlett.2016.2 http://dx.doi.org/10.3144/expresspolymlett.2016.2
Kruželák J. ; Sýkora R. ; Hudec I. Vulcanization of rubber compounds with peroxide curing systems . Rubber Chem. Technol. , 2017 , 90 ( 1 ), 60 - 88 . doi: 10.5254/rct.16.83758 http://dx.doi.org/10.5254/rct.16.83758
Kruželák J. ; Sýkora R. ; Hudec I. Peroxide vulcanization of natural rubber. Part II: effect of peroxides and co-agents . J. Polym. Eng. , 2015 , 35 ( 1 ), 21 - 29 . doi: 10.1515/polyeng-2014-0035 http://dx.doi.org/10.1515/polyeng-2014-0035
Rajan R. ; Varghese S. ; George K. E. Role of coagents in peroxide vulcanization of natural rubber . Rubber Chem. Technol. , 2013 , 86 ( 3 ), 488 - 502 . doi: 10.5254/rct.13.87984 http://dx.doi.org/10.5254/rct.13.87984
Henning S. K. ; Costin R. Fundamentals of curing elastomers with peroxides and coagents . Rubber World , 2006 , 233 , 28 - 35 .
Yamazaki T. ; Seguchi T. ESR study on chemical crosslinking reaction mechanisms of polyethylene using a chemical agent . II. The effect of phenolic antioxidants. J. Polym. Sci. A Polym. Chem. , 1997 , 35 ( 12 ), 2431 - 2439 . doi: 10.1002/(sici)1099-0518(19970915)35:12<2431::aid-pola13>3.0.co;2-8 http://dx.doi.org/10.1002/(sici)1099-0518(19970915)35:12<2431::aid-pola13>3.0.co;2-8
González L. ; Rodríguez A. ; Marcos A. ; Chamorro C. Crosslink reaction mechanisms of diene rubber with dicumyl peroxide . Rubber Chem. Technol. , 1996 , 69 ( 2 ), 203 - 214 . doi: 10.5254/1.3538365 http://dx.doi.org/10.5254/1.3538365
Wang H. ; Ding Y. ; Zhao S. G. ; Wrana C. Peroxide cross-linking of EPDM using moving die rheometer measurements. I: Effects of the third monomer concentration and peroxide content . Rubber Chem. Technol. , 2015 , 88 ( 1 ), 40 - 52 . doi: 10.5254/rct.14.85968 http://dx.doi.org/10.5254/rct.14.85968
Xia X. X. ; Wu Z. J. ; Wang W. J. ; Shangguan Y. G. ; Zheng Q. A facile and environmentally friendly approach to fabricate hybrid crosslinked nitrile butadiene rubber with comprehensively improved mechanical performances by incorporating sacrificial ionic bonds . Polymer , 2019 , 161 , 55 - 63 . doi: 10.1016/j.polymer.2018.12.008 http://dx.doi.org/10.1016/j.polymer.2018.12.008
Xiong Y. ; Chen G. S. ; Guo S. Y. ; Li G. X. Lifetime prediction of NBR composite sheet in aviation kerosene by using nonlinear curve fitting of ATR-FTIR spectra . J. Ind. Eng. Chem. , 2013 , 19 ( 5 ), 1611 - 1616 . doi: 10.1016/j.jiec.2013.01.031 http://dx.doi.org/10.1016/j.jiec.2013.01.031
de Lima D. R. ; Lima A. P. ; Chaves E. G. ; Teixeira S. C. S. ; da Rocha E. B. D. ; Vieira Í. R. S. ; Furtado C. R. G. ; Figueiredo M. A. G. ; de Sousa A. M. F. Application of ATR-FTIR spectroscopy to characterize the acrylonitrile content of degraded filled nitrile rubber compounds . Polym. Bull. , 2024 , 81 ( 4 ), 3209 - 3227 . doi: 10.1007/s00289-023-04869-4 http://dx.doi.org/10.1007/s00289-023-04869-4
Chakraborty S. ; Bandyopadhyay S. ; Ameta R. ; Mukhopadhyay R. ; Deuri A. S. Application of FTIR in characterization of acrylonitrile-butadiene rubber (nitrile rubber) . Polym. Test. , 2007 , 26 ( 1 ), 38 - 41 . doi: 10.1016/j.polymertesting.2006.08.004 http://dx.doi.org/10.1016/j.polymertesting.2006.08.004
Parker J. R. ; Waddell W. H. Quantitative characterization of polymer structure by photoacoustic fourier transform infrared spectroscopy . J. Elastomers Plast. , 1996 , 28 ( 2 ), 140 - 160 . doi: 10.1177/009524439602800203 http://dx.doi.org/10.1177/009524439602800203
Durmaz S. ; Okay O. Acrylamide/2-acrylamido-2-methylpropane sulfonic acid sodium salt-based hydrogels: synthesis and characterization . Polymer , 2000 , 41 ( 10 ), 3693 - 3704 . doi: 10.1016/s0032-3861(99)00558-3 http://dx.doi.org/10.1016/s0032-3861(99)00558-3
Shaban M. ; El Ashry E. S. H. ; Abdel-Hamid H. ; Morsy A. ; Kandil S. Anti-biofouling of 2-acrylamido-2-methylpropane sulfonic acid grafted cellulose acetate membranes used for water desalination . Chem. Eng. Process. Process. Intensif. , 2020 , 149 , 107857 . doi: 10.1016/j.cep.2020.107857 http://dx.doi.org/10.1016/j.cep.2020.107857
吕斌 ; 张永刚 ; 吕宝强 ; 高党鸽 ; 任静静 ; 马建中 . 微凝胶增强聚丙烯酰胺水凝胶的制备及性能 . 精细化工 , 2024 , 41 ( 12 ), 2629 - 2636 .
Rathnayake W. G. I. U. ; Ismail H. ; Baharin A. ; Bandara I. M. C. C. D. ; Rajapakse S. Enhancement of the antibacterial activity of natural rubber latex foam by the incorporation of zinc oxide nanoparticles . J. Appl. Polym. Sci. , 2014 , 131 , 39601 . doi: 10.1002/app.39601 http://dx.doi.org/10.1002/app.39601
Bindu P. ; Joseph R. ; Thomas S. Nanoscale ZnO as a reinforcing filler in prevulcanized natural rubber latex . Sci. Adv. Mater. , 2013 , 5 ( 2 ), 116 - 126 . doi: 10.1166/sam.2013.1437 http://dx.doi.org/10.1166/sam.2013.1437
Nadim E. ; Bouhendi H. ; Ziaee F. ; Bazhrang R. Kinetic study of 2-acrylamido-2-methylpropanesulfonic acid in free-radical polymerization method by differential scanning calorimetry . Polym. Bull. , 2012 , 68 ( 2 ), 405 - 414 . doi: 10.1007/s00289-011-0552-6 http://dx.doi.org/10.1007/s00289-011-0552-6
Adler G. ; Ballantine D. ; Baysal B. The mechanism of free radical polymerization in the solid state . J. Polym. Sci. , 1960 , 48 ( 150 ), 195 - 206 . doi: 10.1002/pol.1960.1204815021 http://dx.doi.org/10.1002/pol.1960.1204815021
Mahdavian A. R. ; Zandi M. Kinetic study of radical polymerization. II. Solid-state bulk polymerization of sodium methacrylate by differential scanning calorimetry . J. Appl. Polym. Sci. , 2003 , 90 ( 6 ), 1648 - 1654 . doi: 10.1002/app.12831 http://dx.doi.org/10.1002/app.12831
Baeza G. P. ; Dessi C. ; Costanzo S. ; Zhao D. ; Gong S. S. ; Alegria A. ; Colby R. H. ; Rubinstein M. ; Vlassopoulos D. ; Kumar S. K. Network dynamics in nanofilled polymers . Nat. Commun. , 2016 , 7 , 11368 . doi: 10.1038/ncomms11368 http://dx.doi.org/10.1038/ncomms11368
Winter H. H. ; Mours M. Rheology of polymers near liquid-solid transitions . Neutron Spin Echo Spectroscopy Viscoelasticity Rheology. Berlin, Heidelberg : Springer , 2007 , 165 - 234 .
Llorente M. A. ; Andrady A. L. ; Mark J. E. Model networks of end-linked polydimethylsiloxane chains. XI. Use of very short network chains to improve ultimate properties . J. Polym. Sci. Polym. Phys. Ed. , 1981 , 19 ( 4 ), 621 - 630 . doi: 10.1002/pol.1981.180190406 http://dx.doi.org/10.1002/pol.1981.180190406
Andrady A. L. ; Llorente M. A. ; Mark J. E. Model networks of end-linked polydimethylsiloxane chains. IX. Gaussian, non-Gaussian, and ultimate properties of the trifunctional networks . J. Chem. Phys. , 1980 , 73 ( 3 ), 1439 - 1445 . doi: 10.1063/1.440205 http://dx.doi.org/10.1063/1.440205
Mark J. E. ; Sullivan J. L. Model networks of end-linked polydimethylsiloxane chains. I. Comparisons between experimental and theoretical values of the elastic modulus and the equilibrium degree of swelling . J. Chem. Phys. , 1977 , 66 ( 3 ), 1006 - 1011 . doi: 10.1063/1.434056 http://dx.doi.org/10.1063/1.434056
Mark J. E. ; Sung P. H. Model polyurethane networks prepared from poly(ethylene oxide) and poly(tetramethylene oxide) . Eur. Polym. J. , 1980 , 16 ( 12 ), 1223 - 1227 . doi: 10.1016/0014-3057(80)90029-4 http://dx.doi.org/10.1016/0014-3057(80)90029-4
Fan X. P. ; Xu H. L. ; Wu C. J. ; Song Y. H. ; Zheng Q. Influences of chemical crosslinking, physical associating, and filler filling on nonlinear rheological responses of polyisoprene . J. Rheol. , 2020 , 64 ( 4 ), 775 - 784 . doi: 10.1122/1.5124034 http://dx.doi.org/10.1122/1.5124034
Fan X. P. ; Song Y. H. ; Zheng Q. ; Wang W. J. Strain softening of styrene-isoprene-styrene copolymers under large amplitude oscillatory shear for clarifying Payne effect in rubbers and their nanocomposites . Chinese J. Polym. Sci. , 2023 , 41 ( 1 ), 153 - 165 . doi: 10.1007/s10118-022-2832-z http://dx.doi.org/10.1007/s10118-022-2832-z
Hou F. Y. ; Song Y. H. ; Zheng Q. Payne effect of thermo-oxidatively aged isoprene rubber vulcanizates . Polymer , 2020 , 195 , 122432 . doi: 10.1016/j.polymer.2020.122432 http://dx.doi.org/10.1016/j.polymer.2020.122432
Diani J. ; Fayolle B. ; Gilormini P. A review on the Mullins effect . Eur. Polym. J. , 2009 , 45 ( 3 ), 601 - 612 . doi: 10.1016/j.eurpolymj.2008.11.017 http://dx.doi.org/10.1016/j.eurpolymj.2008.11.017
Song Y. H. ; Zheng Q. Concepts and conflicts in nanoparticles reinforcement to polymers beyond hydrodynamics . Prog. Mater. Sci. , 2016 , 84 , 1 - 58 . doi: 10.1016/j.pmatsci.2016.09.002 http://dx.doi.org/10.1016/j.pmatsci.2016.09.002
Hyun K. ; Wilhelm M. ; Klein C. O. ; Cho K. S. ; Nam J. G. ; Ahn K. H. ; Lee S. J. ; Ewoldt R. H. ; McKinley G. H. A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (LAOS) . Prog. Polym. Sci. , 2011 , 36 ( 12 ), 1697 - 1753 . doi: 10.1016/j.progpolymsci.2011.02.002 http://dx.doi.org/10.1016/j.progpolymsci.2011.02.002
Matsumoto T. ; Segawa Y. ; Warashina Y. ; Onogi S. Nonlinear behavior of viscoelastic materials. II. The method of analysis and temperature dependence of nonlinear viscoelastic functions . Trans. Soc. Rheol. , 1973 , 17 ( 1 ), 47 - 62 . doi: 10.1122/1.549319 http://dx.doi.org/10.1122/1.549319
Ewoldt R. H. ; McKinley G. H. . On secondary loops in LAOS via self-intersection of Lissajous-Bowditch curves . Rheol. Acta , 2010 , 49 ( 2 ), 213 - 219 . doi: 10.1007/s00397-009-0408-2 http://dx.doi.org/10.1007/s00397-009-0408-2
Ptaszek P. A geometrical interpretation of large amplitude oscillatory shear (LAOS) in application to fresh food foams . J. Food Eng. , 2015 , 146 , 53 - 61 . doi: 10.1016/j.jfoodeng.2014.08.022 http://dx.doi.org/10.1016/j.jfoodeng.2014.08.022
Vijayan P. P. ; Puglia D. ; Kenny J. M. ; Thomas S. Effect of organically modified nanoclay on the miscibility, rheology, morphology and properties of epoxy/carboxyl-terminated (butadiene-co-acrylonitrile) blend . Soft Matter , 2013 , 9 ( 10 ), 2899 - 2911 . doi: 10.1039/c2sm27386a http://dx.doi.org/10.1039/c2sm27386a
Ewoldt R. H. ; Hosoi A. E. ; McKinley G. H. New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear . J. Rheol. , 2008 , 52 ( 6 ), 1427 - 1458 . doi: 10.1122/1.2970095 http://dx.doi.org/10.1122/1.2970095
Renou F. ; Stellbrink J. ; Petekidis G. Yielding processes in a colloidal glass of soft star-like micelles under large amplitude oscillatory shear (LAOS) . J. Rheol. , 2010 , 54 ( 6 ), 1219 - 1242 . doi: 10.1122/1.3483610 http://dx.doi.org/10.1122/1.3483610
Vandoolaeghe W. L. ; Terentjev E. M. . A Rouse-tube model of dynamic rubber viscoelasticity . J. Phys. A Math. Theor. , 2007 , 40 ( 49 ), 14725 . doi: 10.1088/1751-8113/40/49/008 http://dx.doi.org/10.1088/1751-8113/40/49/008
Lin P. ; Ma S. H. ; Wang X. L. ; Zhou F. Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery . Adv. Mater. , 2015 , 27 ( 12 ), 2054 - 2059 . doi: 10.1002/adma.201405022 http://dx.doi.org/10.1002/adma.201405022
Bai L. ; Zheng J. P. Robust, reprocessable and shape-memory vinylogous urethane vitrimer composites enhanced by sacrificial and self-catalysis Zn(II)-ligand bonds . Compos. Sci. Technol. , 2020 , 190 , 108062 . doi: 10.1016/j.compscitech.2020.108062 http://dx.doi.org/10.1016/j.compscitech.2020.108062
Luo F. ; Sun T. L. ; Nakajima T. ; Kurokawa T. ; Zhao Y. ; Sato K. ; Ihsan A. B. ; Li X. F. ; Guo H. L. ; Gong J. P. Oppositely charged polyelectrolytes form tough, self-healing, and rebuildable hydrogels . Adv. Mater. , 2015 , 27 ( 17 ), 2722 - 2727 . doi: 10.1002/adma.201500140 http://dx.doi.org/10.1002/adma.201500140
Luo F. ; Sun T. L. ; Nakajima T. ; Kurokawa T. ; Ihsan A. B. ; Li X. F. ; Guo H. L. ; Gong J. P. Free reprocessability of tough and self-healing hydrogels based on polyion complex . ACS Macro Lett. , 2015 , 4 ( 9 ), 961 - 964 . doi: 10.1021/acsmacrolett.5b00501 http://dx.doi.org/10.1021/acsmacrolett.5b00501
Bai T. ; Zhang P. ; Han Y. J. ; Liu Y. ; Liu W. G. ; Zhao X. L. ; Lu W. Construction of an ultrahigh strength hydrogel with excellent fatigue resistance based on strong dipole-dipole interaction . Soft Matter , 2011 , 7 ( 6 ), 2825 - 2831 . doi: 10.1039/c0sm01108h http://dx.doi.org/10.1039/c0sm01108h
Haque M. A. ; Kurokawa T. ; Kamita G. ; Gong J. P. Lamellar bilayers as reversible sacrificial bonds to toughen hydrogel: hysteresis, self-recovery, fatigue resistance, and crack blunting . Macromolecules , 2011 , 44 ( 22 ), 8916 - 8924 . doi: 10.1021/ma201653t http://dx.doi.org/10.1021/ma201653t
0
Views
160
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号