

浏览全部资源
扫码关注微信
杭州师范大学材料与化学化工学院 有机硅化学及材料技术教育部重点实验室 杭州 311121
Received:29 August 2025,
Accepted:26 September 2025,
Published Online:27 November 2025,
Published:20 December 2025
移动端阅览
叶丽军, 沈洁清, 陶莹, 洪佳晖, 李勇进. 高填充高分子复合材料成型加工与结构调控研究进展. 高分子学报, 2025, 56(12), 2139-2158
Ye, L. J.; Shen, J. Q.; Tao, Y.; Hong, J. H.; Li, Y. J. Research progress on processing and structural regulation of high-filled polymer composites. Acta Polymerica Sinica, 2025, 56(12), 2139-2158
叶丽军, 沈洁清, 陶莹, 洪佳晖, 李勇进. 高填充高分子复合材料成型加工与结构调控研究进展. 高分子学报, 2025, 56(12), 2139-2158 DOI: 10.11777/j.issn1000-3304.2025.25209. CSTR: 32057.14.GFZXB.2025.7475.
Ye, L. J.; Shen, J. Q.; Tao, Y.; Hong, J. H.; Li, Y. J. Research progress on processing and structural regulation of high-filled polymer composites. Acta Polymerica Sinica, 2025, 56(12), 2139-2158 DOI: 10.11777/j.issn1000-3304.2025.25209. CSTR: 32057.14.GFZXB.2025.7475.
高填充高分子复合材料在电子封装、生物医学等领域具有广阔应用前景. 功能填料的引入能够显著提升高分子材料的导电性、导热性、阻燃性及电磁屏蔽等性能,但高含量填料往往会降低复合材料的力学性能和加工性能. 本文综述了高填充高分子复合材料在热塑性加工与结构调控方面的研究进展,重点讨论了填料堆积密度的调控及其对成型加工的影响、热塑性加工条件下的填料网络设计,以及可逆动态化学键在基体黏度调控中的应用. 同时,阐述了热塑性高分子复合材料成型加工过程中的结构演变及其调控方法,旨在为高填充复合材料的加工工艺优化和性能提升提供理论指导.
High-filled polymer composites hold significant potential in electronics packaging
biomedical applications
and other fields. The incorporation of functional fillers can substantially enhance the electrical conductivity
thermal conductivity
flame retardancy
and electromagnetic shielding performance of polymer materials; however
high filler content often compromises the mechanical properties and processability of the composites. This review summarizes recent advances in the thermoplastic processing and structural design of high-filled polymer composites
with a focus on controlling filler packing density and its influence on processing
the design of filler networks under thermoplastic processing conditions
and the application of reversible dynamic chemical bonds for tuning matrix viscosity. Additionally
the structural evolution during thermoplastic processing and corresponding control strategies are elucidated
aiming to provide theoretical guidance for the optimization of processing techniques and the enhancement of performance in high-filled polymer composites.
Wen Y. F. ; Chen C. ; Ye Y. S. ; Xue Z. G. ; Liu H. Y. ; Zhou X. P. ; Zhang Y. ; Li D. Q. ; Xie X. L. ; Mai Y. W. Advances on thermally conductive epoxy-based composites as electronic packaging underfill materials: a review . Adv. Mater. , 2022 , 34 ( 52 ), 2201023 . doi: 10.1002/adma.202270358 http://dx.doi.org/10.1002/adma.202270358
Rueda M. M. ; Auscher M. C. ; Fulchiron R. ; Périé T. ; Martin G. ; Sonntag P. ; Cassagnau P. Rheology and applications of highly filled polymers: a review of current understanding . Prog. Polym. Sci. , 2017 , 66 , 22 - 53 . doi: 10.1016/j.progpolymsci.2016.12.007 http://dx.doi.org/10.1016/j.progpolymsci.2016.12.007
Qin F. ; Brosseau C. A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles . J. Appl. Phys. , 2012 , 111 ( 6 ), 061301 . doi: 10.1063/1.3688435 http://dx.doi.org/10.1063/1.3688435
Kalyon D. M. ; Aktaş S. Factors affecting the rheology and processability of highly filled suspensions . Annu. Rev. Chem. Biomol. Eng. , 2014 , 5 , 229 - 254 . doi: 10.1146/annurev-chembioeng-060713-040211 http://dx.doi.org/10.1146/annurev-chembioeng-060713-040211
叶丽军 , 洪佳晖 , 杨利平 , 王亚权 , 李勇进 . 聚合物导热复合材料三维网络构筑及性能研究进展 . 复合材料学报 , 2025 , 42 ( 10 ), 5445 - 5469 .
Cao Y. ; Zhu M. ; Rong M. Z. ; Zhang M. Q. Injection moldable, self-healable, and recyclable rubber-bonded NdFeB magnets with the magnetic particulates content up to 90 wt% . Adv. Compos. Hybrid Mater. , 2023 , 6 ( 1 ), 38 . doi: 10.1007/s42114-023-00623-6 http://dx.doi.org/10.1007/s42114-023-00623-6
Wen Y. F. ; Xue Y. ; Li X. J. ; Pei H. J. ; Zhou X. P. ; Feng Y. Z. ; Ye Y. S. ; Xie X. L. ; Mai Y. W. In-situ shear exfoliation and thermal conductivity of SBS/graphite nanoplatelet nanocomposites . Compos. Part B Eng. , 2020 , 197 , 108172 . doi: 10.1016/j.compositesb.2020.108172 http://dx.doi.org/10.1016/j.compositesb.2020.108172
Ye L. J. ; Hong J. H. ; Zhang Z. M. ; Wu G. H. ; Li Y. J. Optimizing thermal and electrical transport pathways in polymer composites via in situ graphite exfoliation . Compos. Commun. , 2025 , 54 , 102273 . doi: 10.1016/j.coco.2025.102273 http://dx.doi.org/10.1016/j.coco.2025.102273
Cao H. ; Ye L. J. ; Jin Y. C. ; Wang J. Y. ; Hong J. H. ; Li Y. J. Structural heterogeneity and evolution in ultrahigh-filled polypropylene/flake graphite composites during injection molding . Compos. Sci. Technol. , 2022 , 227 , 109590 . doi: 10.1016/j.compscitech.2022.109590 http://dx.doi.org/10.1016/j.compscitech.2022.109590
Mooney M. The viscosity of a concentrated suspension of spherical particles . J. Colloid Sci. , 1951 , 6 ( 2 ), 162 - 170 . doi: 10.1016/0095-8522(51)90036-0 http://dx.doi.org/10.1016/0095-8522(51)90036-0
Ye L. J. ; Chen C. M. ; Bian Y. X. ; Li Y. J. Segregated structures induced linear mechanoelectrical responses to low strains for elastomer/CNTs composites . Compos. Sci. Technol. , 2022 , 230 , 109752 . doi: 10.1016/j.compscitech.2022.109752 http://dx.doi.org/10.1016/j.compscitech.2022.109752
Ye L. J. ; Ye C. C. ; Shi X. C. ; Zhao H. Y. ; Xie K. Y. ; Chen D. P. ; Li Y. J. Block-assembling: a new strategy for fabricating conductive nanoporous materials from nanocomposites based on a melt-miscible crystalline/crystalline blend and MWCNTs . J. Mater. Chem. C , 2015 , 3 ( 33 ), 8510 - 8518 . doi: 10.1039/c5tc01837d http://dx.doi.org/10.1039/c5tc01837d
Metzner A. B. Rheology of suspensions in polymeric liquids . J. Rheol. , 1985 , 29 ( 6 ), 739 - 775 . doi: 10.1122/1.549808 http://dx.doi.org/10.1122/1.549808
Pishvaei M. ; Graillat C. ; Cassagnau P. ; McKenna T. F. Modelling the zero shear viscosity of bimodal high solid content latex: calculation of the maximum packing fraction . Chem. Eng. Sci. , 2006 , 61 ( 17 ), 5768 - 5780 . doi: 10.1016/j.ces.2006.04.024 http://dx.doi.org/10.1016/j.ces.2006.04.024
Mayadunne A. ; Bhattacharya S. N. ; Kosior E. Modelling of packing behavior of irregularly shaped particles dispersed in a polymer matrix . Powder Technol. , 1996 , 89 ( 2 ), 115 - 127 . doi: 10.1016/s0032-5910(96)03155-5 http://dx.doi.org/10.1016/s0032-5910(96)03155-5
Chong J. S. ; Christiansen E. B. ; Baer A. D. Rheology of concentrated suspensions . J. Appl. Polym. Sci. , 1971 , 15 ( 8 ), 2007 - 2021 . doi: 10.1002/app.1971.070150818 http://dx.doi.org/10.1002/app.1971.070150818
Dames B. ; Morrison B. R. ; Willenbacher N. An empirical model predicting the viscosity of highly concentrated, bimodal dispersions with colloidal interactions . Rheol. Acta , 2001 , 40 ( 5 ), 434 - 440 . doi: 10.1007/s003970100171 http://dx.doi.org/10.1007/s003970100171
McGeary R. K. Mechanical packing of spherical particles . J. Am. Ceram. Soc. , 1961 , 44 ( 10 ), 513 - 522 . doi: 10.1111/j.1151-2916.1961.tb13716.x http://dx.doi.org/10.1111/j.1151-2916.1961.tb13716.x
Brouwers H. J. H. Viscosity of a concentrated suspension of rigid monosized particles . Phys. Rev. E , 2010 , 81 ( 5 ), 051402 .
Fiske T. J. ; Railkar S. B. ; Kalyon D. M. Effects of segregation on the packing of spherical and nonspherical particles . Powder Technol. , 1994 , 81 ( 1 ), 57 - 64 . doi: 10.1016/0032-5910(94)02862-1 http://dx.doi.org/10.1016/0032-5910(94)02862-1
Kaully T. ; Siegmann A. ; Shacham D. Rheology of highly filled natural CaCO 3 composites . I. Effects of solid loading and particle size distribution on capillary rheometry. Polym. Compos. , 2007 , 28 ( 4 ), 512 - 523 . doi: 10.1002/pc.20308 http://dx.doi.org/10.1002/pc.20308
Kaully T. ; Siegmann A. ; Shacham D. Rheology of highly filled natural CaCO 3 composites . II. Effects of solid loading and particle size distribution on rotational rheometry. Polym. Compos. , 2007 , 28 ( 4 ), 524 - 533 . doi: 10.1002/pc.20309 http://dx.doi.org/10.1002/pc.20309
Chen C. ; Xue Y. ; Li X. W. ; Wen Y. F. ; Liu J. W. ; Xue Z. G. ; Shi D. A. ; Zhou X. P. ; Xie X. L. ; Mai Y. W. High-performance epoxy/binary spherical alumina composite as underfill material for electronic packaging . Compos. Part A Appl. Sci. Manuf. , 2019 , 118 , 67 - 74 . doi: 10.1016/j.compositesa.2018.12.019 http://dx.doi.org/10.1016/j.compositesa.2018.12.019
Feng Q. K. ; Liu C. ; Zhang D. L. ; Song Y. H. ; Sun K. ; Xu H. P. ; Dang Z. M. Particle packing theory guided multiscale alumina filled epoxy resin with excellent thermal and dielectric performances . J. Materiomics , 2022 , 8 ( 5 ), 1058 - 1066 . doi: 10.1016/j.jmat.2022.02.008 http://dx.doi.org/10.1016/j.jmat.2022.02.008
Lee G. W. ; Park M. ; Kim J. ; Lee J. I. ; Yoon H. G. Enhanced thermal conductivity of polymer composites filled with hybrid filler . Compos. Part A Appl. Sci. Manuf. , 2006 , 37 ( 5 ), 727 - 734 . doi: 10.1016/j.compositesa.2005.07.006 http://dx.doi.org/10.1016/j.compositesa.2005.07.006
Kitano T. ; Kataoka T. ; Shirota T. An empirical equation of the relative viscosity of polymer melts filled with various inorganic fillers . Rheol. Acta , 1981 , 20 ( 2 ), 207 - 209 . doi: 10.1007/bf01513064 http://dx.doi.org/10.1007/bf01513064
Hu Y. ; Chen C. ; Wen Y. F. ; Xue Z. G. ; Zhou X. P. ; Shi D. A. ; Hu G. H. ; Xie X. L. Novel micro-nano epoxy composites for electronic packaging application: balance of thermal conductivity and processability . Compos. Sci. Technol. , 2021 , 209 , 108760 . doi: 10.1016/j.compscitech.2021.108760 http://dx.doi.org/10.1016/j.compscitech.2021.108760
Lim G. ; Bok G. ; Park S. D. ; Kim Y. Thermally conductive hexagonal boron nitride/spherical aluminum oxide hybrid composites fabricated with epoxyorganosiloxane . Ceram. Int. , 2022 , 48 ( 1 ), 1408 - 1414 . doi: 10.1016/j.ceramint.2021.09.227 http://dx.doi.org/10.1016/j.ceramint.2021.09.227
Lee Sanchez W. A. ; Huang C. Y. ; Chen J. X. ; Soong Y. C. ; Chan Y. N. ; Chiou K. C. ; Lee T. M. ; Cheng C. C. ; Chiu C. W. Enhanced thermal conductivity of epoxy composites filled with Al 2 O 3 /boron nitride hybrids for underfill encapsulation materials . Polymers , 2021 , 13 ( 1 ), 147 . doi: 10.3390/polym13010147 http://dx.doi.org/10.3390/polym13010147
Yu H. ; Li L. L. ; Kido T. ; Xi G. N. ; Xu G. C. ; Guo F. Thermal and insulating properties of epoxy/aluminum nitride composites used for thermal interface material . J. Appl. Polym. Sci. , 2012 , 124 ( 1 ), 669 - 677 . doi: 10.1002/app.35016 http://dx.doi.org/10.1002/app.35016
Trinidad J. ; Amoli B. M. ; Zhang W. ; Pal R. ; Zhao B. X. Effect of SDS decoration of graphene on the rheological and electrical properties of graphene-filled epoxy/Ag composites . J. Mater. Sci. Mater. Electron. , 2016 , 27 ( 12 ), 12955 - 12963 . doi: 10.1007/s10854-016-5434-0 http://dx.doi.org/10.1007/s10854-016-5434-0
Jung D. W. ; Kim J. M. ; Yoon H. W. ; Nam K. M. ; Kwon Y. E. ; Jeong S. ; Baek Y. H. ; Choi Y. S. ; Chang S. J. ; Yi G. R. ; Cho J. Y. ; Lee G. Solution-processable thermally conductive polymer composite adhesives of benzyl-alcohol-modified boron nitride two-dimensional nanoplates . Chem. Eng. J. , 2019 , 361 , 783 - 791 . doi: 10.1016/j.cej.2018.12.128 http://dx.doi.org/10.1016/j.cej.2018.12.128
Li G. ; Zhao T. ; Zhu P. L. ; He Y. C. ; Sun R. ; Lu D. Q. ; Wong C. P. Structure-property relationships between microscopic filler surface chemistry and macroscopic rheological, thermo-mechanical, and adhesive performance of SiO 2 filled nanocomposite underfills . Compos. Part A Appl. Sci. Manuf. , 2019 , 118 , 223 - 234 . doi: 10.1016/j.compositesa.2018.12.008 http://dx.doi.org/10.1016/j.compositesa.2018.12.008
Guo Q. ; Zhu P. L. ; Li G. ; Wen J. J. ; Wang T. Y. ; Lu D. Q. ; Sun R. ; Wong C. Study on the effects of interfacial interaction on the rheological and thermal performance of silica nanoparticles reinforced epoxy nanocomposites . Compos. Part B Eng. , 2017 , 116 , 388 - 397 . doi: 10.1016/j.compositesb.2016.10.081 http://dx.doi.org/10.1016/j.compositesb.2016.10.081
Guo Q. ; Zhu P. L. ; Li G. ; Lu D. ; Sun R. ; Wong C. P. Effects of surface-modified alkyl chain length of silica fillers on the rheological and thermal mechanical properties of underfill . IEEE Trans. Compon. Packag. Manuf. Technol. , 2016 , 6 ( 12 ), 1796 - 1803 . doi: 10.1109/tcpmt.2016.2614395 http://dx.doi.org/10.1109/tcpmt.2016.2614395
Qadeer M. I. ; Savage S. J. ; Gedde U. W. ; Hedenqvist M. S. Rheological and dynamic mechanical properties of polymer-bonded magnets based on Sm 2 Co 17 and polyamide-12 . J. Mater. Sci. , 2014 , 49 ( 21 ), 7529 - 7538 . doi: 10.1007/s10853-014-8460-4 http://dx.doi.org/10.1007/s10853-014-8460-4
Cao B. ; Zhou Y. B. ; Wu Y. C. ; Cai J. N. ; Guan X. X. ; Liu S. M. ; Zhao J. Q. ; Zhang M. Q. Simultaneous improvement of processability and toughness of highly filled MH/LLDPE composites by using fluorine-containing flow modifiers . Compos. Part A Appl. Sci. Manuf. , 2020 , 134 , 105900 . doi: 10.1016/j.compositesa.2020.105900 http://dx.doi.org/10.1016/j.compositesa.2020.105900
Tanner R. I. ; Dai S. C. Particle roughness and rheology in noncolloidal suspensions . J. Rheol. , 2016 , 60 ( 4 ), 809 - 818 . doi: 10.1122/1.4954643 http://dx.doi.org/10.1122/1.4954643
Hoyle C. ; Dai S. C. ; Tanner R. ; Jabbarzadeh A. Effect of particle roughness on the rheology of suspensions of hollow glass microsphere particles . J. Non Newton. Fluid Mech. , 2020 , 276 , 104235 . doi: 10.1016/j.jnnfm.2020.104235 http://dx.doi.org/10.1016/j.jnnfm.2020.104235
More R. V. ; Ardekani A. M. Roughness induced shear thickening in frictional non-Brownian suspensions: a numerical study . J. Rheol. , 2020 , 64 ( 2 ), 283 - 297 . doi: 10.1122/1.5129094 http://dx.doi.org/10.1122/1.5129094
Bao H. D. ; Guo Z. X. ; Yu J. Effect of electrically inert particulate filler on electrical resistivity of polymer/multi-walled carbon nanotube composites . Polymer , 2008 , 49 ( 17 ), 3826 - 3831 . doi: 10.1016/j.polymer.2008.06.024 http://dx.doi.org/10.1016/j.polymer.2008.06.024
Hong J. H. ; Luo N. ; Zhang Z. M. ; Zhang L. ; Zhang G. H. ; Ye L. J. ; Ray S. S. ; Li Y. J. Regulated orientation and exfoliation of flaky fillers by close packing structures in polymer composites for excellent thermal conduction and EMI shielding . Compos. Part B Eng. , 2024 , 275 , 111357 . doi: 10.1016/j.compositesb.2024.111357 http://dx.doi.org/10.1016/j.compositesb.2024.111357
Liu B. C. ; Li Y. B. ; Fei T. ; Han S. ; Xia C. B. ; Shan Z. H. ; Jiang J. L. Highly thermally conductive polystyrene/polypropylene/boron nitride composites with 3D segregated structure prepared by solution-mixing and hot-pressing method . Chem. Eng. J. , 2020 , 385 , 123829 . doi: 10.1016/j.cej.2019.123829 http://dx.doi.org/10.1016/j.cej.2019.123829
Pang H. ; Xu L. ; Yan D. X. ; Li Z. M. Conductive polymer composites with segregated structures . Prog. Polym. Sci. , 2014 , 39 ( 11 ), 1908 - 1933 . doi: 10.1016/j.progpolymsci.2014.07.007 http://dx.doi.org/10.1016/j.progpolymsci.2014.07.007
Zhang S. M. ; Deng H. ; Zhang Q. ; Fu Q. Formation of conductive networks with both segregated and double-percolated characteristic in conductive polymer composites with balanced properties . ACS Appl. Mater. Interfaces , 2014 , 6 ( 9 ), 6835 - 6844 . doi: 10.1021/am500651v http://dx.doi.org/10.1021/am500651v
Liu Y. F. ; Feng L. M. ; Chen Y. F. ; Shi Y. D. ; Chen X. D. ; Wang M. Segregated polypropylene/cross-linked poly(ethylene- co -1-octene)/multi-walled carbon nanotube nanocomposites with low percolation threshold and dominated negativ e temperature coefficient effect: towards electromagnetic interference shielding and thermistors . Compos. Sci. Technol. , 2018 , 159 , 152 - 161 . doi: 10.1016/j.compscitech.2018.02.041 http://dx.doi.org/10.1016/j.compscitech.2018.02.041
Zhang K. ; Li G. H. ; Feng L. M. ; Wang N. ; Guo J. ; Sun K. ; Yu K. X. ; Zeng J. B. ; Li T. X. ; Guo Z. H. ; Wang M. Ultralow percolation threshold and enhanced electromagnetic interference shielding in poly(l-lactide)/multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks . J. Mater. Chem. C , 2017 , 5 ( 36 ), 9359 - 9369 . doi: 10.1039/c7tc02948a http://dx.doi.org/10.1039/c7tc02948a
Shi Y. D. ; Lei M. ; Chen Y. F. ; Zhang K. ; Zeng J. B. ; Wang M. Ultralow percolation threshold in poly(l-lactide)/poly( ε -caprolactone)/multiwall carbon nanotubes composites with a segregated electrically conductive network . J. Phys. Chem. C , 2017 , 121 ( 5 ), 3087 - 3098 . doi: 10.1021/acs.jpcc.6b11351 http://dx.doi.org/10.1021/acs.jpcc.6b11351
Gong T. ; Peng S. P. ; Bao R. Y. ; Yang W. ; Xie B. H. ; Yang M. B. Low percolation threshold and balanced electrical and mechanical performances in polypropylene/carbon black composites with a continuous segregated structure . Compos. Part B Eng. , 2016 , 99 , 348 - 357 . doi: 10.1016/j.compositesb.2016.06.031 http://dx.doi.org/10.1016/j.compositesb.2016.06.031
Mu M. F. ; Walker A. M. ; Torkelson J. M. ; Winey K. I. Cellular structures of carbon nanotubes in a polymer matrix improve properties relative to composites with dispersed nanotubes . Polymer , 2008 , 49 ( 5 ), 1332 - 1337 . doi: 10.1016/j.polymer.2008.01.036 http://dx.doi.org/10.1016/j.polymer.2008.01.036
Wang Y. Y. ; Li J. ; Jia L. C. ; Lei J. ; Yan D. X. ; Li Z. M. Recent progress on segregated polymer composites for functional applications . Prog. Mater. Sci. , 2026 , 155 , 101524 . doi: 10.1016/j.pmatsci.2025.101524 http://dx.doi.org/10.1016/j.pmatsci.2025.101524
Cui C. H. ; Yan D. X. ; Pang H. ; Xu X. ; Jia L. C. ; Li Z. M. Formation of a segregated electrically conductive network structure in a low-melt-viscosity polymer for highly efficient electromagnetic interference shielding . ACS Sustainable Chem. Eng. , 2016 , 4 ( 8 ), 4137 - 4145 . doi: 10.1021/acssuschemeng.6b00526 http://dx.doi.org/10.1021/acssuschemeng.6b00526
Zhang C. ; Ma C. N. ; Wang P. ; Sumita M. Temperature dependence of electrical resistivity for carbon black filled ultra-high molecular weight polyethylene composites prepared by hot compaction . Carbon , 2005 , 43 ( 12 ), 2544 - 2553 . doi: 10.1016/j.carbon.2005.05.006 http://dx.doi.org/10.1016/j.carbon.2005.05.006
Yan D. X. ; Pang H. ; Li B. ; Vajtai R. ; Xu L. ; Ren P. G. ; Wang J. H. ; Li Z. M. Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding . Adv. Funct. Mater. , 2015 , 25 ( 4 ), 559 - 566 . doi: 10.1002/adfm.201403809 http://dx.doi.org/10.1002/adfm.201403809
Wu H. Y. ; Jia L. C. ; Yan D. X. ; Gao J. F. ; Zhang X. P. ; Ren P. G. ; Li Z. M. Simultaneously improved electromagnetic interference shielding and mechanical performance of segregated carbon nanotube/polypropylene composite via solid phase molding . Compos. Sci. Technol. , 2018 , 156 , 87 - 94 . doi: 10.1016/j.compscitech.2017.12.027 http://dx.doi.org/10.1016/j.compscitech.2017.12.027
Ren F. ; Li Z. ; Xu L. ; Sun Z. F. ; Ren P. G. ; Yan D. X. ; Li Z. M. Large-scale preparation of segregated PLA/carbon nanotube composite with high efficient electromagnetic interference shielding and favourable mechanical properties . Compos. Part B Eng. , 2018 , 155 , 405 - 413 . doi: 10.1016/j.compositesb.2018.09.030 http://dx.doi.org/10.1016/j.compositesb.2018.09.030
Hu M. C. ; Feng J. Y. ; Ng K. M. Thermally conductive PP/AlN composites with a 3-D segregated structure . Compos. Sci. Technol. , 2015 , 110 , 26 - 34 . doi: 10.1016/j.compscitech.2015.01.019 http://dx.doi.org/10.1016/j.compscitech.2015.01.019
Jiang Y. ; Liu Y. J. ; Min P. ; Sui G. X. BN@PPS core-shell structure particles and their 3D segregated architecture composites with high thermal conductivities . Compos. Sci. Technol. , 2017 , 144 , 63 - 69 . doi: 10.1016/j.compscitech.2017.03.023 http://dx.doi.org/10.1016/j.compscitech.2017.03.023
Zhou H. J. ; Deng H. ; Zhang L. ; Fu Q. Significant enhancement of thermal conductivity in polymer composite via constructing macroscopic segregated filler networks . ACS Appl. Mater. Interfaces , 2017 , 9 ( 34 ), 29071 - 29081 . doi: 10.1021/acsami.7b07947 http://dx.doi.org/10.1021/acsami.7b07947
Feng C. P. ; Ni H. Y. ; Chen J. ; Yang W. Facile method to fabricate highly thermally conductive graphite/PP composite with network structures . ACS Appl. Mater. Interfaces , 2016 , 8 ( 30 ), 19732 - 19738 . doi: 10.1021/acsami.6b03723 http://dx.doi.org/10.1021/acsami.6b03723
Li X. ; Li C. H. ; Zhang X. M. ; Jiang Y. P. ; Xia L. C. ; Wang J. F. ; Song X. D. ; Wu H. ; Guo S. Y. Simultaneously enhanced thermal conductivity and mechanical properties of PP/BN composites via constructing reinforced segregated structure with a trace amount of BN wrapped PP fiber . Chem. Eng. J. , 2020 , 390 , 124563 . doi: 10.1016/j.cej.2020.124563 http://dx.doi.org/10.1016/j.cej.2020.124563
Li Y. J. ; Shimizu H. Conductive PVDF/PA6/CNTs nanocomposites fabricated by dual formation of cocontinuous and nanodispersion structures . Macromolecules , 2008 , 41 ( 14 ), 5339 - 5344 . doi: 10.1021/ma8006834 http://dx.doi.org/10.1021/ma8006834
Gao X. ; Zhang S. M. ; Mai F. ; Lin L. ; Deng Y. ; Deng H. ; Fu Q. Preparation of high performance conductive polymer fibres from double percolated structure . J. Mater. Chem. , 2011 , 21 ( 17 ), 6401 - 6408 . doi: 10.1039/c0jm04543h http://dx.doi.org/10.1039/c0jm04543h
Fina A. ; Han Z. D. ; Saracco G. ; Gross U. ; Mainil M. Morphology and conduction properties of graphite-filled immiscible PVDF/PPgMA blends . Polym. Adv. Technol. , 2012 , 23 ( 12 ), 1572 - 1579 . doi: 10.1002/pat.3031 http://dx.doi.org/10.1002/pat.3031
Qi X. D. ; Yang J. H. ; Zhang N. ; Huang T. ; Zhou Z. W. ; Kühnert I. ; Pötschke P. ; Wang Y. Selective localization of carbon nanotubes and its effect on the structure and properties of polymer blends . Prog. Polym. Sci. , 2021 , 123 , 101471 . doi: 10.1016/j.progpolymsci.2021.101471 http://dx.doi.org/10.1016/j.progpolymsci.2021.101471
Göldel A. ; Marmur A. ; Kasaliwal G. R. ; Pötschke P. ; Heinrich G. Shape-dependent localization of carbon nanotubes and carbon black in an immiscible polymer blend during melt mixing . Macromolecules , 2011 , 44 ( 15 ), 6094 - 6102 . doi: 10.1021/ma200793a http://dx.doi.org/10.1021/ma200793a
Zhang J. ; Wu G. H. ; Huang S. Q. ; Sang M. H. ; Wang H. T. ; Ye L. J. ; Ray S. S. ; Li Y. J. Wetting kinetics-controlled interplay between nanoparticles and polymer domains in multiphase polymer blends . ACS Appl. Polym. Mater. , 2024 , 6 ( 17 ), 10779 - 10787 . doi: 10.1021/acsapm.4c01905 http://dx.doi.org/10.1021/acsapm.4c01905
Ji M. Z. ; Deng H. ; Yan D. X. ; Li X. Y. ; Duan L. Y. ; Fu Q. Selective localization of multi-walled carbon nanotubes in thermoplastic elastomer blends: an effective method for tunable resistivity-strain sensing behavior . Compos. Sci. Technol. , 2014 , 92 , 16 - 26 . doi: 10.1016/j.compscitech.2013.11.018 http://dx.doi.org/10.1016/j.compscitech.2013.11.018
Huang T. ; Li J. L. ; Yang J. H. ; Zhang N. ; Wang Y. ; Zhou Z. W. Carbon nanotubes induced microstructure and property changes of polycarbonate/poly(butylene terephthalate) blend . Compos. Part B Eng. , 2018 , 133 , 177 - 184 . doi: 10.1016/j.compositesb.2017.09.037 http://dx.doi.org/10.1016/j.compositesb.2017.09.037
Zhang J. ; Huang S. Q. ; Wang J. Y. ; Chen C. M. ; Wang H. T. ; Ye L. J. ; Li Y. J. Formation of interconnected elastomeric phase unevenly jammed by nanosilica in the plastic matrix during melt processing . Macromolecules , 2024 , 57 ( 1 ), 373 - 384 . doi: 10.1021/acs.macromol.3c01921 http://dx.doi.org/10.1021/acs.macromol.3c01921
Sharika T. ; Abraham J. ; Arif PM. ; George S. C. ; Kalarikkal N. ; Thomas S. Excellent electromagnetic shield derived from MWCNT reinforced NR/PP blend nanocomposites with tailored microstructural propertie . Compos. Part B Eng. , 2019 , 173 , 106798 . doi: 10.1016/j.compositesb.2019.05.009 http://dx.doi.org/10.1016/j.compositesb.2019.05.009
Cao J. P. ; Zhao J. ; Zhao X. D. ; You F. ; Yu H. Z. ; Hu G. H. ; Dang Z. M. High thermal conductivity and high electrical resistivity of poly(vinylidene fluoride)/polystyrene blends by controlling the localization of hybrid fillers . Compos. Sci. Technol. , 2013 , 89 , 142 - 148 . doi: 10.1016/j.compscitech.2013.09.024 http://dx.doi.org/10.1016/j.compscitech.2013.09.024
Yang Y. ; Li L. Y. ; Yin B. ; Yang M. B. An effective strategy to achieve ultralow electrical percolation threshold with CNTs anchoring at the interface of PVDF/PS bi-continuous structures to form an interfacial conductive layer . Macromol. Mater. Eng. , 2020 , 305 ( 4 ), 1900835 . doi: 10.1002/mame.201900835 http://dx.doi.org/10.1002/mame.201900835
Huang J. R. ; Zhu Y. T. ; Xu L. N. ; Chen J. W. ; Jiang W. ; Nie X. A. Massive enhancement in the thermal conductivity of polymer composites by trapping graphene at the interface of a polymer blend . Compos. Sci. Technol. , 2016 , 129 , 160 - 165 . doi: 10.1016/j.compscitech.2016.04.029 http://dx.doi.org/10.1016/j.compscitech.2016.04.029
Jalali Dil E. ; Favis B. D. Localization of micro- and nano-silica particles in heterophase poly(lactic acid)/poly(butylene adipate- co -terephthalate) blends . Polymer , 2015 , 76 , 295 - 306 . doi: 10.1016/j.polymer.2015.08.046 http://dx.doi.org/10.1016/j.polymer.2015.08.046
Elias L. ; Fenouillot F. ; Majeste J. C. ; Cassagnau P. Morphology and rheology of immiscible polymer blends filled with silica nanoparticles . Polymer , 2007 , 48 ( 20 ), 6029 - 6040 . doi: 10.1016/j.polymer.2007.07.061 http://dx.doi.org/10.1016/j.polymer.2007.07.061
Guo M. L. ; Kashfipour M. A. ; Li Y. F. ; Dent R. S. ; Zhu J. H. ; Maia J. M. Structure-Rheology-Property relationships in double-percolated Polypropylene/Poly(methyl methacrylate)/Boron nitride polymer composites . Compos. Sci. Technol. , 2020 , 198 , 108306 . doi: 10.1016/j.compscitech.2020.108306 http://dx.doi.org/10.1016/j.compscitech.2020.108306
Liu J. Y. ; Chen C. M. ; Tao Y. ; Zhang J. ; Huang Z. H. ; Luo X. ; Liu R. H. ; Ye L. J. ; Li Y. J. Building efficient 3D networks by controlled localization of hybrid fillers in immiscible polymer blends . ACS Appl. Polym. Mater. , 2024 , 6 ( 9 ), 5366 - 5373 . doi: 10.1021/acsapm.4c00563 http://dx.doi.org/10.1021/acsapm.4c00563
Zhang D. L. ; Zha J. W. ; Li C. Q. ; Li W. K. ; Wang S. J. ; Wen Y. Q. ; Dang Z. M. High thermal conductivity and excellent electrical insulation performance in double-percolated three-phase polymer nanocomposites . Compos. Sci. Technol. , 2017 , 144 , 36 - 42 . doi: 10.1016/j.compscitech.2017.02.022 http://dx.doi.org/10.1016/j.compscitech.2017.02.022
Li Y. F. ; Hong J. H. ; Zhang J. ; Yang H. Q. ; Wang H. T. ; Ye L. J. ; Li Y. J. Synergistically enhanced thermal conductivity, electrical insulation, and mechanical toughness of polymer composites with carbon nanofibers segregated by alumina nanoparticles . Compos. Part B Eng. , 2025 , 289 , 111935 . doi: 10.1016/j.compositesb.2024.111935 http://dx.doi.org/10.1016/j.compositesb.2024.111935
Zhang H. ; Mao Z. P. ; Zhang J. ; Zhang Z. ; Chabi S. ; Abidi N. Melt-processed bi-continuous phase polymer composite with selective filler localization: a mini review . Polym. Rev. , 2024 , 64 ( 4 ), 1098 - 1135 . doi: 10.1080/15583724.2024.2372491 http://dx.doi.org/10.1080/15583724.2024.2372491
Banerjee R. ; Li Y. J. ; Ray S. S. Nanoparticle-induced morphology evolution and property expression in immiscible polymer blend composites—A review of fundamental understanding on nanoparticle migration and interface crossing . Polymer , 2025 , 316 , 127844 . doi: 10.1016/j.polymer.2024.127844 http://dx.doi.org/10.1016/j.polymer.2024.127844
Koos E. ; Willenbacher N. Capillary forces in suspension rheology . Science , 2011 , 331 ( 6019 ), 897 - 900 . doi: 10.1126/science.1199243 http://dx.doi.org/10.1126/science.1199243
Koos E. ; Willenbacher N. Particle configurations and gelation in capillary suspensions . Soft Matter , 2012 , 8 ( 14 ), 3988 - 3994 . doi: 10.1039/c2sm07347a http://dx.doi.org/10.1039/c2sm07347a
Domenech T. ; Velankar S. Capillary-driven percolating networks in ternary blends of immiscible polymers and silica particles . Rheol. Acta , 2014 , 53 ( 8 ), 593 - 605 . doi: 10.1007/s00397-014-0776-0 http://dx.doi.org/10.1007/s00397-014-0776-0
Bossler F. ; Koos E. Structure of particle networks in capillary suspensions with wetting and nonwetting fluids . Langmuir , 2016 , 32 ( 6 ), 1489 - 1501 . doi: 10.1021/acs.langmuir.5b04246 http://dx.doi.org/10.1021/acs.langmuir.5b04246
Maurath J. ; Bitsch B. ; Schwegler Y. ; Willenbacher N. Influence of particle shape on the rheological behavior of three-phase non-Brownian suspensions . Colloids Surf. A Physicochem. Eng. Aspects , 2016 , 497 , 316 - 326 . doi: 10.1016/j.colsurfa.2016.03.006 http://dx.doi.org/10.1016/j.colsurfa.2016.03.006
Domenech T. ; Velankar S. S. On the rheology of pendular gels and morphological developments in paste-like ternary systems based on capillary attraction . Soft Matter , 2015 , 11 ( 8 ), 1500 - 1516 . doi: 10.1039/c4sm02053g http://dx.doi.org/10.1039/c4sm02053g
Koos E. ; Johannsmeier J. ; Schwebler L. ; Willenbacher N. Tuning suspension rheology using capillary forces . Soft Matter , 2012 , 8 ( 24 ), 6620 - 6628 . doi: 10.1039/c2sm25681a http://dx.doi.org/10.1039/c2sm25681a
Bitsch B. ; Dittmann J. ; Schmitt M. ; Scharfer P. ; Schabel W. ; Willenbacher N. A novel slurry concept for the fabrication of lithium-ion battery electrodes with beneficial properties . J. Power Sources , 2014 , 265 , 81 - 90 . doi: 10.1016/j.jpowsour.2014.04.115 http://dx.doi.org/10.1016/j.jpowsour.2014.04.115
Schneider M. ; Koos E. ; Willenbacher N. Highly conductive, printable pastes from capillary suspensions . Sci. Rep. , 2016 , 6 , 31367 . doi: 10.1038/srep31367 http://dx.doi.org/10.1038/srep31367
Sun H. Y. ; Zhang X. F. ; Yuen M. M. F. Enhanced conductivity induced by attractive capillary force in ternary conductive adhesive . Compos. Sci. Technol. , 2016 , 137 , 109 - 117 . doi: 10.1016/j.compscitech.2016.10.028 http://dx.doi.org/10.1016/j.compscitech.2016.10.028
Malchev P. G. ; David C. T. ; Picken S. J. ; Gotsis A. D. Mechanical properties of short fiber reinforced thermoplastic blends . Polymer , 2005 , 46 ( 11 ), 3895 - 3905 . doi: 10.1016/j.polymer.2005.02.091 http://dx.doi.org/10.1016/j.polymer.2005.02.091
Malchev P. G. ; de Vos G. ; Picken S. J. ; Gotsis A. D. Mechanical and fracture properties of ternary PE/PA6/GF composites . Compos. Sci. Technol. , 2010 , 70 ( 5 ), 734 - 742 . doi: 10.1016/j.compscitech.2010.01.004 http://dx.doi.org/10.1016/j.compscitech.2010.01.004
Li B. P. ; Gong S. S. ; Wu G. Z. Polystyrene reinforced by self-welded glass fibers: kinetics of polyamide 6 preferential segregation . Compos. Sci. Technol. , 2011 , 71 ( 9 ), 1257 - 1265 . doi: 10.1016/j.compscitech.2011.04.015 http://dx.doi.org/10.1016/j.compscitech.2011.04.015
Li B. P. ; Zhang Y. H. ; Wu G. Z. Thermoplastics reinforced by self-welded glass fibers: effect of interfacial affinity on preferential segregation . Polymer , 2013 , 54 ( 9 ), 2440 - 2449 . doi: 10.1016/j.polymer.2013.02.050 http://dx.doi.org/10.1016/j.polymer.2013.02.050
Xiu H. ; Qi X. D. ; Liu Z. W. ; Zhou Y. ; Bai H. W. ; Zhang Q. ; Fu Q. Simultaneously reinforcing and toughening of polylactide/carbon fiber composites via adding small amount of soft poly(ether)urethane . Compos. Sci. Technol. , 2016 , 127 , 54 - 61 . doi: 10.1016/j.compscitech.2016.02.025 http://dx.doi.org/10.1016/j.compscitech.2016.02.025
Wu G. H. ; Shen J. Q. ; Huang S. R. ; Zhang Z. M. ; Li Y. J. ; Ye L. J. Constructing 3D skeletons for enhanced thermal transport in phase-change materials via double-percolated structures . ACS Appl. Polym. Mater. , 2025 , 7 ( 9 ), 5519 - 5527 . doi: 10.1021/acsapm.5c00280 http://dx.doi.org/10.1021/acsapm.5c00280
Ye L. J. ; Tao Y. ; Cai H. C. ; Wang X. K. ; Yang L. P. ; Wang Y. Q. ; Li Y. J. Building efficient 3D networks in polymer blends by controlled capillary bridging-induced particle agglomeration . Polym. Sci. Technol. , 2025 , 1 ( 7 ), 632 - 639 . doi: 10.1021/polymscitech.5c00056 http://dx.doi.org/10.1021/polymscitech.5c00056
Drozdov A. D. ; de Claville Christiansen J. Thermal conductivity of highly filled polymer nanocomposites . Compos. Sci. Technol. , 2019 , 182 , 107717 . doi: 10.1016/j.compscitech.2019.107717 http://dx.doi.org/10.1016/j.compscitech.2019.107717
Dvir H. ; Gottlieb M. ; Daren S. ; Tartakovsky E. Optimization of a flame-retarded polypropylene composite . Compos. Sci. Technol. , 2003 , 63 ( 13 ), 1865 - 1875 . doi: 10.1016/s0266-3538(03)00170-2 http://dx.doi.org/10.1016/s0266-3538(03)00170-2
Liu S. P. ; Ying J. R. ; Zhou X. P. ; Xie X. L. ; Mai Y. W. Dispersion, thermal and mechanical properties of polypropylene/magnesium hydroxide nanocomposites compatibilized by SEBS- g -MA . Compos. Sci. Technol. , 2009 , 69 ( 11-12 ), 1873 - 1879 . doi: 10.1016/j.compscitech.2009.04.004 http://dx.doi.org/10.1016/j.compscitech.2009.04.004
Zheng N. ; Xu Y. ; Zhao Q. ; Xie T. Dynamic covalent polymer networks: a molecular platform for designing functions beyond chemical recycling and self-healing . Chem. Rev. , 2021 , 121 ( 3 ), 1716 - 1745 . doi: 10.1021/acs.chemrev.0c00938 http://dx.doi.org/10.1021/acs.chemrev.0c00938
Lei Z. P. ; Chen H. X. ; Huang S. F. ; Wayment L. J. ; Xu Q. C. ; Zhang W. New advances in covalent network polymers via dynamic covalent chemistry . Chem. Rev. , 2024 , 124 ( 12 ), 7829 - 7906 . doi: 10.1021/acs.chemrev.3c00926 http://dx.doi.org/10.1021/acs.chemrev.3c00926
犹阳 , 容敏智 , 章明秋 . 聚合物可逆互锁网络的设计、制备和应用初探 . 高分子学报 , 2023 , 54 ( 1 ), 14 - 36 .
Montarnal D. ; Capelot M. ; Tournilhac F. ; Leibler L. Silica-like malleable materials from permanent organic networks . Science , 2011 , 334 ( 6058 ), 965 - 968 . doi: 10.1126/science.1212648 http://dx.doi.org/10.1126/science.1212648
Wang S. ; Ma S. Q. ; Li Q. ; Xu X. W. ; Wang B. B. ; Yuan W. C. ; Zhou S. H. ; You S. S. ; Zhu J. Facile in situ preparation of high-performance epoxy vitrimer from renewable resources and its application in nondestructive recyclable carbon fiber composite . Green Chem. , 2019 , 21 ( 6 ), 1484 - 1497 . doi: 10.1039/c8gc03477j http://dx.doi.org/10.1039/c8gc03477j
Zhang Y. H. ; Zhang L. ; Yang G. T. ; Yao Y. L. ; Wei X. ; Pan T. C. ; Wu J. T. ; Tian M. F. ; Yin P. G. Recent advances in recyclable thermosets and thermoset composites based on covalent adaptable networks . J. Mater. Sci. Technol. , 2021 , 92 , 75 - 87 . doi: 10.1016/j.jmst.2021.03.043 http://dx.doi.org/10.1016/j.jmst.2021.03.043
Liu Y. L. ; Yu Z. ; Wang B. B. ; Li P. Y. ; Zhu J. ; Ma S. Q. Closed-loop chemical recycling of thermosetting polymers and their applications: a review . Green Chem. , 2022 , 24 ( 15 ), 5691 - 5708 . doi: 10.1039/d2gc00368f http://dx.doi.org/10.1039/d2gc00368f
Memon H. ; Wei Y. ; Zhang L. Y. ; Jiang Q. R. ; Liu W. S. An imine-containing epoxy vitrimer with versatile recyclability and its application in fully recyclable carbon fiber reinforced composites . Compos. Sci. Technol. , 2020 , 199 , 108314 . doi: 10.1016/j.compscitech.2020.108314 http://dx.doi.org/10.1016/j.compscitech.2020.108314
Liu X. H. ; Zhang E. D. ; Liu J. M. ; Qin J. J. ; Wu M. Q. ; Yang C. L. ; Liang L. Y. Self-healing, reprocessable, degradable, thermadapt shape memory multifunctional polymers based on dynamic imine bonds and their application in nondestructively recyclable carbon fiber composites . Chem. Eng. J. , 2023 , 454 , 139992 . doi: 10.1016/j.cej.2022.139992 http://dx.doi.org/10.1016/j.cej.2022.139992
Röttger M. ; Domenech T. ; van der Weegen R. ; Breuillac A. ; Nicolaÿ R. ; Leibler L. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis . Science , 2017 , 356 ( 6333 ), 62 - 65 . doi: 10.1126/science.aah5281 http://dx.doi.org/10.1126/science.aah5281
Yu S. ; Zhang R. C. ; Wu Q. ; Chen T. H. ; Sun P. C. Bio-inspired high-performance and recyclable cross-linked polymers . Adv. Mater. , 2013 , 25 ( 35 ), 4912 - 4917 . doi: 10.1002/adma.201301513 http://dx.doi.org/10.1002/adma.201301513
Zhang Z. P. ; Rong M. Z. ; Zhang M. Q. Mechanically robust, self-healable, and highly stretchable "living" crosslinked polyurethane based on a reversible C―C bond . Adv. Funct. Mater. , 2018 , 28 ( 11 ), 1706050 . doi: 10.1002/adfm.201706050 http://dx.doi.org/10.1002/adfm.201706050
Huang Z. X. ; Xie Z. H. ; Zhang Z. P. ; Zhang T. ; Rong M. Z. ; Zhang M. Q. Highly ionic conductive, self-healable solid polymer electrolyte based on reversibly interlocked macromolecule networks for lithium metal batteries workable at room temperature . J. Mater. Chem. A , 2022 , 10 ( 36 ), 18895 - 18906 . doi: 10.1039/d2ta03236h http://dx.doi.org/10.1039/d2ta03236h
Peng W. L. ; Zhang Z. P. ; Rong M. Z. ; Zhang M. Q. Reversibly interlocked macromolecule networks with enhanced mechanical properties and wide pH range of underwater self-healability . ACS Appl. Mater. Interfaces , 2020 , 12 ( 24 ), 27614 - 27624 . doi: 10.1021/acsami.0c07040 http://dx.doi.org/10.1021/acsami.0c07040
Chen F. ; Pang X. Y. ; Zhang Z. P. ; Rong M. Z. ; Zhang M. Q. Thermally conductive, healable glass fiber cloth reinforced polymer composite based on β -hydroxyester bonds crosslinked epoxy with improved heat resistance . Chinese J. Polym. Sci. , 2024 , 42 ( 5 ), 643 - 654 . doi: 10.1007/s10118-024-3076-x http://dx.doi.org/10.1007/s10118-024-3076-x
Ye J. ; Tan S. J. ; Deng H. Y. ; Huang W. B. ; Jin H. ; Zhang L. Y. ; Xiang H. P. ; Zhang M. Q. Self-healing and reprocessing of reclaimed rubber prepared by re-crosslinking waste natural rubber powders . Green Chem. , 2023 , 25 ( 16 ), 6327 - 6335 . doi: 10.1039/d3gc01652h http://dx.doi.org/10.1039/d3gc01652h
Wang Z. P. ; Ruan W. H. ; Rong M. Z. ; Zhang M. Q. Injection molding of highly filled microcrystalline cellulose/polycaprolactone composites with the aid of reversible Diels-Alder reaction . J. Mater. Sci. Technol. , 2024 , 170 , 246 - 254 . doi: 10.1016/j.jmst.2023.07.017 http://dx.doi.org/10.1016/j.jmst.2023.07.017
Liu L. M. ; Qi Z. N. ; Zhu X. G. Studies on nylon 6/clay nanocomposites by melt-intercalation process . J. Appl. Polym. Sci. , 1999 , 71 ( 7 ), 1133 - 1138 . doi: 10.1002/(sici)1097-4628(19990214)71:7<1133::aid-app11>3.0.co;2-n http://dx.doi.org/10.1002/(sici)1097-4628(19990214)71:7<1133::aid-app11>3.0.co;2-n
Uetani K. ; Ata S. ; Tomonoh S. ; Yamada T. ; Yumura M. ; Hata K. Elastomeric thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking . Adv. Mater. , 2014 , 26 ( 33 ), 5857 - 5862 . doi: 10.1002/adma.201401736 http://dx.doi.org/10.1002/adma.201401736
Lin Z. Y. ; Liu Y. ; Raghavan S. ; Moon K. S. ; Sitaraman S. K. ; Wong C. P. Magnetic alignment of hexagonal boron nitride platelets in polymer matrix: toward high performance anisotropic polymer composites for electronic encapsulation . ACS Appl. Mater. Interfaces , 2013 , 5 ( 15 ), 7633 - 7640 . doi: 10.1021/am401939z http://dx.doi.org/10.1021/am401939z
Ma J. K. ; Shang T. Y. ; Ren L. L. ; Yao Y. M. ; Zhang T. ; Xie J. Q. ; Zhang B. T. ; Zeng X. L. ; Sun R. ; Xu J. B. ; Wong C. P. Through-plane assembly of carbon fibers into 3D skeleton achieving enhanced thermal conductivity of a thermal interface material . Chem. Eng. J. , 2020 , 380 , 122550 . doi: 10.1016/j.cej.2019.122550 http://dx.doi.org/10.1016/j.cej.2019.122550
Yin Z. H. ; Guo J. H. ; Jiang X. H. Significantly improved thermal conductivity of silicone rubber and aligned boron nitride composites by a novel roll-cutting processing method . Compos. Sci. Technol. , 2021 , 209 , 108794 . doi: 10.1016/j.compscitech.2021.108794 http://dx.doi.org/10.1016/j.compscitech.2021.108794
Jia Y. C. ; He H. ; Geng Y. ; Huang B. ; Peng X. D. High through-plane thermal conductivity of polymer based product with vertical alignment of graphite flakes achieved via 3D printing . Compos. Sci. Technol. , 2017 , 145 , 55 - 61 . doi: 10.1016/j.compscitech.2017.03.035 http://dx.doi.org/10.1016/j.compscitech.2017.03.035
Jin Y. C. ; Ye L. J. ; Chai Y. C. ; Hong J. H. ; Li Y. J. Tailoring asymmetric filler arrangement by hollow glass microspheres towards polymer composites with improved through-plane thermal conductivity . Compos. Sci. Technol. , 2023 , 233 , 109904 . doi: 10.1016/j.compscitech.2022.109904 http://dx.doi.org/10.1016/j.compscitech.2022.109904
Mun H. J. ; Cho H. B. ; Choa Y. H. High quasi-isotropic thermal conductivity of polydimethylsiloxane nanocomposites with hexagonal-boron nitride microspheres and flakes . ACS Appl. Polym. Mater. , 2024 , 6 ( 9 ), 5058 - 5069 . doi: 10.1021/acsapm.4c00038 http://dx.doi.org/10.1021/acsapm.4c00038
Liu H. H. ; Gu S. L. ; Cao H. ; Li X. ; Li Y. J. A dense packing structure constructed by flake and spherical graphite: simultaneously enhanced in-plane and through-plane thermal conductivity of polypropylene/graphite composites . Compos. Commun. , 2020 , 19 , 25 - 29 . doi: 10.1016/j.coco.2020.02.007 http://dx.doi.org/10.1016/j.coco.2020.02.007
Hong J. P. ; Yoon S. W. ; Hwang T. ; Oh J. S. ; Hong S. C. ; Lee Y. ; Nam J. D. High thermal conductivity epoxy composites with bimodal distribution of aluminum nitride and boron nitride fillers . Thermochim. Acta , 2012 , 537 , 70 - 75 . doi: 10.1016/j.tca.2012.03.002 http://dx.doi.org/10.1016/j.tca.2012.03.002
Pan C. ; Kou K. C. ; Zhang Y. ; Li Z. Y. ; Wu G. L. Enhanced through-plane thermal conductivity of PTFE composites with hybrid fillers of hexagonal boron nitride platelets and aluminum nitride particles . Compos. Part B Eng. , 2018 , 153 , 1 - 8 . doi: 10.1016/j.compositesb.2018.07.019 http://dx.doi.org/10.1016/j.compositesb.2018.07.019
Bai Y. ; Shi Y. ; Zhou S. T. ; Zou H. W. ; Liang M. A concurrent enhancement of both in-plane and through-plane thermal conductivity of injection molded polycarbonate/boron nitride/alumina composites by constructing a dense filler packing structure . Macromol. Mater. Eng. , 2021 , 306 ( 9 ), 2100267 . doi: 10.1002/mame.202100267 http://dx.doi.org/10.1002/mame.202100267
Shen Y. H. ; Wu Z. S. ; Li Y. B. Lightweight and thermally conductive thermoplastic polyurethane/hollow glass bead/boron nitride composites with flame retardancy . Ceram. Int. , 2022 , 48 ( 22 ), 32748 - 32756 . doi: 10.1016/j.ceramint.2022.07.199 http://dx.doi.org/10.1016/j.ceramint.2022.07.199
Cao H. ; Gu S. L. ; Liu H. H. ; Li Y. J. Disordered graphite platelets in polypropylene (PP) matrix by spherical alumina particles: increased thermal conductivity of the PP/flake graphite composites . Compos. Commun. , 2021 , 27 , 100856 . doi: 10.1016/j.coco.2021.100856 http://dx.doi.org/10.1016/j.coco.2021.100856
Liu T. T. ; Zhou L. Y. ; Sun C. ; Ma X. F. ; Huang X. ; Luo H. J. Graphene wrapped hollow glass beads for polymer composites: from thermal insulators to conductors . Compos. Sci. Technol. , 2023 , 233 , 109890 . doi: 10.1016/j.compscitech.2022.109890 http://dx.doi.org/10.1016/j.compscitech.2022.109890
Wang X. W. ; Wu P. Y. Preparation of highly thermally conductive polymer composite at low filler content via a self-assembly process between polystyrene microspheres and boron nitride nanosheets . ACS Appl. Mater. Interfaces , 2017 , 9 ( 23 ), 19934 - 19944 . doi: 10.1021/acsami.7b04768 http://dx.doi.org/10.1021/acsami.7b04768
Wu Y. Z. ; Sun Z. F. ; Liu N. N. ; Wang Z. ; Hu Y. M. ; Bai T. Q. ; Wang T. ; Chen J. Y. ; Qiu X. P. ; Zhang X. D. ; Liang F. S. ; Jiao D. C. ; Li D. ; Han L. S. ; Wang W. H. ; Xie Q. ; Zhang R. H. ; Cai A. L. ; Xia Y. Q. ; Zhai H. N. ; Yu Z. Z. ; Qi Y. ; Wang C. ; Gao P. ; Sun X. C. ; Cao B. Y. ; Song Y. Q. ; Liu Z. F. Controlled growth of graphene-skinned Al 2 O 3 powders by fluidized bed-chemical vapor deposition for heat dissipation . Adv. Sci. , 2025 , 12 ( 40 ), e 03388 . doi: 10.1002/advs.202503388 http://dx.doi.org/10.1002/advs.202503388
0
Views
264
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号