

浏览全部资源
扫码关注微信
1.复旦大学高分子科学系 聚合物分子工程全国重点实验室 上海 200433
2.中国石油石油化工研究院兰州化工研究中心 兰州 730060
Jia-chun Feng, E-mail: jcfeng@fudan.edu.cn
Received:15 August 2025,
Accepted:18 September 2025,
Published Online:12 November 2025,
Published:20 December 2025
移动端阅览
沙璇, 彭伟, 李广全, 冯嘉春. 成核剂六氢邻苯二甲酸钙减缓线性低密度聚乙烯结晶的机理探究. 高分子学报, 2025, 56(12), 2371-2380
Sha, X.; Peng, W.; Li, G. Q.; Feng, J. C. Mechanistic investigation of nucleating agent calcium hexahydrophthalate in retarding the crystallization of linear low-density polyethylene. Acta Polymerica Sinica, 2025, 56(12), 2371-2380
沙璇, 彭伟, 李广全, 冯嘉春. 成核剂六氢邻苯二甲酸钙减缓线性低密度聚乙烯结晶的机理探究. 高分子学报, 2025, 56(12), 2371-2380 DOI: 10.11777/j.issn1000-3304.2025.25195. CSTR: 32057.14.GFZXB.2025.7469.
Sha, X.; Peng, W.; Li, G. Q.; Feng, J. C. Mechanistic investigation of nucleating agent calcium hexahydrophthalate in retarding the crystallization of linear low-density polyethylene. Acta Polymerica Sinica, 2025, 56(12), 2371-2380 DOI: 10.11777/j.issn1000-3304.2025.25195. CSTR: 32057.14.GFZXB.2025.7469.
添加成核剂是高分子工业中优化产品质量、提高生产效率的重要手段. 研究发现,在线性低密度聚乙烯(LLDPE)中加入成核剂Hyperform
®
HPN-20E时,存在整体结晶速率下降的现象. 一般认为其可归因于成核剂加入后结晶温度提高导致的晶体生长变慢,但这一现象与大多数高分子添加成核剂后同时提高结晶温度和结晶速率的普遍现象不一致. 为进一步探究这一问题,本工作合成了上述成核剂的有效成分-六氢邻苯二甲酸钙(Ca-HHPA),系统考察了其对一种茂金属线型低密度聚乙烯(mLLDPE)结晶行为的影响. 结果表明,Ca-HHPA虽可显著促进mLLDPE中具有高结晶能力链序列的成核,但成核密度增加对提高结晶速率的贡献不及结晶温度升高后生长速率降低的效果;同时,Ca-HHPA加入后会抑制弱结晶能力链序列的成核,使其在更低温度下结晶. 两种因素共同作用,导致整体结晶速率减缓.
The introduction of nucleating agents is an important approach
to improve product quality and production efficiency in the polymer industry. Interestingly
it has been observed that the addition of the nucleating agent Hyperform
®
HPN-20E into linear low-density polyethylene results in a decrease in the overall crystallization rate. Although this reduction is commonly explained by the decreased crystal growth rate at higher crystallization temperatures
it contradicts the general behavior observed in most nucleated polymer systems
where both crystallization temperature and crystallization rate increase. To further elucidate this unusual behavior
the active component of HPN-20E
calcium hexahydrophthalate (Ca-HHPA)
was synthesized
and its influence on the crystallization behavior of a linear low-density polyethylene prepared by metallocene catalyst (mLLDPE) was systematically investigated. Our results reveal that Ca-HHPA promotes nucleation of these segments with high crystallization ability
while the increase in nucleation density contributes less to the crystallization rate than the reduction in growth rate caused by the elevated crystallization temperature. Meanwhile
the Ca-HHPA addition inhibits nucleation of segments with lower crystallization ability
leading to their crystallization at a greater undercooling. The combination of these two effects results in the observed decrease in the overall crystallization rate.
Wypyc G. Handbook of Nucleating Agents . 2 nd Ed . Toronto : Elsevier , 2021 , 33 - 52 . doi: 10.1016/b978-1-927885-81-9.50011-1 http://dx.doi.org/10.1016/b978-1-927885-81-9.50011-1
Horváth F. ; Molnár J. ; Menyhárd A. Polypropylene Handbook . Budapest : Springer International Publishing , 2019 , 121 - 184 . doi: 10.1007/978-3-030-12903-3_3 http://dx.doi.org/10.1007/978-3-030-12903-3_3
Dotson D. L. Handbook of Industrial Polyethylene and Technology . New York : Wiley , 2017 , 935 - 965 . doi: 10.1002/9781119159797.ch36 http://dx.doi.org/10.1002/9781119159797.ch36
Libster D. ; Aserin A. ; Garti N. Advanced nucleating agents for polypropylene . Polym. Adv. Technol. , 2007 , 18 ( 9 ), 685 - 695 . doi: 10.1002/pat.970 http://dx.doi.org/10.1002/pat.970
Seven K. M. ; Cogen J. M. ; Gilchrist J. F. Nucleating agents for high-density polyethylene-a review . Polym. Eng. Sci. , 2016 , 56 ( 5 ), 541 - 554 . doi: 10.1002/pen.24278 http://dx.doi.org/10.1002/pen.24278
Carmeli E. ; Fenni S. E. ; Dziza K. ; Gebauer K. ; Gahleitner M. ; Cavallo D. A method for studying nucleating additives in high-density polyethylene via crystallization of micro-droplets in immiscible blends . Polymer , 2023 , 279 , 126017 . doi: 10.1016/j.polymer.2023.126017 http://dx.doi.org/10.1016/j.polymer.2023.126017
Chung C. K. The influence of pigments and additives on the crystallisation and warpage behaviour of polyethylenes . DissertationPh.D., Loughborough University, 2013 .
Dotson D. L. , Zhao X. Metals salts of hexahydrophthalic acid as nucleating additives for crystalline thermoplastics . US patent , C 08 K, 6599971 , 2003-07-29 .
Sun H. W. ; Feng J. C. Nucleation efficiencies of calcium hexahydrophthalic acid for poly( ε -caprolactone) crystallization . ACS Appl. Polym. Mater. , 2022 , 4 ( 1 ), 627 - 634 . doi: 10.1021/acsapm.1c01555 http://dx.doi.org/10.1021/acsapm.1c01555
Andrade N. F. A. Cristalização de homopolímero e copolímero de polietileno de alta densidade por nucleação Heterogênea . M.S. Thesis, Universidade Federal de Campina Grande , 2010 .
Zhang Y. F. ; Li D. ; Chen Q. J. Preparation and nucleation effects of nucleating agent hexahydrophthalic acid metal salts for isotactic polypropylene . Colloid Polym. Sci. , 2017 , 295 ( 10 ), 1973 - 1982 . doi: 10.1007/s00396-017-4176-8 http://dx.doi.org/10.1007/s00396-017-4176-8
Jiang H. B. ; Zhang X. H. ; Qiao J. L. Different influences of nucleating agents on crystallization behavior of polyethylene and polypropylene . Sci. China Chem. , 2012 , 55 ( 6 ), 1140 - 1147 . doi: 10.1007/s11426-012-4516-y http://dx.doi.org/10.1007/s11426-012-4516-y
王丽娟 , 张艺怀 , 张瑞 , 杨琦 , 卢影 , 门永锋 . 等温结晶热历史对聚乙烯非等温结晶行为影响 . 高分子学报 , 2025 , 56 ( 4 ), 632 - 643 .
Islam M. A. ; Hussein I. A. ; Atiqullah M. Effects of branching characteristics and copolymer composition distribution on non-isothermal crystallization kinetics of metallocene LLDPEs . Eur. Polym. J. , 2007 , 43 ( 2 ), 599 - 610 . doi: 10.1016/j.eurpolymj.2006.10.019 http://dx.doi.org/10.1016/j.eurpolymj.2006.10.019
van Drongelen M. ; Roozemond P. C. ; Troisi E. M. ; Doufas A. K. ; Peters G. W. M. Characterization of the primary and secondary crystallization kinetics of a linear low-density polyethylene in quiescent- and flow-conditions . Polymer , 2015 , 76 , 254 - 270 . doi: 10.1016/j.polymer.2015.09.010 http://dx.doi.org/10.1016/j.polymer.2015.09.010
Fillon B. ; Wittmann J. C. ; Lotz B. ; Thierry A. Self-nucleation and recrystallization of isotactic polypropylene ( α phase) investigated by differential scanning calorimetry . J. Polym. Sci. Part B Polym. Phys. , 1993 , 31 ( 10 ), 1383 - 1393 . doi: 10.1002/polb.1993.090311013 http://dx.doi.org/10.1002/polb.1993.090311013
Fillon B. ; Lotz B. ; Thierry A. ; Wittmann J. C. Self-nucleation and enhanced nucleation of polymers. definition of a convenient calorimetric "efficiency scale" and evaluation of nucleating additives in isotactic polypropylene ( α phase) . J. Polym. Sci., Part B: Polym. Phys. , 1993 , 31 ( 10 ), 1395 - 1405 . doi: 10.1002/polb.1993.090311014 http://dx.doi.org/10.1002/polb.1993.090311014
Müller A. J. ; Arnal M. L. ; Trujillo M. ; Lorenzo A. T. Super-nucleation in nanocomposites and confinement effects on the crystallizable components within block copolymers, miktoarm star copolymers and nanocomposites . Eur. Polym. J. , 2011 , 47 ( 4 ), 614 - 629 . doi: 10.1016/j.eurpolymj.2010.09.027 http://dx.doi.org/10.1016/j.eurpolymj.2010.09.027
Banks W. ; Sharples A. The AVRAMI equation in polymer crystallization . Makromol. Chem. , 1963 , 59 ( 1 ), 233 - 236 . doi: 10.1002/macp.1963.020590119 http://dx.doi.org/10.1002/macp.1963.020590119
Pérez-Camargo R. A. ; Liu G. M. ; Wang D. J. ; Müller A. J. . Experimental and data fitting guidelines for the determination of polymer crystallization kinetics . Chinese J. Polym. Sci. , 2022 , 40 ( 6 ), 658 - 691 . doi: 10.1007/s10118-022-2724-2 http://dx.doi.org/10.1007/s10118-022-2724-2
Sha X. ; Duan J. J. ; Feng J. C. Comparative investigation on the crystallization behavior of polypropylene nucleated by sorbitol-based nucleating agents with and without fibrous network formation . Macromolecules , 2025 , 58 ( 7 ), 3622 - 3634 . doi: 10.1021/acs.macromol.4c03187 http://dx.doi.org/10.1021/acs.macromol.4c03187
Zhang X. S. ; Buzinkai J. ; Quinn E. ; Rhoades A. Key insights into the differences between bimodal crystallization kinetics of polyamide 66 and polyamide 6 . Macromolecules , 2022 , 55 ( 20 ), 9220 - 9231 . doi: 10.1021/acs.macromol.2c01059 http://dx.doi.org/10.1021/acs.macromol.2c01059
Wang B. ; Utzeri R. ; Castellano M. ; Stagnaro P. ; Müller A. J. ; Cavallo D. Heterogeneous nucleation and self-nucleation of isotactic polypropylene microdroplets in immiscible blends: from nucleation to growth-dominated crystallization . Macromolecules , 2020 , 53 ( 14 ), 5980 - 5991 . doi: 10.1021/acs.macromol.0c01167 http://dx.doi.org/10.1021/acs.macromol.0c01167
Sangroniz L. ; Wang B. ; Su Y. L. ; Liu G. M. ; Cavallo D. ; Wang D. J. ; Müller A. J. Fractionated crystallization in semicrystalline polymers . Prog. Polym. Sci. , 2021 , 115 , 101376 . doi: 10.1016/j.progpolymsci.2021.101376 http://dx.doi.org/10.1016/j.progpolymsci.2021.101376
Arnal M. L. ; Müller A. J. Fractionated crystallisation of polyethylene and ethylene/-olefin copolymers dispersed in immiscible polystyrene matrices . Macromol. Chem. Phys. , 1999 , 200 ( 11 ), 2559 - 2576 . doi: 10.1002/(sici)1521-3935(19991101)200:11<2559::aid-macp2559>3.3.co;2-f http://dx.doi.org/10.1002/(sici)1521-3935(19991101)200:11<2559::aid-macp2559>3.3.co;2-f
Gelfer Y. ; Winter H. H. Effect of branch distribution on rheology of LLDPE during early stages of crystallization . Macromolecules , 1999 , 32 ( 26 ), 8974 - 8981 . doi: 10.1021/ma990588y http://dx.doi.org/10.1021/ma990588y
Hoffman J. D. ; Miller R. L. Kinetic of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment . Polymer , 1997 , 38 ( 13 ), 3151 - 3212 . doi: 10.1016/s0032-3861(97)00071-2 http://dx.doi.org/10.1016/s0032-3861(97)00071-2
0
Views
193
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号