

浏览全部资源
扫码关注微信
上海瑛泰医疗器械股份有限公司 上海 201803
Received:13 October 2025,
Accepted:24 November 2025,
Published Online:07 January 2026,
Published:20 January 2026
移动端阅览
宋媛, 赵铮, 周红欣, 丁文飞. 聚氨酯材料在心血管植入器械应用的研究进展. 高分子学报, 2026, 57(1), 95-108.
Song, Y.; Zhao, Z.; Zhou, H. X.; Ding, W. F. Progresses on polyurethane materials for cardiovascular implant device. Acta Polymerica Sinica (in Chinese), 2026, 57(1), 95-108.
宋媛, 赵铮, 周红欣, 丁文飞. 聚氨酯材料在心血管植入器械应用的研究进展. 高分子学报, 2026, 57(1), 95-108. DOI: 10.11777/j.issn1000-3304.2025.25193. CSTR: 32057.14.GFZXB.2025.7519.
Song, Y.; Zhao, Z.; Zhou, H. X.; Ding, W. F. Progresses on polyurethane materials for cardiovascular implant device. Acta Polymerica Sinica (in Chinese), 2026, 57(1), 95-108. DOI: 10.11777/j.issn1000-3304.2025.25193. CSTR: 32057.14.GFZXB.2025.7519.
聚氨酯作为一种性能优异的合成材料,在诸多领域有广泛的应用. 由于聚氨酯优异的生物相容性、力学性能及结构设计自由度,近年来在生物医学领域的价值凸显,聚氨酯材料的医学应用已经覆盖短时接触导管、心血管辅助装置及人工器官等植入物. 本综述回顾了聚氨酯的基本特性,简要介绍了国内外商品化医用聚氨酯,并聚焦于心血管植入领域包括医用导管、血管支架、人工血管及心脏瓣膜的前沿研究,为聚氨酯材料的开发和应用提供指导和思路.
Polyurethane
as an outstanding synthetic material
has extensive applications in various fields. Due to its excellent biocompatibility
mechanical properties and structural designability
polyurethane is demonstrating increasingly valuable in biomedical field in recent years. The biomedical applications of polyurethane have extended to a wide range of devices
including short-term contact catheters and cardiovascular assistive devices
as well as implantable artificial organs. This review summarizes the basic characteristics of polyurethane
introduces the commercial products
and focused on the innovative study in the cardiovascular implant field
including medical catheters
vascular stents
artificial blood vessels and heart valves
and providing guidance for the development of polyurethane materials.
Yilgor I. ; Yilgor E. Linear polyurethanes , synthesis methods, chemical structures, and properties. Prog. Mater. Sci., 2007 , 52 ( 6 ), 915 - 1015 .
Rusu L. C. ; Ardelean L. C. ; Jitariu A. A. ; Miu C. A. ; Streian C. G. An insight into the structural diversity and clinical applicability of polyurethanes in biomedicine . Polymers , 2020 , 12 ( 5 ), 1197 . doi: 10.3390/polym12051197 http://dx.doi.org/10.3390/polym12051197
卢成帅 , 韩文佳 , 张志良 , 甄文超 , 戎旭辉 , 陈鲁正 , 娄江 . 水性聚氨酯基柔性传感材料的研究进展 . 复合材料学报 , 2025 , 42 ( 1 ), 133 - 146 .
姚怡 , 金子敏 , 蒙冉菊 , 高慧英 . 聚氨酯材料在新型智能纺织服装领域的研究进展 . 现代纺织技术 , 2025 , 33 ( 5 ), 10 - 21 .
Yilgör I. ; Yilgör E. ; Wilkes G. L. Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: a comprehensive review . Polymer , 2015 , 58 , A1 - A36 . doi: 10.1016/j.polymer.2014.12.014 http://dx.doi.org/10.1016/j.polymer.2014.12.014
Azarmgin S. ; Torabinejad B. ; Kalantarzadeh R. ; Garcia H. ; Velazquez C. A. ; Lopez G. ; Vazquez M. ; Rosales G. ; Heidari B. S. ; Davachi S. M. Polyurethanes and their biomedical applications . ACS Biomater. Sci. Eng. , 2024 , 10 ( 11 ), 6828 - 6859 . doi: 10.1021/acsbiomaterials.4c01352 http://dx.doi.org/10.1021/acsbiomaterials.4c01352
Cooper S. L. ; Tobolsky A. V. Properties of linear elastomeric polyurethanes . J. Appl. Polym. Sci. , 1966 , 10 ( 12 ), 1837 - 1844 . doi: 10.1002/app.1966.070101204 http://dx.doi.org/10.1002/app.1966.070101204
Boretos J. W. ; Pierce W. S. Segmented polyurethane: a new elastomer for biomedical applications . Science , 1967 , 158 ( 3807 ), 1481 - 1482 . doi: 10.1126/science.158.3807.1481 http://dx.doi.org/10.1126/science.158.3807.1481
Christenson E. M. ; Anderson J. M. ; Hiltner A. Oxidative mechanisms of poly(carbonate urethane) and poly(ether urethane) biodegradation: in vivo and in vitro correlations . J. Biomed. Mater. Res. Part A , 2004 , 70 A( 2 ), 245 - 255 . doi: 10.1002/jbm.a.30067 http://dx.doi.org/10.1002/jbm.a.30067
Cao H. M. ; Zhu T. K. ; Wei H. N. ; Zhang S. P. Poly(sulfobetaine) versus poly(ethylene glycol) based copolymer modified polyurethane catheters for antifouling . J. Mater. Chem. B , 2024 , 12 ( 22 ), 5455 - 5464 . doi: 10.1039/d4tb00156g http://dx.doi.org/10.1039/d4tb00156g
Lai C. H. ; Wang S. ; Zhong P. ; Chen Y. Y. ; Xu J. ; Li X. L. ; Liu W. Q. A low-friction and high-stability hydrophilic PVP/PEG coated TPU for interventional catheter applications . Tribol. Int. , 2024 , 198 , 109859 . doi: 10.1016/j.triboint.2024.109859 http://dx.doi.org/10.1016/j.triboint.2024.109859
Ding W. F. ; Zhao Z. ; Jiang L. M. ; Jian X. G. ; Song Y. ; Wang J. Y. Preparation and evaluation of a UV-curing hydrophilic semi-IPN coating for medical guidewires . J. Coat. Technol. Res. , 2021 , 18 ( 4 ), 1027 - 1035 . doi: 10.1007/s11998-020-00455-9 http://dx.doi.org/10.1007/s11998-020-00455-9
Zhang Z. Y. ; Wang L. ; Liu J. Y. ; Yu H. ; Zhang X. ; Yin J. H. ; Luan S. F. ; Shi H. C. Water-triggered segment orientation of long-lasting anti-biofouling polyurethane coatings on biomedical catheters via solvent exchange strategy . Small , 2023 , 19 ( 43 ), 2304379 . doi: 10.1002/smll.202304379 http://dx.doi.org/10.1002/smll.202304379
Røn T. ; Javakhishvili I. ; Jeong S. ; Jankova K. ; Lee S. Low friction thermoplastic polyurethane coatings imparted by surface segregation of amphiphilic block copolymers . Colloid Interface Sci. Commun. , 2021 , 44 , 100477 . doi: 10.1016/j.colcom.2021.100477 http://dx.doi.org/10.1016/j.colcom.2021.100477
Gupta A. ; Rainu S. K. ; Kaur M. ; Meena M. ; Singh N. ; Jacob J. 1,4-Bis(2-hydroxyethyl)piperazine-derived water-dispersible and antibacterial polyurethane coatings for medical catheters . J. Mater. Chem. B , 2025 , 13 ( 10 ), 3350 - 3364 . doi: 10.1039/d4tb02227k http://dx.doi.org/10.1039/d4tb02227k
Jiang R. Y. ; Liu X. Y. ; Gao S. ; Kang K. ; Ding X. K. ; Wu D. M. ; Duan S. ; Xu F. J. A scalable and universal strategy for constructing long-term antibacterial coatings with lubricant property on medical catheters . Prog. Org. Coat. , 2024 , 196 , 108738 . doi: 10.1016/j.porgcoat.2024.108738 http://dx.doi.org/10.1016/j.porgcoat.2024.108738
刘博睿 , 牟倡骏 , 班雨 , 王磊 , 闫秋艳 , 石恒冲 , 殷敬华 , 栾世方 . 聚苯乙烯磺酸钠与季鏻盐表面活性剂复合物的结构调控及其抗菌性能 . 应用化学 , 2024 , 41 ( 4 ), 521 - 530 . doi: 10.19894/j.issn.1000-0518.230341 http://dx.doi.org/10.19894/j.issn.1000-0518.230341
Karahaliloğlu Z. Polyurethane/phosphatidylcholine composite nanofibers conjugated with heparin-tagged cerium oxide nanoparticles for surface modification of cardiovascular stents . J. Mater. Res. , 2023 , 38 ( 3 ), 906 - 924 . doi: 10.1557/s43578-022-00882-x http://dx.doi.org/10.1557/s43578-022-00882-x
Hu H. P. ; Wang L. J. ; Dou J. ; Shang Y. S. ; Liu X. ; Shen J. ; Yuan J. Nitric oxide-releasing porous coating with antibacterial activity and blood compatibility . Langmuir , 2024 , 40 ( 2 ), 1286 - 1294 . doi: 10.1021/acs.langmuir.3c02797 http://dx.doi.org/10.1021/acs.langmuir.3c02797
赵铮 . 具有抗凝和释药双重功能的双硒聚氨酯涂层 . 中国组织工程研究 , 2026 , 30 ( 2 ), 414 - 423 .
Abbasnezhad N. ; Zirak N. ; Shirinbayan M. ; Kouidri S. ; Salahinejad E. ; Tcharkhtchi A. ; Bakir F. Controlled release from polyurethane films: drug release mechanisms . J. Appl. Polym. Sci. , 2021 , 138 ( 12 ), 50083 . doi: 10.1002/app.50083 http://dx.doi.org/10.1002/app.50083
Laurano R. ; Boffito M. ; Abrami M. ; Grassi M. ; Zoso A. ; Chiono V. ; Ciardelli G. Dual stimuli-responsive polyurethane-based hydrogels as smart drug delivery carriers for the advanced treatment of chronic skin wounds . Bioact. Mater. , 2021 , 6 ( 9 ), 3013 - 3024 . doi: 10.1016/j.bioactmat.2021.01.003 http://dx.doi.org/10.1016/j.bioactmat.2021.01.003
Gu X. Z. ; Mao Z. W. ; Ye S. H. ; Koo Y. ; Yun Y. ; Tiasha T. R. ; Shanov V. ; Wagner W. R. Biodegradable, elastomeric coatings with controlled anti-proliferative agent release for magnesium-based cardiovascular stents . Colloids Surf. B Biointerfaces , 2016 , 144 , 170 - 179 . doi: 10.1016/j.colsurfb.2016.03.086 http://dx.doi.org/10.1016/j.colsurfb.2016.03.086
Kim S. ; Nowicki K. W. ; Ye S. ; Jang K. ; Elsisy M. ; Ibrahim M. ; Chun Y. ; Gross B. A. ; Friedlander R. M. ; Wagner W. R. Bioabsorbable, elastomer-coated magnesium alloy coils for treating saccular cerebrovascular aneurysms . Biomaterials , 2022 , 290 , 121857 . doi: 10.1016/j.biomaterials.2022.121857 http://dx.doi.org/10.1016/j.biomaterials.2022.121857
Choe J. A. ; Uthamaraj S. ; Dragomir-Daescu D. ; Sandhu G. S. ; Tefft B. J. Magnetic and biocompatible polyurethane nanofiber biomaterial for tissue engineering . Tissue Eng. Part A , 2023 , 29 ( 15-16 ), 413 - 423 . doi: 10.1089/ten.tea.2022.0224 http://dx.doi.org/10.1089/ten.tea.2022.0224
Wang H. J. ; Hao M. F. ; Wang G. ; Peng H. ; Wahid F. ; Yang Y. ; Liang L. ; Liu S. Q. ; Li R. L. ; Feng S. Y. Zein nanospheres assisting inorganic and organic drug combination to overcome stent implantation-induced thrombosis and infection . Sci. Total Environ. , 2023 , 873 , 162438 . doi: 10.1016/j.scitotenv.2023.162438 http://dx.doi.org/10.1016/j.scitotenv.2023.162438
Yang R. B. ; Liu W. K. ; Wang A. ; Deng X. B. ; Feng Y. ; Zhang Q. ; Li Z. ; Luo F. ; Li J. H. ; Tan H. Shape memory polyurethane potentially used for vascular stents with water-induced stiffening and improved hemocompatibility . J. Mater. Chem. B , 2022 , 10 ( 43 ), 8918 - 8930 . doi: 10.1039/d2tb01681h http://dx.doi.org/10.1039/d2tb01681h
Liu W. K. ; Wang A. ; Yang R. B. ; Wu H. C. ; Shao S. R. ; Chen J. L. ; Ma Y. ; Li Z. ; Wang Y. C. ; He X. L. ; Li J. H. ; Tan H. ; Fu Q. Water-triggered stiffening of shape-memory polyurethanes composed of hard backbone dangling PEG soft segments . Adv. Mater. , 2022 , 34 ( 46 ), 2201914 . doi: 10.1002/adma.202201914 http://dx.doi.org/10.1002/adma.202201914
Yang R. B. ; Chen C. W. ; Liu W. K. ; Wang A. ; Jiang P. J. ; Li Z. ; Luo F. ; Li J. H. ; Tan H. Biomimicry-inspired zwitterionic polyurethane used for vascular implants showing water-induced stiffening and preventing intimal hyperplasia in stent . Biomaterials , 2025 , 322 , 123394 . doi: 10.1016/j.biomaterials.2025.123394 http://dx.doi.org/10.1016/j.biomaterials.2025.123394
Gu Y. R. ; Tian C. ; Qin Y. L. ; Sun Y. X. ; Liu S. S. ; Li H. C. ; Duan X. J. ; Shu C. ; Ouyang C. X. The novel hybrid polycarbonate polyurethane/polyester three-layered large-diameter artificial blood vessel . J. Biomater. Appl. , 2022 , 36 ( 6 ), 965 - 975 . doi: 10.1177/08853282211033415 http://dx.doi.org/10.1177/08853282211033415
Zhang Y. ; Lin L. N. ; Niu M. Y. ; Bian F. K. ; Wang W. J. ; Zu Y. Artificial human blood vessels for tissue engineering . ACS Materials Lett. , 2025 , 7 ( 4 ), 1626 - 1645 . doi: 10.1021/acsmaterialslett.5c00038 http://dx.doi.org/10.1021/acsmaterialslett.5c00038
Bao H. ; Zhang Y. Y. ; Xin H. ; Gao Y. ; Hou Y. ; Yue G. C. ; Wang N. ; Wang Y. Q. ; Li C. ; Liu F. W. ; Zhao Y. ; Kong L. The construction of three-layered biomimetic arterial graft balances biomechanics and biocompatibility for dynamic biological reconstruction . ACS Omega , 2024 , 9 ( 7 ), 7609 - 7620 .
Zhang Y. G. ; Jiao Y. H. ; Wang C. ; Zhang C. C. ; Wang H. ; Feng Z. G. ; Gu Y. Q. ; Wang Z. G. Design and characterization of small-diameter tissue-engineered blood vessels constructed by electrospun polyurethane-core and gelatin-shell coaxial fiber . Bioengineered , 2021 , 12 ( 1 ), 5769 - 5788 . doi: 10.1080/21655979.2021.1969177 http://dx.doi.org/10.1080/21655979.2021.1969177
刘亮 , 胡高铨 , 韦昭 , 陈琳 , 洪枫 . 细菌纳米纤维素/聚多巴胺复合管作为小口径人工血管的潜力 . 中国组织工程研究 , 2022 , 26 ( 22 ), 3535 - 3542 .
Zhou S. Y. ; Li L. ; Xie E. ; Li M. X. ; Cao J. H. ; Yang X. B. ; Wu D. Y. Small-diameter PCL/PU vascular graft modified with heparin-aspirin compound for preventing the occurrence of acute thrombosis . Int. J. Biol. Macromol. , 2023 , 249 , 126058 . doi: 10.1016/j.ijbiomac.2023.126058 http://dx.doi.org/10.1016/j.ijbiomac.2023.126058
Fang Z. P. ; Xiao Y. H. ; Geng X. ; Jia L. J. ; Xing Y. H. ; Ye L. ; Gu Y. Q. ; Zhang A. Y. ; Feng Z. G. Fabrication of heparinized small diameter TPU/PCL bi-layered artificial blood vessels and in vivo assessment in a rabbit carotid artery replacement model . Biomater. Adv. , 2022 , 133 , 112628 . doi: 10.1016/j.msec.2021.112628 http://dx.doi.org/10.1016/j.msec.2021.112628
Li S. ; Yang L. ; Zhao Z. J. ; Yang X. N. ; Lv H. Y. A polyurethane-based hydrophilic elastomer with multi-biological functions for small-diameter vascular grafts . Acta Biomater. , 2024 , 176 , 234 - 249 . doi: 10.1016/j.actbio.2024.01.006 http://dx.doi.org/10.1016/j.actbio.2024.01.006
Xiang Z. H. ; Chen H. H. ; Xu B. F. ; Wang H. Z. ; Zhang T. C. ; Guan X. H. ; Ma Z. F. ; Liang K. T. ; Shi Q. Gelatin/heparin coated bio-inspired polyurethane composite fibers to construct small-caliber artificial blood vessel grafts . Int. J. Biol. Macromol. , 2024 , 269 , 131849 . doi: 10.1016/j.ijbiomac.2024.131849 http://dx.doi.org/10.1016/j.ijbiomac.2024.131849
Li P. C. ; Cai W. H. ; Wang K. B. ; Zhou L. ; Tang S. S. ; Zhao Y. C. ; Li X. ; Wang J. Selenium-functionalized polycarbonate-polyurethane for sustained in situ generation of therapeutic gas for blood-contacting materials . Smart Mater. Med. , 2022 , 3 , 361 - 373 . doi: 10.1016/j.smaim.2022.04.003 http://dx.doi.org/10.1016/j.smaim.2022.04.003
Jenney C. ; Millson P. ; Grainger D. W. ; Grubbs R. ; Gunatillake P. ; McCarthy S. J. ; Runt J. ; Beith J. Assessment of a siloxane poly(urethane-urea) elastomer designed for implantable heart valve leaflets . Adv. NanoBiomed Res. , 2021 , 1 ( 2 ), 2000032 . doi: 10.1002/anbr.202000032 http://dx.doi.org/10.1002/anbr.202000032
Dandeniyage L. S. ; Knower W. ; Adhikari R. ; Bown M. ; Shanks R. ; Adhikari B. ; Gunatillake P. A. In vitro oxidative stability of high strength siloxane poly(urethane-urea) elastomers based on linked-macrodiol . J. Biomed. Mater. Res. Part B Appl. Biomater. , 2019 , 107 ( 8 ), 2557 - 2565 . doi: 10.1002/jbm.b.34346 http://dx.doi.org/10.1002/jbm.b.34346
Dandeniyage L. S. ; Gunatillake P. A. ; Adhikari R. ; Bown M. ; Shanks R. ; Adhikari B. Development of high strength siloxane poly(urethane-urea) elastomers based on linked macrodiols for heart valve application . J. Biomed. Mater. Res. Part B Appl. Biomater. , 2018 , 106 ( 5 ), 1712 - 1720 . doi: 10.1002/jbm.b.33970 http://dx.doi.org/10.1002/jbm.b.33970
Wu H. C. ; Dai T. C. ; Ao W. ; Shao S. R. ; Li Z. ; Luo F. ; Li J. H. ; Zhao D. G. ; Lan W. L. ; Zhang H. Y. ; Tan H. The role of segmental mixing on the mechanical properties and oxidative stability of polydimethylsiloxane-based polyetherurethane . Polymer , 2022 , 261 , 125401 . doi: 10.1016/j.polymer.2022.125401 http://dx.doi.org/10.1016/j.polymer.2022.125401
Hu Y. G. ; Xiong Y. ; Wei Y. ; Liu J. Z. ; Zheng T. T. ; Zheng C. ; Li G. C. ; Luo R. F. ; Yang L. ; Zhang F. J. ; Wang Y. B. Polymeric artificial heart valves derived from modified diol-based polycarbonate polyurethanes . Acta Biomater. , 2024 , 190 , 64 - 78 . doi: 10.1016/j.actbio.2024.10.045 http://dx.doi.org/10.1016/j.actbio.2024.10.045
Wu X. H. ; Hu Y. C. ; Xia Y. ; Lin Y. L. ; Zhang A. Q. Siloxane-based segmented poly(urethane-urea) elastomers with enhanced mechanical properties, hydrophobicity and anti-calcification based on hierarchical phase separation for potential applications of polymeric heart valve . Eur. Polym. J. , 2024 , 218 , 113349 . doi: 10.1016/j.eurpolymj.2024.113349 http://dx.doi.org/10.1016/j.eurpolymj.2024.113349
Zhao J. M. ; Bahatibieke A. ; Liu G. D. ; Li J. M. ; Li J. F. ; Zhao F. L. ; Yao B. H. ; Xie Y. J. ; Zheng Y. D. Dynamically reshaping high density hydrogen bonds enhanced polyurethane used as artificial heart valves with enhanced fatigue resistance, anti-calcification and blood compatibility . Chem. Eng. J. , 2024 , 502 , 158015 . doi: 10.1016/j.cej.2024.158015 http://dx.doi.org/10.1016/j.cej.2024.158015
Kidane A. G. ; Burriesci G. ; Edirisinghe M. ; Ghanbari H. ; Bonhoeffer P. ; Seifalian A. M. A novel nanocomposite polymer for development of synthetic heart valve leaflets . Acta Biomater. , 2009 , 5 ( 7 ), 2409 - 2417 . doi: 10.1016/j.actbio.2009.02.025 http://dx.doi.org/10.1016/j.actbio.2009.02.025
Kannan R. Y. ; Salacinski H. J. ; De Groot J. ; Clatworthy I. ; Bozec L. ; Horton M. ; Butler P. E. ; Seifalian A. M. The antithrombogenic potential of a polyhedral oligomeric silsesquioxane (POSS) nanocomposite . Biomacromolecules , 2006 , 7 ( 1 ), 215 - 223 . doi: 10.1021/bm050590z http://dx.doi.org/10.1021/bm050590z
Rahmani B. ; Tzamtzis S. ; Sheridan R. ; Mullen M. J. ; Yap J. ; Seifalian A. M. ; Burriesci G. In vitro hydrodynamic assessment of a new transcatheter heart valve concept (the TRISKELE) . J. Cardiovasc. Transl. Res. , 2017 , 10 ( 2 ), 104 - 115 . doi: 10.1007/s12265-016-9722-0 http://dx.doi.org/10.1007/s12265-016-9722-0
Ovcharenko E. A. ; Seifalian A. ; Rezvova M. A. ; Klyshnikov K. Y. ; Glushkova T. V. ; Akenteva T. N. ; Antonova L. V. ; Velikanova E. A. ; Chernonosova V. S. ; Shevelev G. Y. ; Shishkova D. K. ; Krivkina E. O. ; Kudryavceva Y. A. ; Seifalian A. M. ; Barbarash L. S. A new nanocomposite copolymer based on functionalised graphene oxide for development of heart valves . Sci. Rep. , 2020 , 10 , 5271 . doi: 10.1038/s41598-020-62122-8 http://dx.doi.org/10.1038/s41598-020-62122-8
Sun N. ; Di M. W. ; Liu Y. Lignin-containing polyurethane elastomers with enhanced mechanical properties via hydrogen bond interactions . Int. J. Biol. Macromol. , 2021 , 184 , 1 - 8 . doi: 10.1016/j.ijbiomac.2021.06.038 http://dx.doi.org/10.1016/j.ijbiomac.2021.06.038
Guo F. ; Han R. Z. ; Ying J. S. ; Zhang Z. P. ; Yang R. ; Zhang X. Bioinspired polymeric heart valves derived from polyurethane and natural cellulose fibers . J. Mater. Sci. Technol. , 2023 , 144 , 178 - 187 . doi: 10.1016/j.jmst.2022.09.063 http://dx.doi.org/10.1016/j.jmst.2022.09.063
Gao X. ; Liu Z. ; Zhang Z. W. ; Gao Y. ; Zhang J. ; Long Y. Z. Artificial heart valve scaffold based on electrospun PCL/PU three-layer composite fibers . Appl. Sci. , 2024 , 14 ( 24 ), 12001 . doi: 10.3390/app142412001 http://dx.doi.org/10.3390/app142412001
Sun M. Z. ; Elkhodiry M. ; Shi L. ; Xue Y. F. ; Abyaneh M. H. ; Kossar A. P. ; Giuglaris C. ; Carter S. L. ; Li R. L. ; Bacha E. ; Ferrari G. ; Kysar J. ; Myers K. ; Kalfa D. A biomimetic multilayered polymeric material designed for heart valve repair and replacement . Biomaterials , 2022 , 288 , 121756 . doi: 10.1016/j.biomaterials.2022.121756 http://dx.doi.org/10.1016/j.biomaterials.2022.121756
0
Views
201
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号