

浏览全部资源
扫码关注微信
1.天津工业大学材料科学与工程学院 先进分离膜材料全国重点实验室 天津 300387
2.天津工业大学化学工程与技术学院 天津市绿色化工过程工程重点实验室 天津 300387
3.天津膜天膜科技股份有限公司 天津 300457
Chun-rui Wu, E-mail: wuchunrui@tiangong.edu.cn
Received:15 August 2025,
Accepted:29 September 2025,
Published Online:16 December 2025,
Published:20 January 2026
移动端阅览
高海富, 贺龙飞, 孙佳静, 武春瑞, 陈华艳, 王暄, 吕晓龙. 氟烷基化FeOOH/PVDF共混膜微结构调控及其膜蒸馏性能研究. 高分子学报, 2026, 57(1), 143-156.
Gao, H. F.; He, L. F.; Sun, J. J.; Wu, C. R.; Chen, H. Y.; Wang, X.; Lu, X. L. Fluoroalkylation FeOOH/PVDF mixed matrix membrane: preparation and membrane distillation performance. Acta Polymerica Sinica (in Chinese), 2026, 57(1), 143-156.
高海富, 贺龙飞, 孙佳静, 武春瑞, 陈华艳, 王暄, 吕晓龙. 氟烷基化FeOOH/PVDF共混膜微结构调控及其膜蒸馏性能研究. 高分子学报, 2026, 57(1), 143-156. DOI: 10.11777/j.issn1000-3304.2025.25192. CSTR: 32057.14.GFZXB.2025.7482.
Gao, H. F.; He, L. F.; Sun, J. J.; Wu, C. R.; Chen, H. Y.; Wang, X.; Lu, X. L. Fluoroalkylation FeOOH/PVDF mixed matrix membrane: preparation and membrane distillation performance. Acta Polymerica Sinica (in Chinese), 2026, 57(1), 143-156. DOI: 10.11777/j.issn1000-3304.2025.25192. CSTR: 32057.14.GFZXB.2025.7482.
膜蒸馏(MD)技术是海水淡化与高浓水体资源化的重要手段,优异的疏水性和均匀的孔结构是解决膜污染、润湿问题和保障MD高效运行的关键. 本工作设计了溶解同步功能化、羟基诱导相分离方法:基于水解缩合反应在铸膜液溶解过程中将全氟辛基三乙氧基硅烷(FAS)接枝于羟基氧化铁(FeOOH)纳米棒表面,形成氟硅烷化羟基氧化铁(F-FeOOH),增强疏水性的同时解决纳米粒子团聚问题,进而在相分离成膜过程中通过F-FeOOH调控聚偏氟乙烯(PVDF)膜的晶型结构,规范聚合物链胶束生长与固化,优化膜表面及孔结构. 研究表明,F-FeOOH的引入,在增强材料化学疏水性的同时诱导PVDF分子链晶型向
γ
晶型转变,改性膜疏水性显著提升,膜下表面的纯水接触角可达135.5°,相比于原膜提升了42.6%;膜孔径均匀性提升,最可几孔径占比达98.4%;MD通量达到38.5 kg/(m
2
·h),与原膜相比提升了75.0%;膜截留率超过99.9%,且在30 h的防污染和抗润湿实验中表现出良好的稳定性.
Membrane distillation (MD) is the key technique for resource extraction from high concentrate solutions. Hydrophobicity and pore size uniformity of the membranes are critical factors to solve membrane wetting problem and ensure the highly efficiency of MD process. In this work
a new idea of functionalisation of additives during dissolution process and modification of crystallization transformation of membrane materials during phase separation was proposed. Iron hydroxide oxide (F-FeOOH) nanorods were introduced in PVDF casting solution and fluorosilanated during the dissolution process. Then
the crystallization of the PVDF was modified owing to the interaction between the g
roups of modified nanorods and PVDF chains. The problem of nanorods aggregation could be solved
the hydrophobicity and pore size uniformity could be improved simultaneously just in traditional phase separation process. The effects of F-FeOOH synthesis on the variation of membrane structure and properties were investigated. The results demonstrated that the hydrophobicity of the F-FeOOH modified membranes were significantly enhanced
with the formation of a spherical particle structure on the down-surface and high pore size uniformity of the membranes. The water contact angle of the membranes could reach 135.5°
which was enhanced 42.6%
the percentage of the most probable pore size of the modified membrane increased to 98.4%
the MD flux reach 38.5 kg/(m
2
·h)
which was improved by 75.0%
and the retention rate for salt was kept over 99.9%. The modified membrane showed persistent stability in 30 h anti-fouling and anti-wetting experiments.
Farid M. U. ; Kharraz J. A. ; Sun J. W. ; Boey M. W. ; Riaz M. A. ; Wong P. W. ; Jia M. Y. ; Zhang X. N. ; Deka B. J. ; Khanzada N. K. ; Guo J. X. ; An A. K. Advancements in nanoenabled membrane distillation for a sustainable water-energy-environment nexus . Adv. Mater. , 2024 , 36 ( 17 ), 2307950 . doi: 10.1002/adma.202307950 http://dx.doi.org/10.1002/adma.202307950
Subrahmanya T. M. ; Austria H. F. M. ; Chen Y. Y. ; Setiawan O. ; Widakdo J. ; Kurkuri M. D. ; Hung W. S. ; Hu C. C. ; Lee K. R. ; Lai J. Y. Self-surface heating membrane distillation for sustainable production of freshwater: a state of the art overview . Prog. Mater. Sci. , 2024 , 145 , 101309 . doi: 10.1016/j.pmatsci.2024.101309 http://dx.doi.org/10.1016/j.pmatsci.2024.101309
Kaczmarczyk M. ; Mukti M. ; Ghaffour N. ; Soukane S. ; Bundschuh J. ; Tomaszewska B. Renewable energy-driven membrane distillation in the context of life cycle assessment . Renew. Sustain. Energy Rev. , 2024 , 192 , 114249 . doi: 10.1016/j.rser.2023.114249 http://dx.doi.org/10.1016/j.rser.2023.114249
Poredoš P. ; Gao J. T. ; Shan H. ; Yu J. ; Shao Z. ; Xu Z. Y. ; Wang R. Z. Ultra-high freshwater production in multistage solar membrane distillation via waste heat injection to condenser . Nat. Commun. , 2024 , 15 , 7890 . doi: 10.1038/s41467-024-51880-y http://dx.doi.org/10.1038/s41467-024-51880-y
Lin J. Y. ; Du J. L. ; Xie S. L. ; Yu F. ; Fang S. Q. ; Yan Z. S. ; Lin X. C. ; Zou D. ; Xie M. ; Ye W. Y. Durable superhydrophobic polyvinylidene fluoride membranes via facile spray-coating for effective membrane distillation . Desalination , 2022 , 538 , 115925 . doi: 10.1016/j.desal.2022.115925 http://dx.doi.org/10.1016/j.desal.2022.115925
Zhang Y. J. ; Chong J. Y. ; Zhao Y. L. ; Xu R. ; Asakawa A. ; Wang R. Facile hydrophobic modification of hydrophilic membranes by fluoropolymer coating for direct contact membrane distillation . J. Membr. Sci. , 2023 , 672 , 121432 . doi: 10.1016/j.memsci.2023.121432 http://dx.doi.org/10.1016/j.memsci.2023.121432
Zhang L. ; Feng Y. Y. ; Li Y. T. ; Jiang Y. C. ; Wang S. B. ; Xiang J. ; Zhang J. P. ; Cheng P. G. ; Tang N. Stable construction of superhydrophobic surface on polypropylene membrane via atomic layer deposition for high salt solution desalination . J. Membr. Sci. , 2022 , 647 , 120289 . doi: 10.1016/j.memsci.2022.120289 http://dx.doi.org/10.1016/j.memsci.2022.120289
Liu J. ; Guo H. ; Sun Z. Y. ; Li B. A. Preparation of photothermal membrane for vacuum membrane distillation with excellent anti-fouling ability through surface spraying . J. Membr. Sci. , 2021 , 634 , 119434 . doi: 10.1016/j.memsci.2021.119434 http://dx.doi.org/10.1016/j.memsci.2021.119434
Xu J. ; Xia L. B. ; Liu J. X. ; Guan K. C. ; Luo P. ; Matsuyama H. ; Zou D. ; Zhong Z. X. Fabrication of omniphobic PVDF membrane with SiO 2 -FeOOH hierarchical structures for robust membrane distillation . J. Membr. Sci. , 2025 , 713 , 123252 . doi: 10.1016/j.memsci.2024.123252 http://dx.doi.org/10.1016/j.memsci.2024.123252
Zheng L. B. ; Wang K. ; Hou D. Y. ; Jia X. L. ; Zhao Z. C. Hierarchically-structured superhydrophobic POSS/PVDF composite membrane for anti-fouling and anti-wetting membrane distillation . Desalination , 2022 , 526 , 115512 . doi: 10.1016/j.desal.2021.115512 http://dx.doi.org/10.1016/j.desal.2021.115512
Heo K. J. ; Yoo J. H. ; Shin J. ; Huang W. ; Tiwari M. K. ; Jung J. H. ; Parkin I. P. ; Carmalt C. J. ; Hwang G. B. Transition from the Wenzel to Cassie-Baxter state by PFOTES/TiO 2 nanoparticles leading to a mechanically robust and damage/contamination-recoverable surface . J. Mater. Chem. A , 2024 , 12 ( 7 ), 3886 - 3895 . doi: 10.1039/d3ta06521a http://dx.doi.org/10.1039/d3ta06521a
Zhang W. B. ; Shi Z. ; Zhang F. ; Liu X. ; Jin J. ; Jiang L. Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux . Adv. Mater. , 2013 , 25 ( 14 ), 2071 - 2076 . doi: 10.1002/adma.201204520 http://dx.doi.org/10.1002/adma.201204520
Sukitpaneenit P. ; Chung T. S. Molecular elucidation of morphology and mechanical properties of PVDF hollow fiber membranes from aspects of phase inversion, crystallization and rheology . J. Membr. Sci. , 2009 , 340 ( 1-2 ), 192 - 205 . doi: 10.1016/j.memsci.2009.05.029 http://dx.doi.org/10.1016/j.memsci.2009.05.029
Baghbanzadeh M. ; Rana D. ; Lan C. Q. ; Matsuura T. Effects of hydrophilic silica nanoparticles and backing material in improving the structure and performance of VMD PVDF membranes . Sep. Purif. Technol. , 2016 , 157 , 60 - 71 . doi: 10.1016/j.seppur.2015.11.029 http://dx.doi.org/10.1016/j.seppur.2015.11.029
Wu C. R. ; Tang W. Y. ; Zhang J. H. ; Liu S. H. ; Wang Z. Y. ; Wang X. ; Lu X. L. Preparation of super-hydrophobic PVDF membrane for MD purpose via hydroxyl induced crystallization-phase inversion . J. Membr. Sci. , 2017 , 543 , 288 - 300 . doi: 10.1016/j.memsci.2017.08.066 http://dx.doi.org/10.1016/j.memsci.2017.08.066
Ma N. ; Li K. ; Xu B. ; Tian H. F. ; Ma S. B. ; Li J. L. ; Ouyang Y. ; Liu Q. ; Liu D. G. ; Kumar R. Zein/polyvinyl alcohol-based electrospun nanofibrous films reinforced with nano-hydroxyapatite for efficient Cu(II) adsorption . J. Appl. Polym. Sci. , 2024 , 141 ( 11 ), e 55086 . doi: 10.1002/app.55086 http://dx.doi.org/10.1002/app.55086
Hui Ting L. L. ; Teow Y. H. ; Mahmoudi E. ; Ooi B. S. Development and optimization of low surface free energy of rGO-PVDF mixed matrix membrane for membrane distillation . Sep. Purif. Technol. , 2023 , 305 , 122428 . doi: 10.1016/j.seppur.2022.122428 http://dx.doi.org/10.1016/j.seppur.2022.122428
He L. F. ; Zhang H. ; Gao H. F. ; Chen Z. R. ; Li J. H. ; Song Z. P. ; Shi L. ; Yan H. J. ; Lu X. L. ; Wu C. R. Study of the role mechanism of fluoroalkylation FeOOH regulating PVDF membrane morphology for membrane distillation . Sep. Purif. Technol. , 2025 , 376 , 134131 . doi: 10.1016/j.seppur.2025.134131 http://dx.doi.org/10.1016/j.seppur.2025.134131
Yang S. ; Luo T. L. ; Fan J. J. ; Zhou C. Z. ; Hu M. Y. ; Wang J. Y. ; Wen L. J. ; Qin L. ; Liu G. Performance and mechanisms of PropS-SH/HA coatings in the inhibition of pyrite oxidation . ACS Omega , 2021 , 6 ( 47 ), 32011 - 32021 . doi: 10.1021/acsomega.1c04793 http://dx.doi.org/10.1021/acsomega.1c04793
Kong X. ; Wang Q. Z. ; Wang Y. F. ; Huo H. M. ; Kou F. Q. ; Zhang S. B. ; Zhao J. ; Zhang D. ; Hao L. ; Chang Y. J. ; Zhang D. E. Synergistic manipulation of the polymorphic structure and hydrophilicity of PVDF membranes based on the in situ esterification reaction to prepare anti-fouling PVDF membranes . J. Membr. Sci. , 2025 , 715 , 123474 . doi: 10.1016/j.memsci.2024.123474 http://dx.doi.org/10.1016/j.memsci.2024.123474
She J. G. ; Gao H. F. ; Song Z. P. ; Shi L. ; Li J. H. ; Lyu X. L. ; Zhang J. H. ; Wu C. R. 'Green' fabrication of PVC ultrafiltration membranes with high-flux and improved hydrophilicity by in situ interpenetration of hydrophilic crosslinking networks . J. Membr. Sci. , 2024 , 693 , 122383 . doi: 10.1016/j.memsci.2023.122383 http://dx.doi.org/10.1016/j.memsci.2023.122383
Buckley J. ; Cebe P. ; Cherdack D. ; Crawford J. ; Ince B. S. ; Jenkins M. ; Pan J. J. ; Reveley M. ; Washington N. ; Wolchover N. Nanocomposites of poly(vinylidene fluoride) with organically modified silicate . Polymer , 2006 , 47 ( 7 ), 2411 - 2422 . doi: 10.1016/j.polymer.2006.02.012 http://dx.doi.org/10.1016/j.polymer.2006.02.012
Reuvers A. J. ; van den Berg J. W. A. ; Smolders C. A. Formation of membranes by means of immersion precipitation . J. Membr. Sci. , 1987 , 34 ( 1 ), 45 - 65 . doi: 10.1016/s0376-7388(00)80020-4 http://dx.doi.org/10.1016/s0376-7388(00)80020-4
Zeinedini A. ; Shokrieh M. M. Agglomeration phenomenon in graphene/polymer nanocomposites: reasons, roles, and remedies . Appl. Phys. Rev. , 2024 , 11 ( 4 ), 041301 . doi: 10.1063/5.0223785 http://dx.doi.org/10.1063/5.0223785
Xu J. ; Guan K. C. ; Luo P. ; He S. S. ; Matsuyama H. ; Zou D. ; Zhong Z. X. Engineering PVDF omniphobic membranes with flower-like micro-nano structures for robust membrane distillation . Desalination , 2024 , 578 , 117442 . doi: 10.1016/j.desal.2024.117442 http://dx.doi.org/10.1016/j.desal.2024.117442
Zhang P. F. ; Xiang S. ; Gonzales R. R. ; Li Z. ; Chiao Y. H. ; Guan K. C. ; Hu M. Y. ; Xu P. ; Mai Z. H. ; Rajabzadeh S. ; Nakagawa K. ; Matsuyama H. Wetting-and scaling-resistant superhydrophobic hollow fiber membrane with hierarchical surface structure for membrane distillation . J. Membr. Sci. , 2024 , 693 , 122338 . doi: 10.1016/j.memsci.2023.122338 http://dx.doi.org/10.1016/j.memsci.2023.122338
Alsebaeai M. K. ; Ahmad A. L. ; Ooi B. S. Construction of wetting resistance surface of highly hydrophobic PVDF-HFP/rGO coated supported PVDF hollow fiber composite membrane for membrane distillation . Chem. Eng. J. , 2024 , 493 , 152565 . doi: 10.1016/j.cej.2024.152565 http://dx.doi.org/10.1016/j.cej.2024.152565
Xie S. D. ; Chen Y. ; Feng D. J. ; Wang Z. X. Thin-film composite membrane with a hydrophobic substrate for robust membrane distillation . Adv. Mater. Technol. , 2023 , 8 ( 7 ), 2201426 . doi: 10.1002/admt.202201426 http://dx.doi.org/10.1002/admt.202201426
Wu Z. B. ; Zheng K. ; Zhang G. C. ; Huang L. W. ; Zhou S. Q. Preparation of polysulfone-based nanofiber Janus membrane for membrane distillation containing organic pollutants . NPJ Clean Water , 2024 , 7 , 51 . doi: 10.1038/s41545-024-00342-5 http://dx.doi.org/10.1038/s41545-024-00342-5
Guo J. X. ; Jiang M. N. ; Li X. L. ; Farid M. U. ; Deka B. J. ; Zhang B. P. ; Sun J. W. ; Wang Z. K. ; Yi C. H. ; Wong P. W. ; Jeong S. ; Gu B. ; An A. K. Springtail-inspired omniphobic slippery membrane with nano-concave re-entrant structures for membrane distillation . Nat. Commun. , 2024 , 15 , 7750 . doi: 10.1038/s41467-024-52108-9 http://dx.doi.org/10.1038/s41467-024-52108-9
Xu H. ; Zhang Q. ; Song N. H. ; Chen J. P. ; Ding M. M. ; Mei C. H. ; Zong Y. C. ; Chen X. Y. ; Gao L. Membrane distillation by novel Janus-enhanced membrane featuring hydrophobic-hydrophilic dual-surface for freshwater recovery . Sep. Purif. Technol. , 2022 , 302 , 122036 . doi: 10.1016/j.seppur.2022.122036 http://dx.doi.org/10.1016/j.seppur.2022.122036
0
Views
212
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号