

浏览全部资源
扫码关注微信
吉林大学 高性能聚合物合成技术国家地方联合工程实验室 长春 130012
Hai-bo Zhang, E-mail: zhanghaib@jlu.edu.cn
Received:03 September 2025,
Accepted:21 October 2025,
Published Online:23 December 2025,
Published:20 January 2026
移动端阅览
王洋, 于畅, 商赢双, 姜波, 韩金轩, 张海博. 高分子量半结晶型含氟聚芳醚的制备及性能表征. 高分子学报, 2026, 57(1), 180-189.
Wang, Y.; Yu, C.; Shang, Y. S.; Jiang, B.; Han, J. X.; Zhang, H. B. The preparation and characterization of high molecular weight semi-crystalline fluorinated polyarylether. Acta Polymerica Sinica (in Chinese), 2026, 57(1), 180-189.
王洋, 于畅, 商赢双, 姜波, 韩金轩, 张海博. 高分子量半结晶型含氟聚芳醚的制备及性能表征. 高分子学报, 2026, 57(1), 180-189. DOI: 10.11777/j.issn1000-3304.2025.25210. CSTR: 32057.14.GFZXB.2025.7500.
Wang, Y.; Yu, C.; Shang, Y. S.; Jiang, B.; Han, J. X.; Zhang, H. B. The preparation and characterization of high molecular weight semi-crystalline fluorinated polyarylether. Acta Polymerica Sinica (in Chinese), 2026, 57(1), 180-189. DOI: 10.11777/j.issn1000-3304.2025.25210. CSTR: 32057.14.GFZXB.2025.7500.
本研究以4-氟-3-三氟甲基苯酚作为单体、二苯砜为反应溶剂,成功合成了高分子量的含氟聚芳醚(CF
3
PPO). 含氟聚芳醚的数均分子量达7.74×10
4
Da,重均分子量达2.49×10
5
Da,熔点为243 ℃,玻璃化转变温度(
T
g
)为112 ℃. 同时,研究了分子量大小对含氟聚芳醚材料结晶性能的影响,高分子量的聚合物结晶较慢,需要经过热处理才能结晶. 注塑样条的拉伸强度为82 MPa,断裂伸长率为134%;经过热处理后拉伸强度增加到96 MPa,而断裂伸长率却下降到9%. 此外,由于聚合物同时具有苯环和氟原子的结构特性,结晶的聚合物薄膜的介电常数高达4.32,且聚合物薄膜在高频时具有较低的介电损耗,在10
6
Hz时介电损耗仅为0.0017.
In this study
4-fluoro-3-trifluoromethylphenol was used as a monomer and diphenylsulfone was used as a reaction solvent to successfully synthesize high molecular weight fluoropolyarylene (CF
3
PPO). The number average molecular weight of fluoropolyarylene (CF
3
PPO-0.52) reached 7.74×10
4
Da
weight average molecular weight reached 2.49×10
5
Da
melting point was 243 ℃
and glass transition temperature (
T
g
) was 112 ℃. At the same time
this work studied the influence of molecular weight on the crystallization properties of fluoropolyarylene materials. High molecular weight polymer crystallization is slow and needs to be heat treated to crystallize. The tensile strength of the injection molded spline was 82 MPa
and the elongation of break was 134%; after heat treatment
the tensile strength increased to 96 MPa
but the elongation of break is reduced to 9%. In addition
since the polymer has both the structural characteristics of benzene ring and fluorine atoms
the dielectric constant of the crystalline polymer film is as high as 4.32
and the polymer film has a lower dielectric loss at high frequencies
and the dielectric loss at 10
6
Hz is only 0.0017.
Mashkov Y. K. ; Egorova V. A. ; Chemisenko O. V. ; Maliy O. V. Polymer nanocomposites development and research for petrochemical and oil and gas production equipment . Procedia Eng. , 2016 , 152 , 545 - 550 . doi: 10.1016/j.proeng.2016.07.653 http://dx.doi.org/10.1016/j.proeng.2016.07.653
Améduri B. The promising future of fluoropolymers . Macromol. Chem. Phys. , 2020 , 221 ( 8 ), 1900573 . doi: 10.1002/macp.201900573 http://dx.doi.org/10.1002/macp.201900573
Friesen C. M. ; Pulfer J. Fluoropolymers in medical applications: recent progress and development . Chem. Rev. , 2025 , 125 ( 16 ), 7389 - 7489 . doi: 10.1021/acs.chemrev.4c00996 http://dx.doi.org/10.1021/acs.chemrev.4c00996
Hong W. P. ; Zhang H. Application of PTFE heat exchanger in low temperature waste heat of big coal-fired power plants . Appl. Mech. Mater. , 2015 , 789 - 790 , 503 - 507 .
McCook N. L. ; Burris D. L. ; Dickrell P. L. ; Sawyer W. G. Cryogenic friction behavior of PTFE based solid lubricant composites . Tribol. Lett. , 2005 , 20 ( 2 ), 109 - 113 . doi: 10.1007/s11249-005-8300-4 http://dx.doi.org/10.1007/s11249-005-8300-4
Aptel P. ; Cuny J. ; Jozefowicz J. ; Morel G. ; Neel J. Liquid transport through membranes prepared by grafting of polar monomers onto poly(tetrafluoroethylene) films. I. Some fractionations of liquid mixtures by pervaporation . J. Appl. Polym. Sci. , 1972 , 16 ( 5 ), 1061 - 1076 . doi: 10.1002/app.1972.070160502 http://dx.doi.org/10.1002/app.1972.070160502
O'Brien M. ; Baxendale I. R. ; Ley S. V. Flow ozonolysis using a semipermeable teflon AF-2400 membrane to effect Gas-Liquid contact . Org. Lett. , 2010 , 12 ( 7 ), 1596 - 1598 . doi: 10.1021/ol100322t http://dx.doi.org/10.1021/ol100322t
Yang M. W. ; Hou J. R. ; Wang Z. Q. ; Wu X. ; Sun X. P. ; Zhuang Q. X. ; Sun J. ; Fang Q. Functional fluoropolymers with good low-dielectric properties and high thermostability . Polym. Chem. , 2025 , 16 ( 33 ), 3693 - 3700 . doi: 10.1039/d5py00524h http://dx.doi.org/10.1039/d5py00524h
Li Z. H. ; Liu J. S. ; Yuan Y. ; Li E. Z. ; Wang F. Effects of surface fluoride-functionalizing of glass fiber on the properties of PTFE/glass fiber microwave composites . RSC Adv. , 2017 , 7 ( 37 ), 22810 - 22817 . doi: 10.1039/c7ra02715j http://dx.doi.org/10.1039/c7ra02715j
Rodriguez-Lopez J. ; Alpuche-Aviles M. A. ; Bard A. J. Selective insulation with poly(tetrafluoroethylene) of substrate electrodes for electrochemical background reduction in scanning electrochemical microscopy . Anal. Chem. , 2008 , 80 ( 5 ), 1813 - 1818 . doi: 10.1021/ac7020294 http://dx.doi.org/10.1021/ac7020294
Yuan Y. ; Cui Y. R. ; Wu K. T. ; Huang Q. Q. ; Zhang S. R. TiO 2 and SiO 2 filled PTFE composites for microwave substrate applications . J. Polym. Res. , 2014 , 21 ( 2 ), 366 . doi: 10.1007/s10965-014-0366-y http://dx.doi.org/10.1007/s10965-014-0366-y
James N. K. ; Jacob K. S. ; Murali K. P. ; Ratheesh R. Ba(Mg 1/3 Ta 2 / 3 )O 3 filled PTFE composites for microwave substrate applications . Mater. Chem. Phys. , 2010 , 122 ( 2-3 ), 507 - 511 . doi: 10.1016/j.matchemphys.2010.03.035 http://dx.doi.org/10.1016/j.matchemphys.2010.03.035
Rao M. ; Hooke C. J. ; Kukureka S. N. ; Liao P. ; Chen Y. K. The effect of PTFE on the friction and wear behavior of polymers in rolling-sliding contact . Polym. Eng. Sci. , 1998 , 38 ( 12 ), 1946 - 1958 . doi: 10.1002/pen.10364 http://dx.doi.org/10.1002/pen.10364
M, A . H .; Karumuthil, S. C. ; Rajan, L. Optimization of PVDF nanocomposite based flexible piezoelectric tactile sensors: a comparative investigation. Sens. Actuat. A Phys., 2023 , 353 , 114215 . doi: 10.1016/j.sna.2023.114215 http://dx.doi.org/10.1016/j.sna.2023.114215
Wang Z. Y. ; Xie Y. R. ; Shang Y. S. ; Xu D. ; Jiang Z. L. ; Xu Q. F. ; Zhou C. Y. ; Zhang H. B. Preparation and properties of novel cross-linked fluorinated poly(aryl ether) with low dielectric constant and high thermal stability . Macromol. Rapid Commun. , 2020 , 41 ( 24 ), 2000100 . doi: 10.1002/marc.202000100 http://dx.doi.org/10.1002/marc.202000100
Yu C. ; Wang Y. ; Jiang B. ; Yang Y. ; Han J. X. ; Zhang H. B. ; Shang Y. S. Melt processable fluorinated poly(aryl ether)s with low dielectric and good mechanical properties . Polym. Test. , 2025 , 145 , 108755 . doi: 10.1016/j.polymertesting.2025.108755 http://dx.doi.org/10.1016/j.polymertesting.2025.108755
Kim Y. J. ; Seo M. ; Kim S. Y. Synthesis of well-defined rod-coil block copolymers containing trifluoromethylated poly(phenylene oxide)s by chain-growth condensation polymerization and atom transfer radical polymerization . J. Polym. Sci. Part A Polym. Chem. , 2010 , 48 ( 5 ), 1049 - 1057 . doi: 10.1002/pola.23859 http://dx.doi.org/10.1002/pola.23859
Ka D. ; Park J. ; Kim S. D. ; Lee S. ; Kim S. Y. Grafting of trifluoromethylated poly(phenylene oxide)s on a single-walled carbon nanotube via surface-initiated chain-growth condensation polymerization . J. Polym. Sci. Part A Polym. Chem. , 2017 , 55 ( 19 ), 3180 - 3184 . doi: 10.1002/pola.28708 http://dx.doi.org/10.1002/pola.28708
Liu X. ; Shang Y. S. ; Xu Q. F. ; Zhou C. Y. ; Zhang H. B. ; Zhu X. B. Study on the melt memory effect and melt recrystallization behavior of crystallizable biphenylene poly(arylene ether sulfone ketone) . Macromolecules , 2022 , 55 ( 17 ), 7650 - 7662 . doi: 10.1021/acs.macromol.2c00876 http://dx.doi.org/10.1021/acs.macromol.2c00876
JD, H. ; JJ, W. Melting process and the equilibrium melting temperature of . J. Res. Natl. Bur. Stand A Phys. Chem. , 1962 , 1 , 13 - 28 . doi: 10.6028/jres.066a.003 http://dx.doi.org/10.6028/jres.066a.003
Lauritzen , J. I. Jr Hoffman , Formation of polymer crystals with folded chains from dilute solution . J. Chem. Phys. , 1959 , 31 ( 6 ), 1680 - 1681 . doi: 10.1063/1.1730678 http://dx.doi.org/10.1063/1.1730678
Hiss R. ; Hobeika S. ; Lynn C. ; Strobl G. Network stretching, slip processes, and fragmentation of crystallites during uniaxial drawing of polyethylene and related copolymers. A comparative study . Macromolecules , 1999 , 32 ( 13 ), 4390 - 4403 . doi: 10.1021/ma981776b http://dx.doi.org/10.1021/ma981776b
Men Y. F. Critical strains determine the tensile deformation mechanism in semicrystalline polymers . Macromolecules , 2020 , 53 ( 21 ), 9155 - 9157 . doi: 10.1021/acs.macromol.0c02076 http://dx.doi.org/10.1021/acs.macromol.0c02076
Su Y. T. ; Chen D. L. ; Zeng J. J. ; Sui G. ; Lan J. L. ; Yang X. P. The acquirement of desirable dielectric properties of carbon nanofiber composites based on the controlled crystallization . Polym. Adv. Technol. , 2020 , 31 ( 10 ), 2312 - 2324 . doi: 10.1002/pat.4951 http://dx.doi.org/10.1002/pat.4951
0
Views
118
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号