

浏览全部资源
扫码关注微信
四川大学高分子科学与工程学院 先进高分子材料全国重点实验室 成都 610065
Received:27 August 2025,
Accepted:21 October 2025,
Published Online:20 November 2025,
Published:20 December 2025
移动端阅览
包睿莹, 杨伟. 动态网络策略调控可生物降解聚合物性能. 高分子学报, 2025, 56(12), 2125-2138
Bao, R. Y.; Yang, W. Tailoring properties of biodegradable polymers through dynamic networks. Acta Polymerica Sinica, 2025, 56(12), 2125-2138
包睿莹, 杨伟. 动态网络策略调控可生物降解聚合物性能. 高分子学报, 2025, 56(12), 2125-2138 DOI: 10.11777/j.issn1000-3304.2025.25204. CSTR: 32057.14.GFZXB.2025.7505.
Bao, R. Y.; Yang, W. Tailoring properties of biodegradable polymers through dynamic networks. Acta Polymerica Sinica, 2025, 56(12), 2125-2138 DOI: 10.11777/j.issn1000-3304.2025.25204. CSTR: 32057.14.GFZXB.2025.7505.
可生物降解聚合物因其主链可通过化学或生物过程实现可控裂解,为废弃塑料的终端处置提供了多样化且环境友好的解决方案,在推动可持续的循环塑料经济发展中具有广阔前景. 然而,该类材料在加工性与力学性能方面的局限长期制约着其大规模应用. 近年来,通过在聚合物网络中引入动态键合相互作用,为可生物降解聚合物的性能优化与高效回收提供了新途径. 动态交联策略不仅可以改善材料的加工流动性能、力学性能和界面相互作用,还可显著提升其循环利用潜力. 本文系统综述了基于动态网络策略在调控可生物降解聚合物的加工行为(如可生物降解聚酯的拉伸流动特性与天然多糖高分子的热塑性成型)、增强力学性能、改善多相/复合体系界面相互作用以及实现高效回收与再利用方面的研究进展,并对该领域未来面临的挑战与发展方向进行了展望.
Biodegradable polymers have garnered significant attention due to the controllable cleavage of their backbone
via
chemical or biological processes
offering diverse and env
ironmentally friendly end-of-life management options for plastic waste
and holding great promise for advancing a sustainable circular plastics economy. However
the widespread application of these materials has long been hindered by limitations in their processability and mechanical properties. In recent years
the introduction of dynamic bonding interactions into polymer networks has opened new avenues for enhancing the performance and recyclability of biodegradable polymers. Dynamic cross-linking strategies have not only improved processability
mechanical properties
and interfacial compatibility but have also significantly increased their potential for closed-loop recycling. This review systematically summarizes recent advances in dynamic network strategies for regulating processing behavior (such as extensional flow properties of biodegradable polyesters and thermoplastic processing of natural polysaccharides)
enhancing mechanical performance
optimizing interfacial interactions in multiphase/composite systems
as well as enabling efficient recycling and reuse of biodegradable polymers. Finally
current challenges and future perspectives and challenges in this emerging field are discussed.
Van Zee N. J. ; Nicolaÿ R. Vitrimers: permanently crosslinked polymers with dynamic network topology . Prog. Polym. Sci. , 2020 , 104 , 101233 . doi: 10.1016/j.progpolymsci.2020.101233 http://dx.doi.org/10.1016/j.progpolymsci.2020.101233
Zhang Z. P. ; Rong M. Z. ; Zhang M. Q. Polymer engineering based on reversible covalent chemistry: a promising innovative pathway towards new materials and new functionalities . Prog. Polym. Sci. , 2018 , 80 , 39 - 93 . doi: 10.1016/j.progpolymsci.2018.03.002 http://dx.doi.org/10.1016/j.progpolymsci.2018.03.002
Brutman J. ; Fortman D. J. ; De Hoe G. X. ; Dichtel W. R. ; Hillmyer M. A. Mechanistic study of stress relaxation in urethane-containing polymer networks . J. Phys. Chem. B , 2019 , 123 ( 6 ), 1432 - 1441 . doi: 10.1021/acs.jpcb.8b11489 http://dx.doi.org/10.1021/acs.jpcb.8b11489
Tiwary P. ; Kontopoulou M. Tuning the rheological, thermal, and solid-state properties of branched PLA by free-radical-mediated reactive extrusion . ACS Sustainable Chem. Eng. , 2018 , 6 ( 2 ), 2197 - 2206 . doi: 10.1021/acssuschemeng.7b03617 http://dx.doi.org/10.1021/acssuschemeng.7b03617
Fang F. N. ; Niu D. Y. ; Xu P. W. ; Liu T. X. ; Yang W. J. ; Wang Z. Y. ; Li X. N. ; Ma P. M. A quantitative study on branching density dependent behavior of polylactide melt strength . Macromol. Rapid Commun. , 2023 , 44 ( 6 ), 2200858 . doi: 10.1002/marc.202200858 http://dx.doi.org/10.1002/marc.202200858
Zhao H. Y. ; Li L. F. ; Zhang Q. L. ; Xia Z. J. ; Yang E. J. ; Wang Y. S. ; Chen W. ; Meng L. P. ; Wang D. L. ; Li L. B. Manipulation of chain entanglement and crystal networks of biodegradable poly(butylene adipate- co -butylene terephthalate) during film blowing through the addition of a chain extender: an in situ synchrotron radiation X-ray scattering study . Biomacromolecules , 2019 , 20 ( 10 ), 3895 - 3907 . doi: 10.1021/acs.biomac.9b00975 http://dx.doi.org/10.1021/acs.biomac.9b00975
Ma Y. ; Niu D. Y. ; Liu J. L. ; Liu B. ; Xu P. W. ; Jiao X. C. ; Yang W. J. ; Liu T. X. ; Ma P. M. Branching-density dependent chain relaxation and orientated crystallization behavior of the stretched polylactic acid melt . Macromolecules , 2025 , 58 ( 11 ), 5674 - 5687 . doi: 10.1021/acs.macromol.5c00347 http://dx.doi.org/10.1021/acs.macromol.5c00347
Webber M. J. ; Tibbitt M. W. Dynamic and reconfigurable materials from reversible network interactions . Nat. Rev. Mater. , 2022 , 7 ( 7 ), 541 - 556 . doi: 10.1038/s41578-021-00412-x http://dx.doi.org/10.1038/s41578-021-00412-x
Tang S. C. ; Olsen B. D. Relaxation processes in supramolecular metallogels based on histidine-nickel coordination bonds . Macromolecules , 2016 , 49 ( 23 ), 9163 - 9175 . doi: 10.1021/acs.macromol.6b01618 http://dx.doi.org/10.1021/acs.macromol.6b01618
Liu Y. B. ; Peng L. M. ; Bao R. Y. ; Yang M. B. ; Yang W. Vitrimeric polylactide by two-step alcoholysis and transesterification during reactive processing for enhanced melt strength . ACS Appl. Mater. Interfaces , 2022 , 14 ( 40 ), 45966 - 45977 . doi: 10.1021/acsami.2c15595 http://dx.doi.org/10.1021/acsami.2c15595
Liu Y. B. ; Xu Z. ; Zhang Z. M. ; Bao R. Y. ; Yang M. B. ; Yang W. Blowing tough polylactide film enabled by the in situ construction of covalent adaptive networks with epoxidized soybean oil as dynamic crosslinks . Green Chem. , 2023 , 25 ( 13 ), 5182 - 5194 . doi: 10.1039/d3gc00999h http://dx.doi.org/10.1039/d3gc00999h
Fan Z. Y. ; Shi Z. Z. ; Ma L. ; Gong P. J. ; Bao R. Y. ; Yang M. B. ; Yang W. Dynamic cross-linked poly(butylene adipate-co-terephthalate) for high-performance green foam . ACS Sustainable Chem. Eng. , 2023 , 11 ( 45 ), 16354 - 16364 . doi: 10.1021/acssuschemeng.3c05780 http://dx.doi.org/10.1021/acssuschemeng.3c05780
Wu S. S. ; Lu H. J. ; Li Y. D. ; Zhang S. D. ; Zeng J. B. Unlocking the potential of poly(butylene succinate) through incorporation of vitrimeric network based on dynamic imine bonds . Chinese J. Polym. Sci. , 2024 , 42 ( 10 ), 1414 - 1424 . doi: 10.1007/s10118-024-3132-6 http://dx.doi.org/10.1007/s10118-024-3132-6
Zhou G. W. ; Zhang H. S. ; Su Z. P. ; Zhang X. Q. ; Zhou H. N. ; Yu L. ; Chen C. J. ; Wang X. H. A biodegradable, waterproof, and thermally processable cellulosic bioplastic enabled by dynamic covalent modification . Adv. Mater. , 2023 , 35 ( 25 ), 2301398 . doi: 10.1002/adma.202301398 http://dx.doi.org/10.1002/adma.202301398
Su Z. P. ; Yu L. ; Cui L. ; Zhou G. W. ; Zhang X. Q. ; Qiu X. Q. ; Chen C. J. ; Wang X. H. Reconstruction of cellulose intermolecular interactions from hydrogen bonds to dynamic covalent networks enables a thermo-processable cellulosic plastic with tunable strength and toughness . ACS Nano , 2023 , 17 ( 21 ), 21420 - 21431 . doi: 10.1021/acsnano.3c06175 http://dx.doi.org/10.1021/acsnano.3c06175
Huang L. W. ; Li Y. B. ; Zheng Z. ; Bai Y. ; Russell T. P. ; He C. F. Flexible, transparent, and sustainable cellulose-based films for organic solar cell substrates . Mater. Horiz. , 2024 , 11 ( 6 ), 1560 - 1566 . doi: 10.1039/d3mh01998e http://dx.doi.org/10.1039/d3mh01998e
Zhang H. S. ; Su Z. P. ; Wang X. H. Starch-based rehealable and degradable bioplastic enabled by dynamic imine chemistry . ACS Sustainable Chem. Eng. , 2022 , 10 ( 26 ), 8650 - 8657 . doi: 10.1021/acssuschemeng.2c02537 http://dx.doi.org/10.1021/acssuschemeng.2c02537
Ma X. ; Lin X. H. ; Chang C. Y. ; Duan B. Chitinous bioplastic enabled by noncovalent assembly . ACS Nano , 2024 , 18 ( 12 ), 8906 - 8918 . doi: 10.1021/acsnano.3c12211 http://dx.doi.org/10.1021/acsnano.3c12211
张泽平 , 容敏智 , 章明秋 . 基于可逆共价化学的交联聚合物加工成型研究: 聚合物工程发展的新挑战 . 高分子学报 , 2018 , 49 ( 7 ), 829 - 852 .
Fan Z. Y. ; Ma L. ; Lian W. Q. ; Yin B. ; Bao R. Y. ; Yang M. B. ; Yang W. Dynamic cross-linked poly(butylene adipate-co-terephthalate) networks via functional eugenol for simultaneous enhancement of mechanical, processing, and photothermal performance . Macromolecules , 2025 , 58 ( 11 ), 5706 - 5716 . doi: 10.1021/acs.macromol.5c00088 http://dx.doi.org/10.1021/acs.macromol.5c00088
Zheng J. W. ; Lu J. W. ; Yang Z. X. ; Liu T. Fabrication of recyclable and biodegradable PBAT vitrimer via construction of highly dynamic cross-linked network . Polym. Degrad. Stabil. , 2024 , 219 , 110602 . doi: 10.1016/j.polymdegradstab.2023.110602 http://dx.doi.org/10.1016/j.polymdegradstab.2023.110602
Cywar R. M. ; Ling C. ; Clarke R. W. ; Kim D. H. ; Kneucker C. M. ; Salvachúa D. ; Addison B. ; Hesse S. A. ; Takacs C. J. ; Xu S. ; Demirtas M. U. ; Woodworth S. P. ; Rorrer N. A. ; Johnson C. W. ; Tassone C. J. ; Allen R. D. ; Chen E. Y. ; Beckham G. T. Elastomeric vitrimers from designer polyhydroxyalkanoates with recyclability and biodegradability . Sci. Adv. , 2023 , 9 ( 47 ), eadi 1735 . doi: 10.1126/sciadv.adi1735 http://dx.doi.org/10.1126/sciadv.adi1735
Kim J. ; Choi W. ; Park H. ; Jo S. ; Park K. ; Cho H. ; Oh Y. ; Choi M. ; Choi B. ; Ryu D. Y. ; Koh W. G. ; Woo S. ; Choi S. ; Kwak T. ; Kimm H. ; Hong J. Tunable mechanical properties in biodegradable cellulosic bioplastics achieved via ring-opening polymerization . ACS Nano , 2025 , 19 ( 12 ), 11961 - 11972 . doi: 10.1021/acsnano.4c16563 http://dx.doi.org/10.1021/acsnano.4c16563
Ling C. ; Clarke R. W. ; Rosetto G. ; Xu S. ; Cywar R. M. ; Kim D. H. ; Hamernik L. J. ; Haugen S. J. ; Michener W. E. ; Woodworth S. P. ; Lind T. M. ; Ramirez K. J. ; Urgun-Demirtas M. ; Salvachúa D. ; Johnson C. W. ; Rorrer N. A. ; Beckham G. T. Tunable and degradable dynamic thermosets from compatibilized polyhydroxyalkanoate blends . ACS Sustainable Chem. Eng. , 2025 , 13 ( 9 ), 3817 - 3829 . doi: 10.1021/acssuschemeng.5c00943 http://dx.doi.org/10.1021/acssuschemeng.5c00943
Zhao F. ; Xu R. L. ; Zhang X. ; Zheng J. W. ; Liu W. ; Zhao S. ; Li L. Research on toughening polylactic acid by an epoxy soybean oil curing network based on dynamic cross-linking . ACS Sustainable Chem. Eng. , 2024 , 12 ( 30 ), 11347 - 11360 . doi: 10.1021/acssuschemeng.4c03569 http://dx.doi.org/10.1021/acssuschemeng.4c03569
Zhou X. W. ; Huang J. ; Zhang X. H. ; Li T. ; Wang Y. ; Wang S. B. ; Xia B. H. ; Dong W. F. Design of tough, yet strong, heat-resistant PLA/PBAT blends with reconfigurable shape memory behavior by engineering exchangeable covalent crosslinks . Chinese J. Polym. Sci. , 2023 , 41 ( 12 ), 1868 - 1878 . doi: 10.1007/s10118-023-2997-0 http://dx.doi.org/10.1007/s10118-023-2997-0
Zhang Z. M. ; Gan Z. Q. ; Bao R. Y. ; Ke K. ; Liu Z. Y. ; Yang M. B. ; Yang W. Green and robust superhydrophilic electrospun stereo complex polylactide membranes: multifunctional oil/water separation and self-cleaning . J. Membr. Sci. , 2020 , 593 , 117420 . doi: 10.1016/j.memsci.2019.117420 http://dx.doi.org/10.1016/j.memsci.2019.117420
Chen X. T. ; Chen G. ; Shi W. C. Polymer chirality modulates phase transitions at liquid-liquid interfaces . Macromolecules , 2024 , 57 ( 18 ), 8851 - 8860 .
Shi Z. Z. ; Fan Z. Y. ; Ma L. ; Gong P. J. ; Bao R. Y. ; Yang M. B. ; Yang W. Simultaneously enhanced stereo complexation and melt strength by dynamic polylactide toward heat-resistant green foams . Macromolecules , 2023 , 56 ( 21 ), 8735 - 8746 . doi: 10.1021/acs.macromol.3c01595 http://dx.doi.org/10.1021/acs.macromol.3c01595
Bao R. Y. ; Yang W. ; Jiang W. R. ; Liu Z. Y. ; Xie B. H. ; Yang M. B. ; Fu Q. Stereo complex formation of high-molecular-weight polylactide: a low temperature approach . Polymer , 2012 , 53 ( 24 ), 5449 - 5454 . doi: 10.1016/j.polymer.2012.09.043 http://dx.doi.org/10.1016/j.polymer.2012.09.043
Clarke R. W. ; Sandmeier T. ; Franklin K. A. ; Reich D. ; Zhang X. ; Vengallur N. ; Patra T. K. ; Tannenbaum R. J. ; Adhikari S. ; Kumar S. K. ; Rovis T. ; Chen E. Y. Dynamic crosslinking compatibilizes immiscible mixed plastics . Nature , 2023 , 616 ( 7958 ), 731 - 739 . doi: 10.1038/s41586-023-05858-3 http://dx.doi.org/10.1038/s41586-023-05858-3
Peng W. J. ; Xia H. X. ; Wu J. J. ; Fang Z. Z. ; Zhang X. M. Dynamic boronate ester chemistry facilitating 3D printing interlayer adhesion and modular 4D printing of polylactic acid . Adv. Funct. Mater. , 2025 , 35 ( 25 ), 2503682 . doi: 10.1002/adfm.202503682 http://dx.doi.org/10.1002/adfm.202503682
Zhang X. H. ; Li P. F. ; Zeng J. S. ; Su J. Q. ; Xu J. ; Li J. P. ; Wang B. ; Gao W. H. ; Chen K. F. Dynamically crosslinking cellulose nanofibers and epoxy soybean oil toward tough, recyclable, and degradable bioplastics . ACS Sustainable Chem. Eng. , 2024 , 12 ( 50 ), 18174 - 18186 . doi: 10.1021/acssuschemeng.4c07183 http://dx.doi.org/10.1021/acssuschemeng.4c07183
Yang X. X. ; Yu L. ; Zhang B. W. ; Wang Y. H. ; Jia X. Z. ; Lizundia E. ; Chen C. ; Dong F. H. ; Qi L. H. ; Chen L. ; Gao E. L. ; Xu X. ; Liu H. ; Chen C. J. Rapidly making biodegradable and recyclable paper plastic based on microwave radiation driven dynamic carbamate chemistry . Nat. Commun. , 2025 , 16 ( 1 ), 6523 . doi: 10.1038/s41467-025-61722-0 http://dx.doi.org/10.1038/s41467-025-61722-0
Cui L. ; Pan M. R. ; Zhou Y. ; Xu H. Y. ; Ning L. P. ; Jia S. S. ; Wang X. H. ; Su Z. P. A strong, biodegradable, and closed-loop recyclable bamboo-based plastic substitute enabled by polyimine covalent adaptable networks . Chem. Eng. J. , 2023 , 477 , 146952 . doi: 10.1016/j.cej.2023.146952 http://dx.doi.org/10.1016/j.cej.2023.146952
Brutman J. P. ; Delgado P. A. ; Hillmyer M. A. Polylactide vitrimers . ACS Macro Lett. , 2014 , 3 ( 7 ), 607 - 610 . doi: 10.1021/mz500269w http://dx.doi.org/10.1021/mz500269w
Borska K. ; Bednarek M. ; Pawlak A. Reprocessable polylactide-based networks containing urethane and disulfide linkages . Eur. Polym. J. , 2021 , 156 , 110636 . doi: 10.1016/j.eurpolymj.2021.110636 http://dx.doi.org/10.1016/j.eurpolymj.2021.110636
Fang X. ; Tian N. G. ; Hu W. Y. ; Qing Y. N. ; Wang H. ; Gao X. ; Qin Y. G. ; Sun J. Q. Dynamically cross-linking soybean oil and low-molecular-weight polylactic acid toward mechanically robust, degradable, and recyclable supramolecular plastics . Adv. Funct. Mater. , 2022 , 32 ( 46 ), 2208623 . doi: 10.1002/adfm.202208623 http://dx.doi.org/10.1002/adfm.202208623
Wei X. B. ; Zhang X. T. ; Chen T. Y. ; Huang J. ; Li T. ; Zhang X. H. ; Wang S. B. ; Dong W. F. UV-mediated facile fabrication of a robust, fully renewable and controllably biodegradable poly(lactic acid)-based covalent adaptable network . ACS Macro Lett. , 2024 , 13 ( 9 ), 1112 - 1118 . doi: 10.1021/acsmacrolett.4c00377 http://dx.doi.org/10.1021/acsmacrolett.4c00377
Wang B. B. ; Du S. ; Wang Y. ; Li F. L. ; Ding Y. ; Zhu J. ; Ma S. Q. Efficient conversion of poly(butylene adipate- co -terephthalate) into covalent adaptable networks via a chain breaking-crosslinking strategy . Polym. Chem. , 2023 , 14 ( 35 ), 4057 - 4063 . doi: 10.1039/d3py00822c http://dx.doi.org/10.1039/d3py00822c
Wang B. B. ; Huang R. ; Wang X. ; Jiang T. ; Wang Y. ; Du S. ; Li F. L. ; Zhu J. ; Ma S. Q. Upcycling of poly(butylene adipate- co -terephthalate) into dual covalent adaptable networks through chain breaking-crosslinking strategy . Chinese J. Polym. Sci. , 2024 , 42 ( 10 ), 1505 - 1513 . doi: 10.1007/s10118-024-3179-4 http://dx.doi.org/10.1007/s10118-024-3179-4
Fukuda K. ; Shimoda M. ; Sukegawa M. ; Nobori T. ; Lehn J. M. Doubly degradable dynamers: dynamic covalent polymers based on reversible imine connections and biodegradable polyester units . Green Chem. , 2012 , 14 ( 10 ), 2907 - 2911 . doi: 10.1039/c2gc35875a http://dx.doi.org/10.1039/c2gc35875a
Yue L. ; Su Y. L. ; Li M. Z. ; Yu L. X. ; Montgomery S. M. ; Sun X. H. ; Finn M. G. ; Gutekunst W. R. ; Ramprasad R. ; Qi H. J. One-pot synthesis of depolymerizable δ -lactone based vitrimers . Adv. Mater. , 2023 , 35 ( 29 ), 2300954 . doi: 10.1002/adma.202300954 http://dx.doi.org/10.1002/adma.202300954
0
Views
275
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号