

浏览全部资源
扫码关注微信
1.中国电力科学研究院有限公司 先进输电技术国家重点实验室 北京 100192
2.中国科学院化学研究所 中国科学院工程塑料重点实验室 北京 100190
Feng-tao Chen, E-mail: chenfengtao@iccas.ac.cn
Received:19 August 2025,
Accepted:26 September 2025,
Published Online:31 December 2025,
Published:20 February 2026
移动端阅览
刘炬阳, 王博, HIZBULLAH, 张翀, 陈新, 邢照亮, 郭少玮, 苏尧天, 陈风涛, 董金勇. 用于高温电容器薄膜的长链支化聚丙烯/环烯烃共聚物共混物的制备. 高分子学报, 2026, 57(2), 442-459.
Liu, J. Y.; Wang, B.; HIZBULLAH; Zhang, C; Chen, X; Xing, Z. L.; Guo, S. W.; Su, Y. T.; Chen, F. T.; Dong, J. Y. Fabrication of long-chain-branched polypropylene/cycloolefin copolymer blends for high temperature capacitor film. Acta Polymerica Sinica (in Chinese), 2026, 57(2), 442-459.
刘炬阳, 王博, HIZBULLAH, 张翀, 陈新, 邢照亮, 郭少玮, 苏尧天, 陈风涛, 董金勇. 用于高温电容器薄膜的长链支化聚丙烯/环烯烃共聚物共混物的制备. 高分子学报, 2026, 57(2), 442-459. DOI: 10.11777/j.issn1000-3304.2025.25196. CSTR: 32057.14.GFZXB.2025.7477.
Liu, J. Y.; Wang, B.; HIZBULLAH; Zhang, C; Chen, X; Xing, Z. L.; Guo, S. W.; Su, Y. T.; Chen, F. T.; Dong, J. Y. Fabrication of long-chain-branched polypropylene/cycloolefin copolymer blends for high temperature capacitor film. Acta Polymerica Sinica (in Chinese), 2026, 57(2), 442-459. DOI: 10.11777/j.issn1000-3304.2025.25196. CSTR: 32057.14.GFZXB.2025.7477.
设计并合成了一种长链支化聚丙烯(LCB-PP)/环烯烃共聚物(COC)的共混物,为开发耐高温聚丙烯电容膜提供了一种新方法. 首先使用优选的Ph
2
C(Cp)(Flu)ZrCl
2
/C(C
6
H
5
)
3
)(B(C
6
F
5
)
4
)茂金属催化剂体系,通过调控降冰片烯与乙烯的比例合成得到了具有高玻璃化转变温度的COC树脂. 随后,将所得COC分别与基于
ω
-烯烃基甲基二氯硅烷共聚合-水解化学合成得到的LCB-PP以及商用双向拉伸聚丙烯(BOPP)按照一定比例进行熔融共混,制备得到了一系列linear-PP/COC和LCB-PP/COC共混物样品,并对其结构与性能进行了系统表征. 结果表明,PP/COC共混物具有更高的结晶温度和热变形温度,有利于其在高温环境下的应用. 同时,LCB结构作为成核位点能够促进成核,细化聚丙烯相的球晶尺寸,进而增大球晶密度. 此外,LCB结构对分子链缠结作用的提升能够限制分子链的运动,同时抑制熔融加工过程中COC颗粒的迁移聚集,促进其均匀分散,使PP/COC共混物的加工稳定性明显提升.
A long-chain-branched polypropylene (LCB-PP)/cycloolefin copolymer (COC) blend was designed and synthesized
offering a novel approach for developing high-temperature-resistant polypropylene capacitor films. Initially
COC resins with high glass transition temperature were synthesized using a preferred Ph
2
C(Cp)(Flu)ZrCl
2
/C(C
6
H
5
)
3
)(B(C
6
F
5
)
4
) metallocene catalyst system by precisely adjusting the norbornene-to-ethylene ratio. Subsequently
the resulting COC was melt-blended in specific proportions with LCB-PP (synthesized
via
ω
-alkenylmethyldichlorosilane copolymerization-hydrolysis (ACH) chemistry)
and commercial biaxially oriented polypropylene (BOPP)
respectively
thereby yielding a series of linear-PP/COC and LCB-PP/COC blend samples. The structure and properties of these blends were systematically characterized. The results demonstrated that the PP/COC blends exhibited elevated crystallization temperatures and enhanced heat deflection temperature
which are advantageous for their application in high-temperature environments. Meanwhile
the LCB structures
acting as nucleation sites
could promote heterogeneous nucleation
refined the spherulite size of the PP phase
and thereby increased the spherulite density. In addition
the enhancement of chain entanglement by the LCB structures effectively restricted the sliding of chains
concurrently suppressed the grain coarsening tendency of dispersed COC particles during melt processing
promoted their dispersion uniformity
and thereby significantly improved the processing stability of the PP/COC blends.
Huan T. D. ; Boggs S. ; Teyssedre G. ; Laurent C. ; Cakmak M. ; Kumar S. ; Ramprasad R. Advanced polymeric dielectrics for high energy density applications . Prog. Mater. Sci. , 2016 , 83 , 236 - 269 . doi: 10.1016/j.pmatsci.2016.05.001 http://dx.doi.org/10.1016/j.pmatsci.2016.05.001
储松潮 , 黄云锴 , 潘焱尧 , 汪威 , 张翀 , 李仁山 , 邢照亮 , 潘毓娴 . 柔性直流输电用电力电子电容器的测试与工程应用 . 电力电容器与无功补偿 , 2019 , 40 ( 1 ), 59 - 64 .
黄子钦 , 李化 , 林福昌 , 张晨晨 . 聚合物薄膜储电性能研究 . 电力电子技术 , 2021 , 55 ( 10 ), 15 - 18 .
张传升 , 章程 , 任成燕 , 黄邦斗 , 邢照亮 , 邵涛 . 聚丙烯基薄膜储能的影响机制及优化策略研究进展 . 电工技术学报 , 2024 , 39 ( 7 ), 2193 - 2213 .
Cheng L. ; Liu W. F. ; Liu X. W. ; Liu C. M. ; Li S. T. ; Xing Z. L. Online degradation of biaxial-orientated polypropylene film from HVDC filter capacitors . IEEE Trans. Dielectr. Electr. Insul. , 2019 , 26 ( 1 ), 26 - 33 . doi: 10.1109/tdei.2018.007386 http://dx.doi.org/10.1109/tdei.2018.007386
杜伯学 , 冉昭玉 , 刘浩梁 , 肖萌 . 干式直流电容器聚丙烯薄膜绝缘性能及其改进方法研究进展 . 电工技术学报 , 2023 , 38 ( 5 ), 1363 - 1374 .
Hu P. H. ; Sun W. D. ; Fan M. Z. ; Qian J. F. ; Jiang J. Y. ; Dan Z. K. ; Lin Y. H. ; Nan C. W. ; Li M. ; Shen Y. Large energy density at high-temperature and excellent thermal stability in polyimide nanocomposite contained with small loading of BaTiO 3 nanofibers . Appl. Surf. Sci. , 2018 , 458 , 743 - 750 . doi: 10.1016/j.apsusc.2018.07.128 http://dx.doi.org/10.1016/j.apsusc.2018.07.128
Streibl M. ; Werner S. ; Kaschta J. ; Schubert D. W. ; Moos R. The influence of nanoparticles and their functionalization on the dielectric properties of biaxially oriented polypropylene for power capacitors . IEEE Trans. Dielectr. Electr. Insul. , 2020 , 27 ( 2 ), 468 - 475 . doi: 10.1109/tdei.2019.008521 http://dx.doi.org/10.1109/tdei.2019.008521
Lahti K. ; Rytoluoto I. ; Niittymaki M. ; Saarimaki E. ; Paajanen M. From laboratory to industrial scale: Comparison of short- and long-term dielectric performance of silica-polypropylene capacitor films . 2020 IEEE 3rd International Conference on Dielectrics (ICD). Valencia , Spain , 2020 : 661 - 664 . doi: 10.1109/icd46958.2020.9341890 http://dx.doi.org/10.1109/icd46958.2020.9341890
Ran Z. Y. ; Du B. X. ; Xiao M. ; Liu H. L. ; Xing J. W. Dielectric property improvement of polypropylene films doped with POSS for HVDC polymer film capacitors . IEEE Trans. Dielectr. Electr. Insul. , 2021 , 28 ( 4 ), 1308 - 1316 . doi: 10.1109/tdei.2021.009694 http://dx.doi.org/10.1109/tdei.2021.009694
Ran Z. Y. ; Du B. X. ; Xiao M. High-temperature breakdown performance improvement of polypropylene films based on micromorphology control . IEEE Trans. Dielectr. Electr. Insul. , 2021 , 28 ( 5 ), 1547 - 1554 . doi: 10.1109/tdei.2021.009583 http://dx.doi.org/10.1109/tdei.2021.009583
Zha J. W. ; Wu Y. H. ; Wang S. J. ; Wu D. H. ; Yan H. D. ; Dang Z. M. Improvement of space charge suppression of polypropylene for potential application in HVDC cables . IEEE Trans. Dielectr. Electr. Insul. , 2016 , 23 ( 4 ), 2337 - 2343 . doi: 10.1109/tdei.2016.7556511 http://dx.doi.org/10.1109/tdei.2016.7556511
Hu S. X. ; Dong X. H. ; Wang W. ; Huang S. S. ; Hu J. ; Li Q. ; He J. L. ; Shao Q. ; Yuan H. ; Shi H. W. ; Song W. B. Dielectric properties improvement of grafting-modified polypropylene by silane for HVDC cable insulation . IEEE Trans. Dielectr. Electr. Insul. , 2021 , 28 ( 6 ), 2004 - 2010 . doi: 10.1109/tdei.2021.009776 http://dx.doi.org/10.1109/tdei.2021.009776
Hu S. X. ; Zhang W. J. ; Wang W. ; Li J. ; Shao Q. ; Zhang Y. R. ; Zhang Q. ; Huang S. S. ; Hu J. ; Li Q. ; He J. L. Comprehensive comparisons of grafting-modified different polypropylene as HVDC cable insulation material . IEEE Trans. Dielectr. Electr. Insul. , 2022 , 29 ( 5 ), 1865 - 1872 . doi: 10.1109/tdei.2022.3198720 http://dx.doi.org/10.1109/tdei.2022.3198720
Abudonia K. S. ; Saad G. R. ; Naguib H. F. ; Eweis M. ; Zahran D. ; Elsabee M. Z. Surface modification of polypropylene film by grafting with vinyl monomers for the attachment of chitosan . J. Polym. Res. , 2018 , 25 ( 5 ), 125 . doi: 10.1007/s10965-018-1517-3 http://dx.doi.org/10.1007/s10965-018-1517-3
李君洛 , 孟礼 , 刘雨杭 , 罗兵 , 徐永生 , 肖微 , 何金良 , 李琦 . 熔融接枝聚丙烯薄膜的接枝工艺与高温储能特性 . 绝缘材料 , 2025 , 58 ( 4 ), 1 - 8 .
Ho J. ; Ramprasad R. ; Boggs S. Effect of alteration of antioxidant by UV treatment on the dielectric strength of BOPP capacitor film . IEEE Trans. Dielectr. Electr. Insul. , 2007 , 14 ( 5 ), 1295 - 1301 . doi: 10.1109/tdei.2007.4339492 http://dx.doi.org/10.1109/tdei.2007.4339492
Huang B. D. ; Yu J. C. ; Dong J. ; Zhou Y. ; Zhai L. ; Dou L. G. ; Wu C. ; Liang X. D. ; Zhang C. ; Ostrikov K. ; Shao T. Improving charge storage of biaxially-oriented polypropylene under extreme electric fields by excimer UV irradiation . Adv. Mater. , 2024 , 36 ( 52 ), 2311713 . doi: 10.1002/adma.202311713 http://dx.doi.org/10.1002/adma.202311713
Yuan X. P. ; Mike Chung T. C. Cross-linking effect on dielectric properties of polypropylene thin films and applications in electric energy storage . Appl. Phys. Lett. , 2011 , 98 ( 6 ), 062901 . doi: 10.1063/1.3552710 http://dx.doi.org/10.1063/1.3552710
Li K. ; Qin Y. W. ; Zhao Y. ; Wang D. J. ; Dong J. Y. Industrial adaptability of the ziegler-natta catalyst-friendly synthesis of long-chain-branched polypropylene based on ω-alkenylmethyldichlorosilane-assisted propylene polymerization . Ind. Eng. Chem. Res. , 2021 , 60 ( 12 ), 4589 - 4601 . doi: 10.1021/acs.iecr.1c00190 http://dx.doi.org/10.1021/acs.iecr.1c00190
Zhang Z. J. ; Yang K. ; Li J. Y. ; Dong J. Y. Simultaneous promotion of the mechanical flexibility and dielectric strength of impact polypropylene copolymers containing multifold H-shape long-chain-branching structures for recyclable power cable insulation application . ACS Appl. Polym. Mater. , 2024 , 6 ( 4 ), 2210 - 2222 . doi: 10.1021/acsapm.3c02755 http://dx.doi.org/10.1021/acsapm.3c02755
Wu K. N. ; Sui H. R. ; Yang Z. C. ; Yang K. ; Ouyang B. H. ; Dong J. Y. ; Zhang X. ; Ran L. ; Li J. Y. Largely improved creep resistance and thermal-aging stability of eco-friendly polypropylene high-voltage insulation by long-chain branch-induced interfacial constraints . ACS Macro Lett. , 2024 , 13 ( 5 ), 592 - 598 . doi: 10.1021/acsmacrolett.4c00141 http://dx.doi.org/10.1021/acsmacrolett.4c00141
Zhang Z. J. ; Yang K. ; Li J. Y. ; Jing Z. H. ; Qin Y. W. ; Dong J. Y. Impact polypropylene copolymers containing multifold H-shape long-chain-branching structures: synthesis and properties . Polymer , 2022 , 252 , 124942 . doi: 10.1016/j.polymer.2022.124942 http://dx.doi.org/10.1016/j.polymer.2022.124942
Zhang Z. J. ; Yang K. ; Li J. Y. ; Jing Z. H. ; Qin Y. W. ; Dong J. Y. Impact polypropylene copolymers containing multifold H-shape long-chain-branching structures: Effect on dielectric and electrical properties . Polymer , 2022 , 261 , 125412 . doi: 10.1016/j.polymer.2022.125412 http://dx.doi.org/10.1016/j.polymer.2022.125412
Sui H. R. ; Wu K. N. ; Zhao G. ; Yang K. ; Dong J. Y. ; Li J. Y. Greatly enhanced temperature stability of eco-friendly polypropylene for cable insulation by multifold long-chain branched structures . Chem. Eng. J. , 2024 , 485 , 149811 . doi: 10.1016/j.cej.2024.149811 http://dx.doi.org/10.1016/j.cej.2024.149811
Xiao M. ; Zhang M. D. ; Du B. X. ; Ran Z. Y. ; Liu H. L. ; Qin Y. W. Breakdown strength improvement of polypropylene by introducing long-chain branched structures for film capacitors . J. Phys. D Appl. Phys. , 2022 , 55 ( 24 ), 245501 . doi: 10.1088/1361-6463/ac5c1e http://dx.doi.org/10.1088/1361-6463/ac5c1e
Prateek , Thakur V. K. ; Gupta R. K. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects . Chem. Rev. , 2016 , 116 ( 7 ), 4260 - 4317 . doi: 10.1021/acs.chemrev.5b00495 http://dx.doi.org/10.1021/acs.chemrev.5b00495
Šlouf M. ; Kolařík J. ; Fambri L. Phase morphology of PP/COC blends . J. Appl. Polym. Sci. , 2004 , 91 ( 1 ), 253 - 259 . doi: 10.1002/app.13253 http://dx.doi.org/10.1002/app.13253
Gopanna A. ; Thomas S. P. ; Rajan K. P. ; Rajan R. ; Rainosalo E. ; Zavašnik J. ; Chavali M. Investigation of mechanical, dynamic mechanical, rheological and morphological properties of blends based on polypropylene (PP) and cyclic olefin copolymer (COC) . Eur. Polym. J. , 2018 , 108 , 439 - 451 . doi: 10.1016/j.eurpolymj.2018.09.030 http://dx.doi.org/10.1016/j.eurpolymj.2018.09.030
Wang J. Q. ; Guo H. X. ; Zeng S. X. ; Du J. Q. ; Zhang Q. ; Wang K. Thin, largescale processed, high-temperature resistant capacitor films based on polypropylene/cycloolefin copolymer blend . Chem. Eng. J. , 2024 , 492 , 152237 . doi: 10.1016/j.cej.2024.152237 http://dx.doi.org/10.1016/j.cej.2024.152237
Li K. ; Zhou H. S. ; Qin Y. W. ; Zhao Y. ; Wang D. J. ; Dong J. Y. ω -Alkenylmethyldichlorosilane-assisted propylene polymerization with Ziegler-Natta catalyst to long chain-branched polypropylene . Polymer , 2020 , 202 , 122737 . doi: 10.1016/j.polymer.2020.122737 http://dx.doi.org/10.1016/j.polymer.2020.122737
Li J. ; Tekie Z. ; Mizan T. I. ; Morsi B. I. ; Maier E. E. ; Singh C. P. P. Gas-liquid mass transfer in a slurry reactor operating under olefinic polymerization process conditions . Chem. Eng. Sci. , 1996 , 51 ( 4 ), 549 - 559 . doi: 10.1016/0009-2509(95)00272-3 http://dx.doi.org/10.1016/0009-2509(95)00272-3
Malmberg A. ; Gabriel C. ; Steffl T. ; Münstedt H. ; Löfgren B. Long-chain branching in metallocene-catalyzed polyethylenes investigated by low oscillatory shear and uniaxial extensional rheometry . Macromolecules , 2002 , 35 ( 3 ), 1038 - 1048 . doi: 10.1021/ma010753l http://dx.doi.org/10.1021/ma010753l
Gotsis A. D. ; Zeevenhoven B. L. F. ; Tsenoglou C. Effect of long branches on the rheology of polypropylene . J. Rheol. , 2004 , 48 ( 4 ), 895 - 914 . doi: 10.1122/1.1764823 http://dx.doi.org/10.1122/1.1764823
Fujiyama M. ; Inata H. Rheological properties of metallocene isotactic polypropylenes . J. Appl. Polym. Sci. , 2002 , 84 ( 12 ), 2157 - 2170 . doi: 10.1002/app.10482 http://dx.doi.org/10.1002/app.10482
Wood-Adams P. M. ; Dealy J. M. ; DeGroot A. W. ; Redwine O. D. Effect of molecular structure on the linear viscoelastic behavior of polyethylene . Macromolecules , 2000 , 33 ( 20 ), 7489 - 7499 . doi: 10.1021/ma991533z http://dx.doi.org/10.1021/ma991533z
McCormick J. A. ; Royer J. R. ; Hwang C. R. ; Khan S. A. Tailored rheology of a metallocene polyolefin through silane grafting and subsequent silane crosslinking . J. Polym. Sci. B Polym. Phys. , 2000 , 38 ( 18 ), 2468 - 2479 . doi: 10.1002/1099-0488(20000915)38:18<2468::aid-polb140>3.3.co;2-z http://dx.doi.org/10.1002/1099-0488(20000915)38:18<2468::aid-polb140>3.3.co;2-z
Zhao W. Y. ; Huang Y. J. ; Liao X. ; Yang Q. The molecular structure characteristics of long chain branched polypropylene and its effects on non-isothermal crystallization and mechanical properties . Polymer , 2013 , 54 ( 4 ), 1455 - 1462 . doi: 10.1016/j.polymer.2012.12.073 http://dx.doi.org/10.1016/j.polymer.2012.12.073
Tian J. H. ; Yu W. ; Zhou C. X. Crystallization behaviors of linear and long chain branched polypropylene . J. Appl. Polym. Sci. , 2007 , 104 ( 6 ), 3592 - 3600 . doi: 10.1002/app.26024 http://dx.doi.org/10.1002/app.26024
Chen X. Y. ; Pérez-Camargo R. A. ; Ma P. ; Liao Y. L. ; Zhao Y. ; Dong J. Y. ; Dong X. ; Müller A. J. ; Wang D. J. Impact of long-chain branching on polypropylene nucleation and crystallization over a wide temperature range without the influence of shear . Macromolecules , 2024 , 57 ( 24 ), 11599 - 11613 . doi: 10.1021/acs.macromol.4c02256 http://dx.doi.org/10.1021/acs.macromol.4c02256
Yang Y. H. ; Xu M. X. ; Luo Z. ; He R. H. ; Xie J. K. ; Yang S. L. ; Chen H. ; Li H. B. Long-chain-branched polypropylene with an ester group as an effective compatibilizer to improve the performance of PP/PET blends . ACS Appl. Polym. Mater. , 2024 , 6 ( 23 ), 14580 - 14589 . doi: 10.1021/acsapm.4c02713 http://dx.doi.org/10.1021/acsapm.4c02713
Muñoz-Pascual S. ; Saiz-Arroyo C. ; Vananroye A. ; Moldenaers P. ; Rodriguez-Perez M. A. Effect on the impact properties of adding long-chain branched polypropylene in polypropylene-polyolefin elastomer cellular polymers produced by core-back injection molding . Macromol. Mater. Eng. , 2021 , 306 ( 4 ), 2000728 . doi: 10.1002/mame.202000728 http://dx.doi.org/10.1002/mame.202000728
Seven K. M. ; Cogen J. M. ; Person T. ; Reffner J. R. ; Gilchrist J. F. The effect of inorganic and organic nucleating agents on the electrical breakdown strength of polyethylene . J. Appl. Polym. Sci. , 2018 , 135 ( 22 ), 46325 . doi: 10.1002/app.46325 http://dx.doi.org/10.1002/app.46325
Zhang Z. L. ; Wu K. N. ; Sui H. R. ; Zhao G. ; Wu Y. S. ; Cui C. H. ; Zhao P. ; Yang K. ; Zhong L. S. ; Wan B. Q. ; Li S. T. ; Dang Z. M. ; Li J. Y. Dynamically cross-linked polyethylene vitrimers: an alternative approach to high-performance high-voltage cable insulation . Chem. Eng. J. , 2025 , 521 , 166714 . doi: 10.1016/j.cej.2025.166714 http://dx.doi.org/10.1016/j.cej.2025.166714
0
Views
322
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号