

浏览全部资源
扫码关注微信
湖北大学材料科学与工程学院 功能材料绿色制备与应用教育部重点实验室 高分子材料湖北省重点实验室 武汉 430062
De-an Shi, E-mail: deanshi2012@hubu.edu.cn
Received:26 August 2025,
Accepted:14 October 2025,
Published Online:28 November 2025,
Published:20 December 2025
移动端阅览
刘杰, 孙鹏, 郭小仟, 雷巍巍, 吴河生, 黄湘, 施德安. 基于刚性基团与多重氢键协同的高强韧自修复环氧化天然橡胶. 高分子学报, 2025, 56(12), 2381-2395
Liu, J.; Sun, P.; Guo, X. Q.; Lei, W. W.; Wu, H. S.; Huang, X.; Shi, D. A. High-strength, tough, and self-healing epoxidized natural rubber enabled by synergistic rigid segments and multiple hydrogen bonds. Acta Polymerica Sinica, 2025, 56(12), 2381-2395
刘杰, 孙鹏, 郭小仟, 雷巍巍, 吴河生, 黄湘, 施德安. 基于刚性基团与多重氢键协同的高强韧自修复环氧化天然橡胶. 高分子学报, 2025, 56(12), 2381-2395 DOI: 10.11777/j.issn1000-3304.2025.25203. CSTR: 32057.14.GFZXB.2025.7497.
Liu, J.; Sun, P.; Guo, X. Q.; Lei, W. W.; Wu, H. S.; Huang, X.; Shi, D. A. High-strength, tough, and self-healing epoxidized natural rubber enabled by synergistic rigid segments and multiple hydrogen bonds. Acta Polymerica Sinica, 2025, 56(12), 2381-2395 DOI: 10.11777/j.issn1000-3304.2025.25203. CSTR: 32057.14.GFZXB.2025.7497.
氢键由于具有动态属性在自修复橡胶弹性体领域广泛应用. 目前报道的单一氢键交联自修复橡胶受限于氢键的低结合能,普遍存在拉伸强度较低(通常低于3 MPa)的问题. 尽管氢键/共价键双网络结构可在一定程度上提高拉伸强度,但共价键的引入会削弱材料的自修复能力和可再加工性. 本工作通过在环氧化天然橡胶(ENR)中引入含刚性基团的多重氢键交联点,系统研究了该类交联点含量对ENR物理机械性能、自修复性能及抗裂纹性能的影响. 结果表明,该橡胶材料的断裂伸长率可超过1200%,拉伸强度可达10.38 MPa,断裂能达46.26 MJ/m
3
,并具备一定的自修复能力. 此外,该类氢键交联结构还显著提升了ENR的抗裂纹性能. 本工作不仅为高强韧自修复弹性体的设计提供了新思路,而且为抗裂纹材料的发展提供了参考.
Hydrogen bonds are widely utilized in self-healing rubber elastomers due to their dynamic nature. However
single hydrogen-bond crosslinked self-healing rubbers reported to date generally exhibit low tensile strength (
<
3 MPa) due to the low binding energy of hydrogen bonds. While the hydrogen/covalent dual-network improves tensile strength to some extent
the introduction of covalent bonds sacrifices self-healing capability and reprocessability. In this work
we constructed multiple hydrogen-bond crosslinks containing rigid segments within epoxidized natural rubber (ENR) and systematically investigated the relationship between rigid hydrogen-bond crosslinker content and mechanical properties
self-healing behavior
and crack resistance of ENR. The results demonstrate that the resulting rubber achieves an elongation exceeding 1200%
a tensile strength of up to 10.38 MPa
and a fracture energy of 46.26 MJ/m
3
while retaining self-healing performance. Moreover
these hydrogen-bond crosslinks substantially enhance the crack resistance of ENR. This design strategy based on the synergistic rigid segments and multiple hydrogen bonds not only provides insights for developing strong and tough self-healing elastomers but also offers insights for designing crack-resistant materials.
Wei P. D. ; Zhang Z. ; Cheng S. R. ; Meng Y. ; Tong M. J. ; Emu L. Q. ; Yan W. ; Zhang Y. L. ; Wang Y. J. ; Zhao J. Y. ; Xu C. Y. ; Zhai F. ; Lu J. Q. ; Wang L. ; Jiang H. Q. Biodegradable origami enables closed-loop sustainable robotic systems . Sci. Adv. , 2025 , 11 ( 6 ), eads 0217 . doi: 10.1126/sciadv.ads0217 http://dx.doi.org/10.1126/sciadv.ads0217
Kong N. ; Ren T. ; Yang H. ; Judicpa M. A. N. ; Usman K. A. S. ; Zhao X. ; Shao Y. Q. ; Razal J. M. ; Tao J. L. ; Zhang J. Z. High-performance flexible gas sensor using natural rubber/MXene composite for selective and stable VOC detection . Adv. Mater. Interfaces , 2025 , 12 , 2400565 . doi: 10.1002/admi.202400565 http://dx.doi.org/10.1002/admi.202400565
Yang Y. P. ; Kong L. L. ; Huang B. ; Lin B. F. ; Fu L. H. ; Xu C. H. A high-sensitive rubber-based sensor with integrated strain and humidity responses enabled by bionic gradient structure . Adv. Funct. Mater. , 2024 , 34 ( 34 ), 2400789 . doi: 10.1002/adfm.202400789 http://dx.doi.org/10.1002/adfm.202400789
Li X. X. ; Wang B. Q. ; Peng X. D. ; Li Y. T. ; Li X. L. ; Chen Y. ; Jin J. Effect of nitrile butadiene rubber hardness on the sealing characteristics of hydraulic O-ring rod seals . J. Zhejiang Univ. Sci. A , 2024 , 25 ( 1 ), 63 - 78 . doi: 10.1631/jzus.a2200612 http://dx.doi.org/10.1631/jzus.a2200612
Zhang Y. ; Chen Z. Q. ; Wu D. X. ; Yan H. ; He Q. ; Wang L. Analysis on sealing performance for a new type of rubber olecranon-shaped sealing ring in pipe jacking joint . Adv. Civ. Eng. , 2022 , 2022 , 2811809 . doi: 10.1155/2022/2811809 http://dx.doi.org/10.1155/2022/2811809
Lu J. J. ; He Z. H. ; Lin Z. H. ; Deng X. W. ; Huang B. ; Lin B. F. ; Fu L. H. ; Xu C. H. Flexible, wearable triboelectric rubber with tunable surface charge density enabled by regulation of surface functional group density and permittivity . Chem. Eng. J. , 2024 , 498 , 155315 . doi: 10.1016/j.cej.2024.155315 http://dx.doi.org/10.1016/j.cej.2024.155315
Tan D. ; Guan X. Y. ; Chung K. Y. ; Tang Y. ; Yang Y. J. ; Wang Q. ; Chen T. D. ; Xu B. G. Smart-adhesive, breathable and waterproof fibrous electronic skins . Adv. Sci. , 2024 , 11 ( 36 ), 2405828 . doi: 10.1002/advs.202405828 http://dx.doi.org/10.1002/advs.202405828
Shim H. ; Jang S. ; Thukral A. ; Jeong S. ; Jo H. ; Kan B. ; Patel S. ; Wei G. D. ; Lan W. ; Kim H. J. ; Yu C. J. Artificial neuromorphic cognitive skins based on distributed biaxially stretchable elastomeric synaptic transistors . Proc. Natl. Acad. Sci. U. S. A. , 2022 , 119 ( 23 ), e 2204852119 . doi: 10.1073/pnas.2204852119 http://dx.doi.org/10.1073/pnas.2204852119
Song L. X. ; Liu D. ; Zhang H. ; Wang Y. ; Zhao B. ; Kang W. B. ; Zhu Y. T. ; Song Y. Z. Revisiting the interface dynamics of MXene/rubber elastomers: Multiscale mechanistic insights into collaborative bonding for robust self-healing sensors . Nano Lett. , 2025 , 25 ( 7 ), 2618 - 2627 . doi: 10.1021/acs.nanolett.4c04547 http://dx.doi.org/10.1021/acs.nanolett.4c04547
Wei Z. D. ; Wang Y. F. ; Li Y. H. ; Gong S. D. ; Jiang X. L. ; Liu Y. H. ; Zhang D. Y. ; Cho Y. ; Zhang A. D. ; Gao L. ; Cheng Y. T. ; Lu H. ; Li H. X. ; Liu Y. H. ; Yao Y. ; Zhang C. Y. ; Liu Q. H. ; Cheng P. ; Facchetti A. ; Bo Z. S. ; Marks T. J. High-efficiency, ultra-flexible organic solar cells enabled by chloroprene rubber as both a non-volatile solid additive and plasticizer . Joule , 2025 , 9 ( 7 ), 101996 . doi: 10.1016/j.joule.2025.101996 http://dx.doi.org/10.1016/j.joule.2025.101996
Mahmood S. ; Khan A. ; Kant C. ; Chu C. W. ; Katiyar M. ; Lin H. C. Transparent, stretchable, and self-healable gas barrier films with 2D nanoplatelets for flexible electronic device packaging applications . Adv. Mater. Interfaces , 2023 , 10 ( 5 ), 2202093 . doi: 10.1002/admi.202202093 http://dx.doi.org/10.1002/admi.202202093
Tang L. X. ; Wang H. Y. ; Ren J. F. ; Jiang X. Y. Highly robust soft-rigid connections via mechanical interlocking for assembling ultra-stretchable displays . NPJ Flex. Electron. , 2024 , 8 , 50 . doi: 10.1038/s41528-024-00337-9 http://dx.doi.org/10.1038/s41528-024-00337-9
Zhuo Y. Z. ; Xia Z. J. ; Qi Y. ; Sumigawa T. ; Wu J. Y. ; Šesták P. ; Lu Y. N. ; Håkonsen V. ; Li T. ; Wang F. ; Chen W. ; Xiao S. B. ; Long R. ; Kitamura T. ; Li L. B. ; He J. Y. ; Zhang Z. L. Simultaneously toughening and stiffening elastomers with octuple hydrogen bonding . Adv. Mater. , 2021 , 33 ( 23 ), 2008523 . doi: 10.1002/adma.202008523 http://dx.doi.org/10.1002/adma.202008523
Wang D. ; Zhang H. ; Cheng B. C. ; Qian Z. C. ; Liu W. X. ; Zhao N. ; Xu J. Dynamic cross-links to facilitate recyclable polybutadiene elastomer with excellent toughness and stretchability . J. Polym. Sci., Part A: Polym. Chem. , 2016 , 54 ( 10 ), 1357 - 1366 . doi: 10.1002/pola.27983 http://dx.doi.org/10.1002/pola.27983
Liu J. ; Liu J. ; Wang S. ; Huang J. ; Wu S. W. ; Tang Z. H. ; Guo B. C. ; Zhang L. Q. An advanced elastomer with an unprecedented combination of excellent mechanical properties and high self-healing capability . J. Mater. Chem. A , 2017 , 5 ( 48 ), 25660 - 25671 . doi: 10.1039/c7ta08255j http://dx.doi.org/10.1039/c7ta08255j
Zhang W. C. ; Wang M. H. ; Zhou J. H. ; Sheng Y. M. ; Xu M. ; Jiang X. L. ; Ma Y. H. ; Lu X. Preparation of room-temperature self-healing elastomers with high strength based on multiple dynamic bonds . Eur. Polym. J. , 2021 , 156 , 110614 . doi: 10.1016/j.eurpolymj.2021.110614 http://dx.doi.org/10.1016/j.eurpolymj.2021.110614
Jiang X. L. ; Xu M. ; Wang M. H. ; Ma Y. H. ; Zhang W. C. ; Zhang Y. N. ; Rong H. X. ; Lu X. Preparation and molecular dynamics study of polyurethane damping elastomer containing dynamic disulfide bond and multiple hydrogen bond . Eur. Polym. J. , 2022 , 162 , 110893 . doi: 10.1016/j.eurpolymj.2021.110893 http://dx.doi.org/10.1016/j.eurpolymj.2021.110893
Xun X. C. ; Zhao X. ; Li Q. ; Zhao B. ; Ouyang T. ; Zhang Z. ; Kang Z. ; Liao Q. L. ; Zhang Y. Tough and degradable self-healing elastomer from synergistic soft-hard segments design for biomechano-robust artificial skin . ACS Nano , 2021 , 15 ( 12 ), 20656 - 20665 . doi: 10.1021/acsnano.1c09732 http://dx.doi.org/10.1021/acsnano.1c09732
Lu Q. C. ; Duan L. ; Liu Y. ; Zhang C. R. ; Zhang Z. B. ; Luo Z. Y. ; Li C. H. ; Luo Y. L. Dragonfly wing-inspired reticular hierarchical structure enables strong and tough supramolecular elastomers . Adv. Funct. Mater. , 2025 , 35 ( 36 ), 2506282 . doi: 10.1002/adfm.202506282 http://dx.doi.org/10.1002/adfm.202506282
Zhang Y. ; Fukao K. ; Matsuda T. ; Nakajima T. ; Tsunoda K. ; Kurokawa T. ; Gong J. P. Unique crack propagation of double network hydrogels under high stretch . Extreme Mech. Lett. , 2022 , 51 , 101588 . doi: 10.1016/j.eml.2021.101588 http://dx.doi.org/10.1016/j.eml.2021.101588
Kothari K. ; Hu Y. H. ; Gupta S. ; Elbanna A. Mechanical response of two-dimensional polymer networks: role of topology, rate dependence, and damage accumulation . J. Appl. Mech. , 2018 , 85 ( 3 ), 031008 . doi: 10.1115/1.4038883 http://dx.doi.org/10.1115/1.4038883
Wang X. H. ; Zhan S. N. ; Lu Z. Y. ; Li J. ; Yang X. ; Qiao Y. N. ; Men Y. F. ; Sun J. Q. Healable, recyclable, and mechanically tough polyurethane elastomers with exceptional damage tolerance . Adv. Mater. , 2020 , 32 ( 50 ), 2005759 . doi: 10.1002/adma.202005759 http://dx.doi.org/10.1002/adma.202005759
Yin X. S. ; Huang Z. Y. ; Zhao X. ; Li B. T. ; Wu J. X. ; Kuang Y. L. ; Sun Y. J. ; Lin X. F. ; Lin W. J. ; Ji L. ; Yi G. B. Mismatched hydrogen bond donor-acceptor stoichiometry strategy enables high-strength, crack-resistant, and recyclable thermosetting polyurethane elastomer . Adv. Funct. Mater. , 2025 , e 14438 . doi: 10.1002/adfm.202514438 http://dx.doi.org/10.1002/adfm.202514438
Wang Z. B. ; Yang F. H. ; Liu X. X. ; Han X. ; Li X. X. ; Huyan C. X. ; Liu D. ; Chen F. Hydrogen bonds-pinned entanglement blunting the interfacial crack of hydrogel-elastomer hybrids . Adv. Mater. , 2024 , 36 ( 14 ), 2313177 . doi: 10.1002/adma.202313177 http://dx.doi.org/10.1002/adma.202313177
Tian Y. S. ; Wei Y. ; Wang M. ; Wang J. D. ; Li X. F. ; Qin X. ; Zhang L. Q. Ultra-stretchable, tough, and self-healing polyurethane with tunable microphase separation for flexible wearable electronics . Nano Energy , 2025 , 139 , 110908 . doi: 10.1016/j.nanoen.2025.110908 http://dx.doi.org/10.1016/j.nanoen.2025.110908
Wang R. Y. ; Xu T. ; Yang Y. X. ; Zhang M. Y. ; Xie R. L. ; Cheng Y. L. ; Zhang Y. F. Tough polyurethane hydrogels with a multiple hydrogen-bond interlocked bicontinuous phase structure prepared by in situ water-induced microphase separation . Adv. Mater. , 2025 , 37 ( 6 ), 2412083 . doi: 10.1002/adma.202412083 http://dx.doi.org/10.1002/adma.202412083
Han X. K. ; Lu T. Y. ; Huang Y. Y. ; Liu G. T. ; Guo S. Y. Supramolecular-reinforced hard-phase ionogels with exceptional mechanical robustness and damage tolerance . Adv. Mater. , 2025 , 37 ( 41 ), e 10713 . doi: 10.1002/adma.202510713 http://dx.doi.org/10.1002/adma.202510713
Shi Y. K. ; Wu B. H. ; Sun S. T. ; Wu P. Y. Aqueous spinning of robust, self-healable, and crack-resistant hydrogel microfibers enabled by hydrogen bond nanoconfinement . Nat. Commun. , 2023 , 14 , 1370 . doi: 10.1038/s41467-023-37036-4 http://dx.doi.org/10.1038/s41467-023-37036-4
Kong L. M. ; Zhang J. Q. ; Huang S. Q. ; Zhang R. C. ; Li J. M. ; Xie Z. T. ; Wu J. R. Designing highly entangled, homogeneous, and low-defect networks for high-performance rubbers . Macromolecules , 2025 , 58 ( 6 ), 3109 - 3118 . doi: 10.1021/acs.macromol.4c03133 http://dx.doi.org/10.1021/acs.macromol.4c03133
Huang S. Q. ; Zhang J. Q. ; Kong L. M. ; Xie Z. T. ; Wu J. R. A chemical modification-free strategy for fabricating tough and tear-resistant natural rubber/polysaccharide material . Polymer , 2025 , 316 , 127880 . doi: 10.1016/j.polymer.2024.127880 http://dx.doi.org/10.1016/j.polymer.2024.127880
Steck J. ; Kim J. ; Kutsovsky Y. ; Suo Z. G. Multiscale stress deconcentration amplifies fatigue resistance of rubber . Nature , 2023 , 624 ( 7991 ), 303 - 308 . doi: 10.1038/s41586-023-06782-2 http://dx.doi.org/10.1038/s41586-023-06782-2
Nian G. D. ; Chen Z. Q. ; Bao X. Y. ; Tan M. W. M. ; Kutsovsky Y. ; Suo Z. G. Natural rubber with high resistance to crack growth . Nat. Sustain. , 2025 , 8 ( 6 ), 692 - 701 . doi: 10.1038/s41893-025-01559-z http://dx.doi.org/10.1038/s41893-025-01559-z
Wang L. ; Liu Y. J. ; Qiao Y. H. ; Wang Y. L. ; Cui Z. W. ; Zhu S. Y. ; Dong F. W. ; Fang S. K. ; Du A. H. Molecularly engineered dual-crosslinked elastomer vitrimers with superior strength, improved creep resistance, and retained malleability . Polym. Chem. , 2022 , 13 ( 28 ), 4144 - 4153 . doi: 10.1039/d2py00489e http://dx.doi.org/10.1039/d2py00489e
Coleman M. M. ; Lee K. H. ; Skrovanek D. J. ; Painter P. C. Hydrogen bonding in polymers. 4. infrared temperature studies of a simple polyurethane . Macromolecules , 1986 , 19 ( 8 ), 2149 - 2157 . doi: 10.1021/ma00162a008 http://dx.doi.org/10.1021/ma00162a008
Flory P. J. ; Rehner , J.Jr . Statistical mechanics of cross-linked polymer networks II. swelling . J. Chem. Phys. , 1943 , 11 ( 11 ), 521 - 526 . doi: 10.1063/1.1723792 http://dx.doi.org/10.1063/1.1723792
Guo B. C. ; Chen F. ; Lei Y. D. ; Chen W. W. Significantly improved performance of rubber/silica composites by addition of sorbic acid . Polym. J. , 2010 , 42 ( 4 ), 319 - 326 . doi: 10.1038/pj.2010.4 http://dx.doi.org/10.1038/pj.2010.4
Flory P. J. Statistical mechanics of swelling of network structures . J. Chem. Phys. , 1950 , 18 ( 1 ), 108 - 111 . doi: 10.1063/1.1747424 http://dx.doi.org/10.1063/1.1747424
Liu J. ; Guo X. Q. ; Zhai R. Y. ; Sun P. ; Ding J. Y. ; Wei Z. Y. ; Lei W. W. ; Shi D. A. A highly stretchable disulfide-crosslinked epoxidized natural rubber by one-step method . Polymer , 2024 , 315 , 127842 . doi: 10.1016/j.polymer.2024.127842 http://dx.doi.org/10.1016/j.polymer.2024.127842
Meyers M. A. ; McKittrick J. ; Chen P. Y. Structural biological materials: critical mechanics-materials connections . Science , 2013 , 339 ( 6121 ), 773 - 779 . doi: 10.1126/science.1220854 http://dx.doi.org/10.1126/science.1220854
Yin T. H. ; Wu T. H. ; Liu J. J. ; Qu S. X. ; Yang W. Essential work of fracture of soft elastomers . J. Mech. Phys. Solids , 2021 , 156 , 104616 . doi: 10.1016/j.jmps.2021.104616 http://dx.doi.org/10.1016/j.jmps.2021.104616
Ching E. C. Y. ; Poon W. K. Y. ; Li R. K. Y. ; Mai Y. W. Effect of strain rate on the fracture toughness of some ductile polymers using the essential work of fracture (EWF) approach . Polym. Eng. Sci. , 2000 , 40 ( 12 ), 2558 - 2568 . doi: 10.1002/pen.11386 http://dx.doi.org/10.1002/pen.11386
Liu Y. J. ; Tang Z. H. ; Wu S. W. ; Guo B. C. Integrating sacrificial bonds into dynamic covalent networks toward mechanically robust and malleable elastomers . ACS Macro Lett. , 2019 , 8 ( 2 ), 193 - 199 . doi: 10.1021/acsmacrolett.9b00012 http://dx.doi.org/10.1021/acsmacrolett.9b00012
Billa S. ; Vislavath P. ; Bahadur J. ; Rath S. K. ; Ratna D. ; Manoj N. R. ; Chakraborty B. C. Imparting reprocessability, quadruple shape memory, self-healing, and vibration damping characteristics to a thermosetting poly(urethane-urea) . ACS Appl. Polym. Mater. , 2023 , 5 ( 4 ), 3079 - 3095 . doi: 10.1021/acsapm.3c00225 http://dx.doi.org/10.1021/acsapm.3c00225
Guo B. C. ; Chen F. ; Chen W. W. ; Lei Y. D. ; Jia D. M. Reinforcement of nitrile rubber by in situ formed zinc disorbate . Express Polym. Lett. , 2010 , 4 ( 9 ), 529 - 538 . doi: 10.3144/expresspolymlett.2010.67 http://dx.doi.org/10.3144/expresspolymlett.2010.67
Zhang H. ; Cai C. ; Liu W. X. ; Li D. D. ; Zhang J. W. ; Zhao N. ; Xu J. Recyclable polydimethylsiloxane network crosslinked by dynamic transesterification reaction . Sci. Rep. , 2017 , 7 , 11833 . doi: 10.1038/s41598-017-11485-6 http://dx.doi.org/10.1038/s41598-017-11485-6
Gao J. H. ; Wan B. Q. ; Zheng M. S. ; Luo L. B. ; Zhang H. K. ; Zhao Q. L. ; Chen G. ; Zha J. W. High-toughness, extensile and self-healing PDMS elastomers constructed by decuple hydrogen bonding . Mater. Horiz. , 2024 , 11 ( 5 ), 1305 - 1314 . doi: 10.1039/d3mh01265d http://dx.doi.org/10.1039/d3mh01265d
Tang Z. Q. ; Yuan Y. ; Zhang C. ; Yang Z. H. ; Wang X. L. Fabrication of biomass-based flexible sensors by hydrogen-bond-enhanced epoxidized natural rubber . ACS Appl. Polym. Mater. , 2023 , 5 ( 11 ), 9297 - 9306 . doi: 10.1021/acsapm.3c01773 http://dx.doi.org/10.1021/acsapm.3c01773
Wu M. L. ; Li S. L. ; Li Y. D. ; Zhang M. Q. ; Zeng J. B. Mussel-inspired, fully biobased, mechanically robust, and room temperature healable supramolecular elastomer composites for sustainable strain sensors . Chem. Eng. J. , 2024 , 500 , 157146 . doi: 10.1016/j.cej.2024.157146 http://dx.doi.org/10.1016/j.cej.2024.157146
Zhao J. ; Chen R. ; Cheng D. M. ; Yang X. Y. ; Zhang H. ; Zheng J. P. ; Hu R. F. Extremely ultrahigh stretchable starch-based hydrogels with continuous hydrogen bonding . Adv. Funct. Mater. , 2025 , 35 ( 8 ), 2415530 . doi: 10.1002/adfm.202415530 http://dx.doi.org/10.1002/adfm.202415530
Huang S. Q. ; Zhang J. Q. ; Kong L. M. ; Li W. H. ; Xie Z. T. ; Wu J. R. Fully biosourced, vulcanization-free, and thermal-responsive natural rubber material . Macromolecules , 2024 , 57 ( 4 ), 1642 - 1652 . doi: 10.1021/acs.macromol.3c02221 http://dx.doi.org/10.1021/acs.macromol.3c02221
Leone G. ; Palucci B. ; Zanchin G. ; Vignali A. ; Ricci G. ; Bertini F. Dynamically cross-linked polyolefins via hydrogen bonds: tough yet soft thermoplastic elastomers with high elastic recovery . ACS Appl. Polym. Mater. , 2022 , 4 ( 5 ), 3770 - 3778 . doi: 10.1021/acsapm.2c00253 http://dx.doi.org/10.1021/acsapm.2c00253
Dai M. F. ; Han X. ; Zhang H. ; Yan J. ; Han R. P. ; Que L. K. ; Guo Y. F. ; Zhou Z. W. Visible light-initiated rapid self-healing of PDMS elastomers engineered through dual dynamic bonding networks for smart sensors . Mater. Horiz. , 2025 , 12 ( 16 ), 6143 - 6154 . doi: 10.1039/d5mh00655d http://dx.doi.org/10.1039/d5mh00655d
Li C. J. ; Ma S. C. ; Han X. ; Sun Y. ; Li C. L. ; Zheng K. ; Xin Y. M. ; Li R. G. Malleable, self-healing, and highly thermally conductive interface material enabled by interfacial networks for thermal management . ACS Appl. Mater. Interfaces , 2025 , 17 ( 30 ), 43655 - 43668 . doi: 10.1021/acsami.5c09314 http://dx.doi.org/10.1021/acsami.5c09314
Sun F. Y. ; Zhang J. Y. ; Liu T. ; Yao H. ; Wang L. ; Meng H. Y. ; Gao Y. L. ; Cao Y. F. ; Yao B. W. ; Xu J. H. ; Fu J. J. A versatile microporous design toward toughened yet softened self-healing materials . Adv. Mater. , 2024 , 36 ( 50 ), 2410650 . doi: 10.1002/adma.202410650 http://dx.doi.org/10.1002/adma.202410650
Saleemi A. S. ; Nairn J. A. The plane-strain essential work of fracture as a measure of the fracture toughness of ductile polymers . Polym. Eng. Sci. , 1990 , 30 ( 4 ), 211 - 218 . doi: 10.1002/pen.760300404 http://dx.doi.org/10.1002/pen.760300404
0
Views
194
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号