

浏览全部资源
扫码关注微信
1.北京化工大学 有机无机复合材料国家重点实验室 北京 100029
2.无锡宝通科技股份有限公司 无锡 214112
Bing Yu, E-mail: yubing@mail.buct.edu.cn
Ming Tian, E-mail: tianm@mail.buct.edu.cn
Received:21 August 2025,
Accepted:11 October 2025,
Published Online:18 December 2025,
Published:20 January 2026
移动端阅览
赵彤, 冯桐伟, 孟阳, 赵成哲, 于冰, 田明. 用于输送带修补胶的室温固化聚氨酯的制备与性能研究. 高分子学报, 2026, 57(1), 157-167.
Zhao, T.; Feng, T. W.; Meng, Y.; Zhao, C. Z.; Yu, B.; Tian, M. Preparation and properties of room temperature curing polyurethane for conveyor belt repair adhesive. Acta Polymerica Sinica (in Chinese), 2026, 57(1), 157-167.
赵彤, 冯桐伟, 孟阳, 赵成哲, 于冰, 田明. 用于输送带修补胶的室温固化聚氨酯的制备与性能研究. 高分子学报, 2026, 57(1), 157-167. DOI: 10.11777/j.issn1000-3304.2025.25197. CSTR: 32057.14.GFZXB.2025.7491.
Zhao, T.; Feng, T. W.; Meng, Y.; Zhao, C. Z.; Yu, B.; Tian, M. Preparation and properties of room temperature curing polyurethane for conveyor belt repair adhesive. Acta Polymerica Sinica (in Chinese), 2026, 57(1), 157-167. DOI: 10.11777/j.issn1000-3304.2025.25197. CSTR: 32057.14.GFZXB.2025.7491.
橡胶输送带常受到磨损而影响正常使用,通常使用浇注型聚氨酯等材料作为修补胶对磨损处进行现场修补,但现有聚氨酯修补胶对橡胶的粘接强度难以满足实际需求,且浇注型聚氨酯的结构组成与粘接强度间关系的研究尚不完善. 基于此,本工作利用预聚体法成功制备了可室温固化的聚氨酯涂层,并同时从分子内聚力、润湿能力、粘接界面微观结构等角度对涂层与橡胶间的粘接性能展开研究. 研究结果显示:硬段含量越高,分子内聚力越强,浇注型聚氨酯固化后形成的涂层对橡胶基体越容易形成更好的附着,T型剥离强度最高可达11.73 N/mm;低黏度浇注型聚氨酯有利于形成良好附着,适合的附着层厚度是良好粘接的关键. 除此之外,本工作还研究了软硬段含量对浇注型聚氨酯涂层的拉伸性能、耐磨性能及硬度的影响,为浇注型聚氨酯涂层的制备与性能调控提供了理论支持. 该聚氨酯涂层预期可作为橡胶修补胶,实现对橡胶输送带的室温快速修补.
Rubber conveyor belts are often affected by wear
which impacts their normal use. Castable polyurethane and other materials are commonly used as repair adhesives for on-site repairs of the worn areas. However
the peeling strength of existing polyurethane repair adhesives to rubber is difficult to meet the practical requirement
and the relationship between the structural composition and peeling strength of the castable polyurethane is not fully investigated. Therefore
based on the above issues
in this work
a room temperature curable polyurethane coating was successfully prepared using the prepolymer method
and the adhesive performance between the coating and the rubber was simultaneously investigated from the perspectives of molecular cohesion
wettability
and microstructure of the interface
which indicated that the higher the content of hard segments
the stronger the molecular cohesion
and the coating formed after the curing of polyurethane exhibits better adhesion to the rubber matrix
with a T-type peel strength of up to 11.73 N/mm. Low-viscosity polyurethane is beneficial for wetting the rubber surface and resulting in good adhesion
and the appropriate thickness of the adhesive layer is key to achieving good adhesion. In addition
the effects of soft and hard segment content on the tensile properties
wear resistance
and hardness of the polyurethane coatings were also investigated
providing the theoretical support for the preparation and performance regulation of the polyurethane coatings. This polyurethane coating is expected to serve as a rubber repair adhesive
enabling rapid repair of rubber conveyor belts at room temperature.
田佳 , 鞠浩 , 李光裕 , 陈嘉瑶 , 曹鹏飞 . 基于化学平衡原理设计热固性聚氨酯弹性体的闭环回收 . 高分子学报 , 2025 , 56 ( 4 ), 527 - 538 .
Anwer A. A. W. ; Lo J. ; Bolduc M. ; Naguib H. E. Bioinspired polyurethane structures with interfacial fluidity for improved impact attenuation . Compos. Part B Eng. , 2022 , 232 , 109594 . doi: 10.1016/j.compositesb.2021.109594 http://dx.doi.org/10.1016/j.compositesb.2021.109594
Chen B. Y. ; Lei K. ; Zhu D. D. ; Yang C. C. ; Sun C. Y. ; Xiao W. ; Zheng Z. ; Wang X. L. A topological stitching strategy for biocompatible wet adhesion using mussel-inspired polyurethane . Adv. Mater. Interfaces , 2021 , 8 ( 18 ), 2100657 . doi: 10.1002/admi.202100657 http://dx.doi.org/10.1002/admi.202100657
He Y. ; Xie D. L. ; Zhang X. Y. The structure, microphase-separated morphology, and property of polyurethanes and polyureas . J. Mater. Sci. , 2014 , 49 ( 21 ), 7339 - 7352 . doi: 10.1007/s10853-014-8458-y http://dx.doi.org/10.1007/s10853-014-8458-y
Huang S. L. ; Yan L. B. ; Kasal B. ; Wei Y. Moisture diffusion and tensile properties of epoxy-based and polyurethane-based flax-glass hybrid FRP under hygrothermal and weathering environments . Compos. Part B Eng. , 2023 , 267 , 111049 . doi: 10.1016/j.compositesb.2023.111049 http://dx.doi.org/10.1016/j.compositesb.2023.111049
Jin G. Z. ; Gong Y. Z. ; Wang J. ; Wang M. ; Wang J. D. ; Wang R. G. ; Qin X. ; Lu Y. L. Quantitative analysis of TPU microstructure and performance optimization across various processing conditions . Langmuir , 2024 , 40 ( 45 ), 23939 - 23950 . doi: 10.1021/acs.langmuir.4c03093 http://dx.doi.org/10.1021/acs.langmuir.4c03093
Li F. Q. ; Liang Z. ; Li Y. X. ; Wu Z. M. ; Yi Z. M. Synthesis of waterborne polyurethane by inserting polydimethylsiloxane and constructing dual crosslinking for obtaining the superior performance of waterborne coatings . Compos. Part B Eng. , 2022 , 238 , 109889 . doi: 10.1016/j.compositesb.2022.109889 http://dx.doi.org/10.1016/j.compositesb.2022.109889
Liu C. ; Shi Y. Q. ; Ye H. ; He J. H. ; Lin Y. X. ; Li Z. ; Lu J. H. ; Tang Y. L. ; Wang Y. Z. ; Chen L. Functionalizing MXene with hypophosphite for highly fire safe thermoplastic polyurethane composites . Compos. Part A Appl. Sci. Manuf. , 2023 , 168 , 107486 . doi: 10.1016/j.compositesa.2023.107486 http://dx.doi.org/10.1016/j.compositesa.2023.107486
Parsons N. S. ; Lam M. H. W. ; Hamilton S. E. Chemical characterization of automotive polyurethane foam using solid-phase microextraction and gas chromatography-mass spectrometry . J. Forensic Sci. , 2013 , 58 (s 1 ), S186 - S191 . doi: 10.1111/j.1556-4029.2012.02283.x http://dx.doi.org/10.1111/j.1556-4029.2012.02283.x
Wang Z. Z. ; Meng F. T. ; Kong M. ; Guo X. Y. ; Zhang S. F. ; Zhang Y. A. ; Tang B. T. 2D information security system based on polyurethane inverse photonic glass structure . Small , 2024 , 20 ( 3 ), 2305825 . doi: 10.1002/smll.202305825 http://dx.doi.org/10.1002/smll.202305825
Geng Z. S. ; Pang A. M. ; Ding T. F. ; Guo X. Y. ; Yang R. J. ; Luo Y. J. ; Zhai J. X. Overlooked impact of interchain H-bonding between cross-links on the mechanical properties of thermoset polyurethane elastomers . Macromolecules , 2022 , 55 ( 19 ), 8749 - 8756 . doi: 10.1021/acs.macromol.2c00873 http://dx.doi.org/10.1021/acs.macromol.2c00873
Guo X. L. ; Wang A. ; Sheng N. ; He Y. Y. ; Liu W. K. ; Li Z. ; Luo F. ; Li J. H. ; Tan H. Janus polyurethane adhesive patch with antibacterial properties for wound healing . ACS Appl. Mater. Interfaces , 2024 , 16 ( 13 ), 15970 - 15980 . doi: 10.1021/acsami.4c00924 http://dx.doi.org/10.1021/acsami.4c00924
Hu S. K. ; He S. Y. ; Wang Y. M. ; Wu Y. W. ; Shou T. ; Yin D. X. ; Mu G. Y. ; Zhao X. Y. ; Gao Y. Y. ; Liu J. ; Li F. Z. ; Guo M. M. ; Zhang L. Q. Self-repairable, recyclable and heat-resistant polyurethane for high-performance automobile tires . Nano Energy , 2022 , 95 , 107012 . doi: 10.1016/j.nanoen.2022.107012 http://dx.doi.org/10.1016/j.nanoen.2022.107012
Jin G. Z. ; Gong Y. Z. ; Wang J. ; Wang M. ; Wang J. D. ; Hu S. ; Wang R. G. ; Qin X. ; Lu Y. L. Dynamic load response of 1,5-naphthalene diisocyanate (NDI) based casting polyurethane: a study of microstructural and mechanical evolution . Macromolecules , 2024 , 57 ( 21 ), 10098 - 10111 . doi: 10.1021/acs.macromol.4c01667 http://dx.doi.org/10.1021/acs.macromol.4c01667
Kassem H. ; Imbernon L. ; Stricker L. ; Jonckheere L. ; Du PrezF. E. Reprocessable polyurethane foams using acetoacetyl-formed amides . ACS Appl. Mater. Interfaces , 2023 , 15 ( 45 ), 52953 - 52960 .
Stal S. ; Huitorel B. ; Coustham T. ; Stephant N. ; Massuyeau F. ; Gacoin T. ; Bouteiller L. ; Perruchas S. Photoactive CuI-cross-linked polyurethane materials . ACS Appl. Mater. Interfaces , 2022 , 14 ( 42 ), 47931 - 47940 . doi: 10.1021/acsami.2c14749 http://dx.doi.org/10.1021/acsami.2c14749
Zhang C. ; Wang C. G. ; Yang J. L. ; Dalton L. R. ; Sun G. L. ; Zhang H. ; Steier W. H. Electric poling and relaxation of thermoset polyurethane second-order nonlinear optical materials: role of cross-linking and monomer rigidity . Macromolecules , 2001 , 34 ( 2 ), 235 - 243 . doi: 10.1021/ma0011688 http://dx.doi.org/10.1021/ma0011688
Zheng N. ; Hou J. J. ; Xu Y. ; Fang Z. Z. ; Zou W. K. ; Zhao Q. ; Xie T. Catalyst-free thermoset polyurethane with permanent shape reconfigurability and highly tunable triple-shape memory performance . ACS Macro Lett. , 2017 , 6 ( 4 ), 326 - 330 . doi: 10.1021/acsmacrolett.7b00037 http://dx.doi.org/10.1021/acsmacrolett.7b00037
宋伟 , 李凤英 , 张定军 , 陈磊 , 周惠娣 , 陈建敏 . 基于不同杨氏模量的聚氨酯基防结冰涂层的制备及研究 . 高分子学报 , 2024 , 55 ( 8 ), 1033 - 1043 .
Jin G. Z. ; Chen L. H. ; Gong Y. Z. ; Li P. ; Wang R. G. ; Li F. Z. ; Lu Y. L. Impact of hard segment structures on fatigue threshold of casting polyurethane using cutting method . Chinese J. Polym. Sci. , 2025 , 43 ( 2 ), 303 - 315 . doi: 10.1007/s10118-025-3250-9 http://dx.doi.org/10.1007/s10118-025-3250-9
Li R. ; Ton Loontjens J. A. ; Shan Z. H. The varying mass ratios of soft and hard segments in waterborne polyurethane films: performances of thermal conductivity and adhesive properties . Eur. Polym. J. , 2019 , 112 , 423 - 432 . doi: 10.1016/j.eurpolymj.2019.01.025 http://dx.doi.org/10.1016/j.eurpolymj.2019.01.025
Wu K. X. ; Zhu H. ; Yang J. ; Jiang W. ; Shao J. W. ; Haruna S. I. ; Ibrahim Y. E. A novel polyurethane-based mortar for pavement crack repair: development, characterization, and performance evaluation . Constr. Build. Mater. , 2024 , 436 , 136985 . doi: 10.1016/j.conbuildmat.2024.136985 http://dx.doi.org/10.1016/j.conbuildmat.2024.136985
Wang L. Y. ; Ye L. ; Zhang X. Y. ; Li N. ; Li J. W. Preparation and properties of superhydrophobic fluorinated polyurethane with room temperature self-healing performance . J. Adhes. Sci. Technol. , 2024 , 38 ( 17 ), 3272 - 3289 . doi: 10.1080/01694243.2024.2330723 http://dx.doi.org/10.1080/01694243.2024.2330723
Song K. ; Ye W. J. ; Gao X. C. ; Fang H. G. ; Zhang Y. Q. ; Zhang Q. ; Li X. L. ; Yang S. Z. ; Wei H. B. ; Ding Y. S. Synergy between dynamic covalent boronic ester and boron-nitrogen coordination: strategy for self-healing polyurethane elastomers at room temperature with unprecedented mechanical properties . Mater. Horiz. , 2021 , 8 ( 1 ), 216 - 223 . doi: 10.1039/d0mh01142h http://dx.doi.org/10.1039/d0mh01142h
李媛 , 侯晓宇 , 刘克 , 黄鑫 , 张建明 , 段咏欣 . 氨基硅烷偶联剂酰胺化改性纤维素纳米晶交联和补强聚二甲基硅氧烷的研究 . 高分子学报 , 2025 , 56 ( 9 ), 1597 - 1609 .
熊勇 , 姜昀良 , 董育民 , 邓景月 , 周建萍 , 周炳华 , 梁红波 . 基于分级氢键的自修复聚氨酯弹性体的微相分离结构与性能研究 . 高分子学报 , 2025 , 56 ( 3 ), 487 - 500 .
Ju H. ; Yin Z. L. ; Demchuk Z. ; Bocharova V. ; Gainaru C. ; Laub J. A. ; Vogiatzis K. ; Advincula R. ; Chen J. Y. ; Cao P. F. Constructing crown ether-based supramolecular adhesives with ambient-temperature applicable and durable adhesion . Adv. Funct. Mater. , 2024 , 34 ( 37 ), 2402165 . doi: 10.1002/adfm.202402165 http://dx.doi.org/10.1002/adfm.202402165
陈晓东 , 周南桥 , 张海 . 基于聚己内酯多元醇的浇注型聚氨酯弹性体结构与性能的研究 . 陕西科技大学学报(自然科学版) , 2009 , 27 ( 4 ), 1 - 9 . doi: 10.3969/j.issn.1000-5811.2009.04.001 http://dx.doi.org/10.3969/j.issn.1000-5811.2009.04.001
Zheng X. K. ; Hu N. ; Zhang D. C. ; Da Z. S. ; Shu L. S. ; Li Z. G. ; Cang X. Y. Study on the interface and failure characteristics of joints between epoxy adhesive and duralumin alloy . Sci. Prog. , 2025 , 108 ( 2 ), 00368504251348966 . doi: 10.1177/00368504251348966 http://dx.doi.org/10.1177/00368504251348966
He J. ; Song F. F. ; Li X. ; Chen L. Y. ; Gong X. Y. ; Tu W. P. A novel kind of room temperature self-healing poly(urethane-urea) with robust mechanical strength based on aromatic disulfide . J. Polym. Res. , 2021 , 28 ( 4 ), 122 . doi: 10.1007/s10965-021-02433-0 http://dx.doi.org/10.1007/s10965-021-02433-0
赵廷午 , 李思丝 . 室温固化聚氨酯弹性体的应用进展 . 山西化工 , 2017 , 37 ( 4 ), 21 - 24 .
Yang X. ; Zhao D. T. ; Huang Y. C. ; Li X. Y. ; Zheng B. ; Gao L. Y. Mechanically robust but dynamic elastomers as functional coatings based on dynamic covalent bonds and multiple noncovalent interactions . Polym. Chem. , 2025 , 16 ( 27 ), 3156 - 3163 . doi: 10.1039/d5py00495k http://dx.doi.org/10.1039/d5py00495k
刘苏亭 , 王秀娟 , 宁南英 , 田明 . 调控聚氨酯聚集态结构制备高性能介电弹性体 . 高分子学报 , 2023 , 54 ( 2 ), 266 - 276 . doi: 10.11777/j.issn1000-3304.2022.22215 http://dx.doi.org/10.11777/j.issn1000-3304.2022.22215
张欢欢 , 王杰 , 黄刚 , 占宏君 , 石彤非 , 许东华 , 姚卫国 . 汽车用聚氨酯减振材料的结构与性能 . 高分子学报 , 2016 ( 10 ), 1447 - 1454 . doi: 10.11777/j.issn1000-3304.2016.16040 http://dx.doi.org/10.11777/j.issn1000-3304.2016.16040
金敬福 , 李杨 , 陈廷坤 , 丛茜 , 齐迎春 . 涂层弹性模量对结冰附着强度的影响 . 吉林大学学报(工学版) , 2017 , 47 ( 5 ), 1548 - 1553 .
Liu Y. B. ; Wu Y. ; Liu S. J. ; Zhou F. Material strategies for ice accretion prevention and easy removal . ACS Materials Lett. , 2022 , 4 ( 2 ), 246 - 262 . doi: 10.1021/acsmaterialslett.1c00365 http://dx.doi.org/10.1021/acsmaterialslett.1c00365
Chubarenko I. Physical processes behind interactions of microplastic particles with natural ice . Environ. Res. Commun. , 2022 , 4 ( 1 ), 012001 . doi: 10.1088/2515-7620/ac49a8 http://dx.doi.org/10.1088/2515-7620/ac49a8
Ma J. ; Pan W. H. ; Li Y. H. ; Song J. L. Slippery coating without loss of lubricant . Chem. Eng. J. , 2022 , 444 , 136606 . doi: 10.1016/j.cej.2022.136606 http://dx.doi.org/10.1016/j.cej.2022.136606
He L. N. ; Sun D. C. Synthesis of high-solid content sulfonate-type polyurethane dispersion by pellet process . J. Appl. Polym. Sci. , 2013 , 127 ( 4 ), 2823 - 2831 . doi: 10.1002/app.37618 http://dx.doi.org/10.1002/app.37618
Jin X. ; Guo N. S. ; You Z. P. ; Tan Y. Q. Design and performance of polyurethane elastomers composed with different soft segments . Materials , 2020 , 13 ( 21 ), 4991 . doi: 10.3390/ma13214991 http://dx.doi.org/10.3390/ma13214991
Kwiatkowski K. ; Nachman M. ; Kwiatkowski K. ; Nachman M. The abrasive wear resistance of the segmented linear polyurethane elastomers based on a variety of polyols as soft segments . Polymers , 2017 , 9 ( 12 ), 705 . doi: 10.3390/polym9120705 http://dx.doi.org/10.3390/polym9120705
0
Views
144
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号