

浏览全部资源
扫码关注微信
1.深圳大学化学与环境工程学院 深圳 518055
2.深圳光大同创新材料股份有限公司 深圳 518000
Feng Bao, E-mail: bfisvip@163.com
Jian Xu, E-mail: jxu@iccas.ac.cn
Received:27 August 2025,
Accepted:11 October 2025,
Published Online:19 December 2025,
Published:20 January 2026
移动端阅览
宋媛媛, 李茜妍, 李双儿, 鲍锋, 朱才镇, 徐坚. 环氧基封端超支化聚芳醚酮增韧双酚A环氧树脂. 高分子学报, 2026, 57(1), 168-179.
Song, Y. Y.; Li, X. Y.; Li, S. E.; Bao, F.; Zhu, C. Z.; Xu, J. Epoxy-terminated hyperbranched poly(arylene ether ketone) toughened bisphenol A epoxy resin. Acta Polymerica Sinica (in Chinese), 2026, 57(1), 168-179.
宋媛媛, 李茜妍, 李双儿, 鲍锋, 朱才镇, 徐坚. 环氧基封端超支化聚芳醚酮增韧双酚A环氧树脂. 高分子学报, 2026, 57(1), 168-179. DOI: 10.11777/j.issn1000-3304.2025.25205. CSTR: 32057.14.GFZXB.2025.7492.
Song, Y. Y.; Li, X. Y.; Li, S. E.; Bao, F.; Zhu, C. Z.; Xu, J. Epoxy-terminated hyperbranched poly(arylene ether ketone) toughened bisphenol A epoxy resin. Acta Polymerica Sinica (in Chinese), 2026, 57(1), 168-179. DOI: 10.11777/j.issn1000-3304.2025.25205. CSTR: 32057.14.GFZXB.2025.7492.
针对商用双酚A环氧树脂(DGEBA/MXDA)韧性不足的问题,设计并合成了环氧基封端的超支化聚芳醚酮(O-HBP),系统研究其对环氧树脂固化行为、热/热机械性能与力学性能的影响. 首先,以2
4
6-三(对羟基苯基)吡啶(HPP)与4
4'-二氟二苯甲酮(DFK)缩聚制得羟基封端超支化聚芳醚酮(HBP-OH),经乙二醇二缩水甘油醚(EGDE)接枝得到O-HBP. 结构表征(红外光谱、核磁共振氢谱)证实目标结构成功构建.然后,将O-HBP以不同添加量(0 wt%~8 wt%)引入DGEBA/MXDA体系,测试结果表明,O-HBP可降低固化表观活化能;流变结果显示改性体系在30~90 ℃保持低黏度,在100~110 ℃黏度快速上升并趋稳,说明固化充分. 热重与示差扫描量热分析(DSC)证明O-HBP对热稳定性影响不大,而玻璃化转变温度(
T
g
)随添加量先升高后降低(最高约102.9 ℃). 动态热机械分析(DMA)结果显示适量O-HBP可显著提高初始储能模量. 力学测试表明,当O-HBP添加4 wt%~6 wt%时综合力学性能最优:拉伸强度、弯曲强度与冲击强度分别最高提升约10.3%、63.
1%与177.6%. 扫描电子显微镜和原子力显微镜观察到明显的拔起、剪切屈服纹理及30~100 nm规模的纳米相分离,揭示能量吸收与裂纹偏转/分支等增韧机制. 本工作为环氧树脂的高效增韧与加工性优化提供了一种结构可设计且易加工的超支化聚合物策略.
To address the insufficient toughness of commercial bisphenol A epoxy resin (DGEBA/MXDA)
an epoxy-terminated hyperbranched poly(arylene ether ketone) (O-HBP) was designed and synthesized
and its effects on the curing behavior
thermal/thermomechanical properties
and mechanical performance of epoxy resins were systematically investigated. First
a hydroxyl-terminated hyperbranched poly(arylene ether ketone) (HBP-OH) was obtained by the polycondensation of 2
4
6-tris(4-hydroxyphenyl) pyridine (HPP) with 4
4'-difluorobenzophenone (DFK)
followed by grafting with ethylene glycol diglycidyl ether (EGDE) to yield O-HBP. Structural characterization by Fourier transforms infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (
1
H-NMR) confirmed the successful construction of the target structure. Subsequently
O-HBP was incorporated into the DGEBA/MXDA system at different loadings (0 wt%-8 wt%). The results indicated that O-HBP reduced the apparent activation energy of curing. Rheological measurements showed that the modified systems maintained low
viscosity at 30-90 ℃ and exhibited a rapid rise and subsequent stabilization of viscosity at 100-110 ℃
indicating sufficient cure. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) demonstrated negligible impact on thermal stability
while the glass transition temperature (
T
g
) first increased and then decreased with loading
reaching a maximum of approximately 102.9 ℃. Dynamic mechanical analysis (DMA) revealed that an appropriate amount of O-HBP significantly increased the initial storage modulus. Mechanical testing showed optimal overall performance at 4 wt%-6 wt% O-HBP: the maximum improvements in tensile strength
flexural strength
and impact strength were approximately 10.3%
63.1%
and 177.6%
respectively. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) observations revealed pronounced pull-out features
shear-yield textures
and nanoscale phase separation of 30-100 nm
elucidating energy absorption and crack deflection/branching mechanisms. This work provides a structurally designable and easily processable hyperbranched polymer strategy for efficient toughening and processing optimization of epoxy resins.
Shang L. ; Zhang X. P. ; Zhang M. J. ; Jin L. ; Liu L. ; Xiao L. H. ; Li M. ; Ao Y. H. A highly active bio-based epoxy resin with multi-functional group: synthesis, characterization, curing and properties . J. Mater. Sci. , 2018 , 53 ( 7 ), 5402 - 5417 . doi: 10.1007/s10853-017-1797-8 http://dx.doi.org/10.1007/s10853-017-1797-8
Qian J. Y. ; Pearson R. A. ; Dimonie V. L. ; El-Aasser M. S. Synthesis and application of core-shell particles as toughening agents for epoxies . J. Appl. Polym. Sci. , 1995 , 58 ( 2 ), 439 - 448 . doi: 10.1002/app.1995.070580222 http://dx.doi.org/10.1002/app.1995.070580222
Dou H. F. ; Tian B. ; Huang Y. ; Quan Y. W. ; Chen Q. M. ; Yin G. Improved mechanical properties of ATBN-toughened epoxy networks by controlling the phase separation scale . J. Adhes. Sci. Technol. , 2016 , 30 ( 6 ), 642 - 652 . doi: 10.1080/01694243.2015.1117268 http://dx.doi.org/10.1080/01694243.2015.1117268
Jin H. ; Yang B. Q. ; Jin F. L. ; Park S. J. Fracture toughness and surface morphology of polysulfone-modified epoxy resin . J. Ind. Eng. Chem. , 2015 , 25 , 9 - 11 . doi: 10.1016/j.jiec.2014.10.032 http://dx.doi.org/10.1016/j.jiec.2014.10.032
Hu H. X. ; Shu R. ; Meng L. M. ; Yu T. S. ; Wang C. J. ; Chen D. M. ; Shen Y. Z. Tribological and thermal characteristics of an epoxy-based composite containing polyaryletherketone . High Perform. Polym. , 2022 , 34 ( 4 ), 406 - 421 . doi: 10.1177/09540083211069039 http://dx.doi.org/10.1177/09540083211069039
Wang X. ; Zong L. S. ; Han J. H. ; Wang J. Y. ; Liu C. ; Jian X. G. Toughening and reinforcing of benzoxazine resins using a new hyperbranched polyether epoxy as a non-phase-separation modifier . Polymer , 2017 , 121 , 217 - 227 . doi: 10.1016/j.polymer.2017.05.069 http://dx.doi.org/10.1016/j.polymer.2017.05.069
Shao Z. B. ; Zhang M. X. ; Li Y. ; Han Y. ; Ren L. ; Deng C. A novel multi-functional polymeric curing agent: synthesis, characterization, and its epoxy resin with simultaneous excellent flame retardance and transparency . Chem. Eng. J. , 2018 , 345 , 471 - 482 . doi: 10.1016/j.cej.2018.03.142 http://dx.doi.org/10.1016/j.cej.2018.03.142
Zhang X. F. ; Peng Z. G. ; Feng Q. ; Zheng Y. Effect of CTBN and Nano-SiO 2 modified epoxy resin powder on the mechanical properties of cement-based composites . J. Build. Eng. , 2024 , 83 , 108456 . doi: 10.1016/j.jobe.2024.108456 http://dx.doi.org/10.1016/j.jobe.2024.108456
Zheng N. ; Sun W. F. ; Liu H. Y. ; Huang Y. D. ; Gao J. F. ; Mai Y. W. Effects of carboxylated carbon nanotubes on the phase separation behaviour and fracture-mechanical properties of an epoxy/polysulfone blend . Compos. Sci. Technol. , 2018 , 159 , 180 - 188 . doi: 10.1016/j.compscitech.2018.02.039 http://dx.doi.org/10.1016/j.compscitech.2018.02.039
Zhang K. X. ; Peng X. ; Cheng C. ; Zhao Y. ; Yu X. X. Preparation, characterization, and feasibility study of Sr/Zn-doped CPP/GNS/UHMWPE composites as an artificial joint component with enhanced hardness, impact strength, tribological and biological performance . RSC Adv. , 2021 , 11 ( 36 ), 21991 - 21999 . doi: 10.1039/d1ra02401a http://dx.doi.org/10.1039/d1ra02401a
Goyat M. S. ; Hooda A. ; Gupta T. K. ; Kumar K. ; Halder S. ; Ghosh P. K. ; Dehiya B. S. Role of non-functionalized oxide nanoparticles on mechanical properties and toughening mechanisms of epoxy nanocomposites . Ceram. Int. , 2021 , 47 ( 16 ), 22316 - 22344 . doi: 10.1016/j.ceramint.2021.05.083 http://dx.doi.org/10.1016/j.ceramint.2021.05.083
Zhang J. H. ; Jiang C. ; Deng G. Y. ; Luo M. ; Ye B. J. ; Zhang H. J. ; Miao M. H. ; Li T. C. ; Zhang D. H. Closed-loop recycling of tough epoxy supramolecular thermosets constructed with hyperbranched topological structure . Nat. Commun. , 2024 , 15 ( 1 ), 4869 . doi: 10.1038/s41467-024-49272-3 http://dx.doi.org/10.1038/s41467-024-49272-3
Liu H. C. ; Zhang J. Q. ; Gao X. X. ; Huang G. S. Simultaneous reinforcement and toughness improvement of an epoxy-phenolic network with a hyperbranched polysiloxane modifier . RSC Adv. , 2018 , 8 ( 32 ), 17606 - 17615 . doi: 10.1039/c8ra01740a http://dx.doi.org/10.1039/c8ra01740a
Li S. E. ; Liu H. C. ; Zhu H. R. ; Li X. Y. ; Li H. ; Shi L. D. ; Li Y. D. ; Yu J. L. ; Bao F. ; Zhu C. Z. ; Xu J. Mixed hyperbranched poly(aryl ether ketone) results in high toughness and excellent thermal resistance in epoxy resin . Eur. Polym. J. , 2024 , 210 , 112951 . doi: 10.1016/j.eurpolymj.2024.112951 http://dx.doi.org/10.1016/j.eurpolymj.2024.112951
Li X. Y. ; Bao F. ; Li S. E. ; Zhu T. ; Yu J. L. ; Zhang Q. ; Liu H. C. ; Zhu C. Z. ; Xu J. Toughening epoxy resins with soluble hyperbranched poly(aryl ether ketone): enhanced mechanical properties and thermal stability . Adv. Manuf. Polym. Compos. Sci. , 2025 , 11 ( 1 ), 2447171 . doi: 10.1080/20550340.2024.2447171 http://dx.doi.org/10.1080/20550340.2024.2447171
Boswell P. G. On the calculation of activation energies using a modified Kissinger method . J. Therm. Anal. , 1980 , 18 ( 2 ), 353 - 358 . doi: 10.1007/bf02055820 http://dx.doi.org/10.1007/bf02055820
0
Views
157
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号