

浏览全部资源
扫码关注微信
北京化工大学 先进弹性体材料研究中心 有机无机复合材料全国重点实验室 北京 100029
Received:29 August 2025,
Accepted:14 October 2025,
Published Online:01 December 2025,
Published:20 December 2025
移动端阅览
刘鑫阳, 张至逸, 田晨晨, 宁南英, 田明. 橡胶纳米复合材料界面和分散表征的研究进展. 高分子学报, 2025, 56(12), 2159-2190
Liu, X. Y.; Zhang, Z. Y.; Tian, C. C.; Ning, N. Y.; Tian, M. Research progress on interface and dispersion characterization of rubber nanocomposites. Acta Polymerica Sinica, 2025, 56(12), 2159-2190
刘鑫阳, 张至逸, 田晨晨, 宁南英, 田明. 橡胶纳米复合材料界面和分散表征的研究进展. 高分子学报, 2025, 56(12), 2159-2190 DOI: 10.11777/j.issn1000-3304.2025.25213. CSTR: 32057.14.GFZXB.2025.7498.
Liu, X. Y.; Zhang, Z. Y.; Tian, C. C.; Ning, N. Y.; Tian, M. Research progress on interface and dispersion characterization of rubber nanocomposites. Acta Polymerica Sinica, 2025, 56(12), 2159-2190 DOI: 10.11777/j.issn1000-3304.2025.25213. CSTR: 32057.14.GFZXB.2025.7498.
橡胶纳米复合材料在交通运输(如高性能轮胎)、航空航天与国防等国家战略领域具有重要的应用价值,复合材料的宏观性能与纳米填料-橡胶的界面相互作用及填料在基体中的分散结构密切相关. 然而传统表征方法受限于分辨率不足,难以清晰阐明纳米尺度微观结构(界面性能、分散结构)与复合材料宏观性能的关联机制,从而无法为高性能橡胶纳米复合材料的设计与制备提供明确指导. 本综述主要介绍了如何利用原子力显微镜(AFM)纳米力学成像技术的高分辨优势,实现橡胶纳米复合材料界面结构(界面厚度、纳米力学性能)的定量表征,以及结合具有纳米级分辨率的三维扫描透射电镜(3D-STEM)与微米级视场的同步辐射X射线计算机断层扫描(X-ray CT)实现纳米填料在橡胶基体中三维分散结构的精细化表征,包括填料聚集体分散均匀性、尺寸分布、内部密实度及填料网络结构的支化度和连通性等. 总结了橡胶与填料的物理化学性质对纳米复合材料多尺度微观结构的影响规律.
Polymer nanocomposites have significant applications in strategic national sectors such as transportation (
e.g.
high-performance tires)
aerospace
and defense. The macroscopic properties of these composites are closely related to the interfa
cial interactions between nanofillers and polymers
as well as the dispersion structure of the fillers within the matrix. However
conventional characterization techniques are limited by insufficient resolution
making it difficult to clearly elucidate the relationship between nanoscale microstructures (interfacial properties
dispersion morphology) and the macroscopic performance of composites
thereby failing to provide clear guidance for the design and fabrication of high-performance polymer nanocomposites. This article focuses on leveraging the high-resolution advantages of Quantitative Nanomechanical Mapping Technique of Atomic Force Microscopy (AFM nanomechanics) to achieve quantitative characterization of the interfacial structure (interfacial thickness and nanomechanical properties) in polymer nanocomposites. Furthermore
it discusses the integration of three-dimensional scanning transmission electron microscopy (3D-STEM)
which offers nanometer-scale resolution
with Synchrotron X-ray computed tomography (X-ray CT) that provides micrometer-scale field of view to detailed characterization of the 3D dispersion structure of nanofillers within the polymer matrix. This includes the uniformity of filler aggregate dispersion
size distribution
internal compactness
as well as the branching and connectivity of filler network structures. The influence of the physical and chemical properties of both polymers and fillers on the multiscale microstructure of nanocomposites is also summarized.
Xu Z. J. ; Song Y. H. ; Zheng Q. Payne effect of carbon black filled natural rubber compounds and their carbon black gels . Polymer , 2019 , 185 , 121953 . doi: 10.1016/j.polymer.2019.121953 http://dx.doi.org/10.1016/j.polymer.2019.121953
Shoul B. ; Marfavi Y. ; Sadeghi B. ; Kowsari E. ; Sadeghi P. ; Ramakrishna S. Investigating the potential of sustainable use of green silica in the green tire industry: a review . Environ. Sci. Pollut. Res. , 2022 , 29 ( 34 ), 51298 - 51317 . doi: 10.1007/s11356-022-20894-8 http://dx.doi.org/10.1007/s11356-022-20894-8
Uetsuji Y. ; Fujiwara Y. ; Araki F. ; Onishi K. ; Iwata K. ; Murakami Y. ; Luo C. ; Tanaka K. Multiscale study on nonlinear mechanical properties of CNT-reinforced CFRTP: comparison of reinforcing effects of CNT-grafted interphase and CNT-dispersed matrix . Compos. Part B Eng. , 2025 , 305 , 112720 . doi: 10.1016/j.compositesb.2025.112720 http://dx.doi.org/10.1016/j.compositesb.2025.112720
Zhang K. ; Qiu J. H. ; Sakai E. ; Zhang G. H. ; Wu H. ; Guo S. Y. ; Zhang L. ; Yamaguchi H. ; Chonan Y. Preparation of continuous PBO fiber-filled silicone rubber with high thermal conductivity through simple wrapping . Compos. Commun. , 2024 , 45 , 101793 . doi: 10.1016/j.coco.2023.101793 http://dx.doi.org/10.1016/j.coco.2023.101793
Bohlul S. ; Alimardani M. Revisiting the mechanism of rapid gas decompression failure in silica-reinforced NBR composites: effect of interfacial phenomena . Compos. Commun. , 2024 , 50 , 102009 . doi: 10.1016/j.coco.2024.102009 http://dx.doi.org/10.1016/j.coco.2024.102009
Han X. Y. ; Zheng W. ; Hao J. H. ; Wang H. ; Zhu L. ; Zhou C. J. Enhancing the damping and mechanical properties of phenyl silicone rubber by introducing phenyl MQ silicone resins as molecular fillers . Compos. Commun. , 2024 , 51 , 102082 . doi: 10.1016/j.coco.2024.102082 http://dx.doi.org/10.1016/j.coco.2024.102082
Adachi T. ; Yamada Y. ; Ishii Y. Interphase-layer effect on deformation of silicone rubber filled with nanosilica particles . J. Appl. Polym. Sci. , 2018 , 135 ( 8 ), 45880 . doi: 10.1002/app.45880 http://dx.doi.org/10.1002/app.45880
Zhang C. F. ; Tang Z. H. ; Guo B. C. ; Zhang L. Q. Significantly improved rubber-silica interface via subtly controlling surface chemistry of silica . Compos. Sci. Technol. , 2018 , 156 , 70 - 77 . doi: 10.1016/j.compscitech.2017.12.020 http://dx.doi.org/10.1016/j.compscitech.2017.12.020
Hosseini S. M. ; Torbati-Fard N. ; Kiyani H. ; Razzaghi-Kashani M. Comparative role of interface in reinforcing mechanisms of nano silica modified by silanes and liquid rubber in SBR composites . J. Polym. Res. , 2016 , 23 ( 9 ), 203 . doi: 10.1007/s10965-016-1096-0 http://dx.doi.org/10.1007/s10965-016-1096-0
宋义虎 ; 郑强 . 橡胶纳米复合材料微观结构与补强机理 . 高分子材料科学与工程 , 2021 , 37 ( 01 ), 252 - 260 .
Mortazavian H. ; Fennell C. J. ; Blum F. D. Structure of the interfacial region in adsorbed poly(vinyl acetate) on silica . Macromolecules , 2016 , 49 ( 1 ), 298 - 307 . doi: 10.1021/acs.macromol.5b02214 http://dx.doi.org/10.1021/acs.macromol.5b02214
Fukahori Y. New progress in the theory and model of carbon black reinforcement of elastomers . J. Appl. Polym. Sci. , 2005 , 95 ( 1 ), 60 - 67 . doi: 10.1002/app.20802 http://dx.doi.org/10.1002/app.20802
Priestley R. D. ; Ellison C. J. ; Broadbelt L. J. ; Torkelson J. M. Structural relaxation of polymer glasses at surfaces, interfaces, and in between . Science , 2005 , 309 ( 5733 ), 456 - 459 . doi: 10.1126/science.1112217 http://dx.doi.org/10.1126/science.1112217
Papon A. ; Montes H. ; Lequeux F. ; Oberdisse J. ; Saalwächter K. ; Guy L. Solid particles in an elastomer matrix: impact of colloid dispersion and polymer mobility modification on the mechanical properties . Soft Matter , 2012 , 8 ( 15 ), 4090 - 4096 . doi: 10.1039/c2sm06885k http://dx.doi.org/10.1039/c2sm06885k
Singha S. ; Jana T. Structure and properties of polybenzimidazole/silica nanocomposite electrolyte membrane: influence of organic/inorganic interface . ACS Appl. Mater. Interfaces , 2014 , 6 ( 23 ), 21286 - 21296 . doi: 10.1021/am506260j http://dx.doi.org/10.1021/am506260j
Sargsyan A. ; Tonoyan A. ; Davtyan S. ; Schick C. The amount of immobilized polymer in PMMA SiO 2 nanocomposites determined from calorimetric data . Eur. Polym. J. , 2007 , 43 ( 8 ), 3113 - 3127 . doi: 10.1016/j.eurpolymj.2007.05.011 http://dx.doi.org/10.1016/j.eurpolymj.2007.05.011
Holt A. P. ; Griffin P. J. ; Bocharova V. ; Agapov A. L. ; Imel A. E. ; Dadmun M. D. ; Sangoro J. R. ; Sokolov A. P. Dynamics at the polymer/nanoparticle interface in poly(2-vinylpyridine)/silica nanocomposites . Macromolecules , 2014 , 47 ( 5 ), 1837 - 1843 . doi: 10.1021/ma5000317 http://dx.doi.org/10.1021/ma5000317
Jouault N. ; Crawford M. K. ; Chi C. Z. ; Smalley R. J. ; Wood B. ; Jestin J. ; Melnichenko Y. B. ; He L. L. ; Guise W. E. ; Kumar S. K. Polymer chain behavior in polymer nanocomposites with attractive interactions . ACS Macro Lett. , 2016 , 5 ( 4 ), 523 - 527 . doi: 10.1021/acsmacrolett.6b00164 http://dx.doi.org/10.1021/acsmacrolett.6b00164
Bindu P. ; Thomas S. Viscoelastic behavior and reinforcement mechanism in rubber nanocomposites in the vicinity of spherical nanoparticles . J. Phys. Chem. B , 2013 , 117 ( 41 ), 12632 - 12648 . doi: 10.1021/jp4039489 http://dx.doi.org/10.1021/jp4039489
Kaliyathan A. V. ; Rane A. V. ; Huskic M. ; Kunaver M. ; Kalarikkal N. ; Rouxel D. ; Thomas S. Carbon black distribution in natural rubber/butadiene rubber blend composites: distribution driven by morphology . Compos. Sci. Technol. , 2020 , 200 , 108484 . doi: 10.1016/j.compscitech.2020.108484 http://dx.doi.org/10.1016/j.compscitech.2020.108484
Tian C. C. ; Liu X. Y. ; Kou J. J. ; Wang C. ; Xu L. ; Ning N. Y. ; Lu C. ; Tian M. Revealing the nanoscale reinforcing mechanism: how topological structure of carbon black clusters influence the mechanics of rubber . Compos. Sci. Technol. , 2024 , 258 , 110847 . doi: 10.1016/j.compscitech.2024.110847 http://dx.doi.org/10.1016/j.compscitech.2024.110847
Füllbrandt M. ; Purohit P. J. ; Schönhals A. Combined FTIR and dielectric investigation of poly(vinyl acetate) adsorbed on silica particles . Macromolecules , 2013 , 46 ( 11 ), 4626 - 4632 . doi: 10.1021/ma400461p http://dx.doi.org/10.1021/ma400461p
Baeza G. P. ; Genix A. C. ; Degrandcourt C. ; Petitjean L. ; Gummel J. ; Couty M. ; Oberdisse J. Multiscale filler structure in simplified industrial nanocomposite silica/SBR systems studied by SAXS and TEM . Macromolecules , 2013 , 46 ( 1 ), 317 - 329 . doi: 10.1021/ma302248p http://dx.doi.org/10.1021/ma302248p
Zheng J. C. ; Han D. L. ; Ye X. ; Wu X. H. ; Wu Y. P. ; Wang Y. Q. ; Zhang L. Q. Chemical and physical interaction between silane coupling agent with long arms and silica and its effect on silica/natural rubber composites . Polymer , 2018 , 135 , 200 - 210 . doi: 10.1016/j.polymer.2017.12.010 http://dx.doi.org/10.1016/j.polymer.2017.12.010
Liu J. ; Gao Y. Y. ; Cao D. P. ; Zhang L. Q. ; Guo Z. H. Nanoparticle dispersion and aggregation in polymer nanocomposites: insights from molecular dynamics simulation . Langmuir , 2011 , 27 ( 12 ), 7926 - 7933 . doi: 10.1021/la201073m http://dx.doi.org/10.1021/la201073m
Glaskova T. ; Zarrelli M. ; Borisova A. ; Timchenko K. ; Aniskevich A. ; Giordano M. Method of quantitative analysis of filler dispersion in composite systems with spherical inclusions . Compos. Sci. Technol. , 2011 , 71 ( 13 ), 1543 - 1549 . doi: 10.1016/j.compscitech.2011.06.009 http://dx.doi.org/10.1016/j.compscitech.2011.06.009
Zhang H. ; You W. ; Bian F. G. ; Yu W. Heterogeneous percolation in poly(methylvinylsiloxane)/silica nanocomposites: the role of polymer-particle interaction . Macromolecules , 2022 , 55 ( 19 ), 8834 - 8845 . doi: 10.1021/acs.macromol.2c01615 http://dx.doi.org/10.1021/acs.macromol.2c01615
Sarkawi S. S. ; Dierkes W. K. ; Noordermeer J. W. M. Elucidation of filler-to-filler and filler-to-rubber interactions in silica-reinforced natural rubber by TEM network visualization . Eur. Polym. J. , 2014 , 54 , 118 - 127 . doi: 10.1016/j.eurpolymj.2014.02.015 http://dx.doi.org/10.1016/j.eurpolymj.2014.02.015
Liu X. ; Zhao S. H. ; Zhang X. Y. ; Li X. L. ; Bai Y. Preparation, structure, and properties of solution-polymerized styrene-butadiene rubber with functionalized end-groups and its silica-filled composites . Polymer , 2014 , 55 ( 8 ), 1964 - 1976 . doi: 10.1016/j.polymer.2014.02.067 http://dx.doi.org/10.1016/j.polymer.2014.02.067
Motoki S. ; Kaneko T. ; Aoyama Y. ; Nishioka H. ; Okura Y. ; Kondo Y. ; Jinnai H. Dependence of beam broadening on detection angle in scanning transmission electron microtomography . J. Electron Microsc. , 2010 , 59 ( S1 ), S45 - S53 . doi: 10.1093/jmicro/dfq030 http://dx.doi.org/10.1093/jmicro/dfq030
Dalmas F. ; Genevaz N. ; Roth M. ; Jestin J. ; Leroy E. 3D dispersion of spherical silica nanoparticles in polymer nanocomposites: a quantitative study by electron tomography . Macromolecules , 2014 , 47 ( 6 ), 2044 - 2051 . doi: 10.1021/ma500075s http://dx.doi.org/10.1021/ma500075s
Jinnai H. ; Shinbori Y. ; Kitaoka T. ; Akutagawa K. ; Mashita N. ; Nishi T. Three-dimensional structure of a nanocomposite material consisting of two kinds of nanofillers and rubbery matrix studied by transmission electron microtomography . Macromolecules , 2007 , 40 ( 18 ), 6758 - 6764 . doi: 10.1021/ma071102d http://dx.doi.org/10.1021/ma071102d
Penczek P. ; Marko M. ; Buttle K. ; Frank J. Double-tilt electron tomography . Ultramicroscopy , 1995 , 60 ( 3 ), 393 - 410 . doi: 10.1016/0304-3991(95)00078-x http://dx.doi.org/10.1016/0304-3991(95)00078-x
Chen L. ; Zhou W. M. ; Lu J. ; Li J. ; Zhang W. H. ; Huang N. D. ; Wu L. H. ; Li L. B. Unveiling reinforcement and toughening mechanism of filler network in natural rubber with synchrotron radiation X-ray nano-computed tomography . Macromolecules , 2015 , 48 ( 21 ), 7923 - 7928 . doi: 10.1021/acs.macromol.5b01301 http://dx.doi.org/10.1021/acs.macromol.5b01301
Garcea S. C. ; Wang Y. ; Withers P. J. X-ray computed tomography of polymer composites . Compos. Sci. Technol. , 2018 , 156 , 305 - 319 . doi: 10.1016/j.compscitech.2017.10.023 http://dx.doi.org/10.1016/j.compscitech.2017.10.023
Croom B. ; Wang W. M. ; Li J. ; Li X. Unveiling 3D deformations in polymer composites by coupled micro X-ray computed tomography and volumetric digital image correlation . Exp. Mech. , 2016 , 56 ( 6 ), 999 - 1016 . doi: 10.1007/s11340-016-0140-7 http://dx.doi.org/10.1007/s11340-016-0140-7
Zhou W. M. ; Chen L. ; Lu J. ; Qi Z. M. ; Huang N. D. ; Li L. B. ; Huang W. X. Imaging the strain induced carbon black filler network structure breakage with nano X-ray tomography . RSC Adv. , 2014 , 4 ( 97 ), 54500 - 54505 . doi: 10.1039/c4ra09095k http://dx.doi.org/10.1039/c4ra09095k
Brune P. F. ; Blackman G. S. ; Diehl T. ; Meth J. S. ; Brill D. ; Tao Y. F. ; Thornton J. Direct measurement of rubber interphase stiffness . Macromolecules , 2016 , 49 ( 13 ), 4909 - 4922 . doi: 10.1021/acs.macromol.6b00689 http://dx.doi.org/10.1021/acs.macromol.6b00689
Wang S. Y. ; Zhou D. Z. ; Tang Z. Y. ; Xia Y. ; Lv Y. ; Wang Z. C. ; Ma B. M. ; Zhang X. ; Fan W. ; Liu T. X. Highly loaded actuation achieved by shape memory block copolyimide aerogels with tunable distribution of stationary and reversible phases . Macromolecules , 2025 , 58 ( 11 ), 5852 - 5861 . doi: 10.1021/acs.macromol.5c00483 http://dx.doi.org/10.1021/acs.macromol.5c00483
Martínez-Tong D. E. ; Najar A. S. ; Soccio M. ; Nogales A. ; Bitinis N. ; López-Manchado M. A. ; Ezquerra T. A. Quantitative mapping of mechanical properties in polylactic acid/natural rubber/organoclay bionanocomposites as revealed by nanoindentation with atomic force microscopy . Compos. Sci. Technol. , 2014 , 104 , 34 - 39 . doi: 10.1016/j.compscitech.2014.08.030 http://dx.doi.org/10.1016/j.compscitech.2014.08.030
Smolyakov G. ; Pruvost S. ; Cardoso L. ; Alonso B. ; Belamie E. ; Duchet-Rumeau J. AFM PeakForce QNM mode: evidencing nanometre-scale mechanical properties of chitin-silica hybrid nanocomposites . Carbohydr. Polym. , 2016 , 151 , 373 - 380 . doi: 10.1016/j.carbpol.2016.05.042 http://dx.doi.org/10.1016/j.carbpol.2016.05.042
Walsh-Korb Z. ; Yu Y. ; Janeček E. R. ; Lan Y. ; del Barrio J. ; Williams P. E. ; Zhang X. ; Scherman O. A. Single-molecule force spectroscopy quantification of adhesive forces in cucurbit[8]uril host-guest ternary complexes . Langmuir , 2017 , 33 ( 6 ), 1343 - 1350 . doi: 10.1021/acs.langmuir.6b03457 http://dx.doi.org/10.1021/acs.langmuir.6b03457
Nakahara Y. ; Mitani H. ; Kado S. ; Kimura K. Single-molecule force spectroscopic study on chiral recognition of cysteine derivatives immobilized on a gold substrate by using AFM tips chemically modified with optically active crown ethers . RSC Adv. , 2014 , 4 ( 101 ), 57850 - 57854 . doi: 10.1039/c4ra10553b http://dx.doi.org/10.1039/c4ra10553b
Balzer B. N. ; Gallei M. ; Sondergeld K. ; Schindler M. ; Müller-Buschbaum P. ; Rehahn M. ; Hugel T. Cohesion mechanisms of polystyrene-based thin polymer films . Macromolecules , 2013 , 46 ( 18 ), 7406 - 7414 . doi: 10.1021/ma401173y http://dx.doi.org/10.1021/ma401173y
Li X. Y. ; Feng Y. X. ; Chu G. Y. ; Ning N. Y. ; Tian M. ; Zhang L. Q. Directly and quantitatively studying the interfacial interaction between SiO 2 and elastomer by using peak force AFM . Compos. Commun. , 2018 , 7 , 36 - 41 . doi: 10.1016/j.coco.2017.12.006 http://dx.doi.org/10.1016/j.coco.2017.12.006
McClements J. ; Zhang M. ; Radacsi N. ; Koutsos V. Measuring the interactions between carbon black nanoparticles and latex thin films in aqueous media using AFM force spectroscopy . Colloids Surf. A Physicochem. Eng. Aspects , 2020 , 603 , 124920 . doi: 10.1016/j.colsurfa.2020.124920 http://dx.doi.org/10.1016/j.colsurfa.2020.124920
Wang D. ; Fujinami S. ; Nakajima K. ; Inukai S. ; Ueki H. ; Magario A. ; Noguchi T. ; Endo M. ; Nishi T. Visualization of nanomechanical mapping on polymer nanocomposites by AFM force measurement . Polymer , 2010 , 51 ( 12 ), 2455 - 2459 . doi: 10.1016/j.polymer.2010.03.052 http://dx.doi.org/10.1016/j.polymer.2010.03.052
Nguyen H. K. ; Liang X. B. ; Ito M. ; Nakajima K. Direct mapping of nanoscale viscoelastic dynamics at nanofiller/polymer interfaces . Macromolecules , 2018 , 51 ( 15 ), 6085 - 6091 . doi: 10.1021/acs.macromol.8b01185 http://dx.doi.org/10.1021/acs.macromol.8b01185
Liang X. ; Ito M. ; Nakajima K. Reinforcement mechanism of carbon black-filled rubber nanocomposite as revealed by atomic force microscopy nanomechanics . Polymers , 2021 , 13 ( 22 ), 3922 . doi: 10.3390/polym13223922 http://dx.doi.org/10.3390/polym13223922
Nakajima K. ; Ito M. ; Wang D. ; Liu H. ; Nguyen H. K. ; Liang X. B. ; Kumagai A. ; Fujinami S. Nano-palpation AFM and its quantitative mechanical property mapping . Microscopy , 2014 , 63 ( 3 ), 193 - 208 . doi: 10.1093/jmicro/dfu009 http://dx.doi.org/10.1093/jmicro/dfu009
Ueda E. ; Liang X. B. ; Ito M. ; Nakajima K. Dynamic moduli mapping of silica-filled styrene-butadiene rubber vulcanizate by nanorheological atomic force microscopy . Macromolecules , 2019 , 52 ( 1 ), 311 - 319 . doi: 10.1021/acs.macromol.8b02258 http://dx.doi.org/10.1021/acs.macromol.8b02258
Wang D. ; Fujinami S. ; Nakajima K. ; Nishi T. True surface topography and nanomechanical mapping measurements on block copolymers with atomic force microscopy . Macromolecules , 2010 , 43 ( 7 ), 3169 - 3172 . doi: 10.1021/ma9028695 http://dx.doi.org/10.1021/ma9028695
Cheng X. ; Putz K. W. ; Wood C. D. ; Brinson L. C. Characterization of local elastic modulus in confined polymer films via AFM indentation . Macromol. Rapid Commun. , 2015 , 36 ( 4 ), 391 - 397 . doi: 10.1002/marc.201400487 http://dx.doi.org/10.1002/marc.201400487
Tian C. C. ; Chu G. Y. ; Feng Y. X. ; Lu Y. L. ; Miao C. M. ; Ning N. Y. ; Zhang L. Q. ; Tian M. Quantitatively identify and understand the interphase of SiO 2 /rubber nanocomposites by using nanomechanical mapping technique of AFM . Compos. Sci. Technol. , 2019 , 170 , 1 - 6 . doi: 10.1016/j.compscitech.2018.11.020 http://dx.doi.org/10.1016/j.compscitech.2018.11.020
Mathelié-Guinlet M. ; Grauby-Heywang C. ; Martin A. ; Février H. ; Moroté F. ; Vilquin A. ; Béven L. ; Delville M. H. ; Cohen-Bouhacina T. Detrimental impact of silica nanoparticles on the nanomechanical properties of escherichia coli, studied by AFM . J. Colloid Interface Sci. , 2018 , 529 , 53 - 64 . doi: 10.1016/j.jcis.2018.05.098 http://dx.doi.org/10.1016/j.jcis.2018.05.098
Yue Y. L. ; Zhang H. ; Zhang Z. ; Chen Y. F. Polymer-filler interaction of fumed silica filled polydimethylsiloxane investigated by bound rubber . Compos. Sci. Technol. , 2013 , 86 , 1 - 8 . doi: 10.1016/j.compscitech.2013.06.019 http://dx.doi.org/10.1016/j.compscitech.2013.06.019
Tian C. C. ; Cui J. S. ; Ning N. Y. ; Zhang L. Q. ; Tian M. Quantitative characterization of interfacial properties of carbon black/elastomer nanocomposites and mechanism exploration on their interfacial interaction . Compos. Sci. Technol. , 2022 , 222 , 109367 . doi: 10.1016/j.compscitech.2022.109367 http://dx.doi.org/10.1016/j.compscitech.2022.109367
Tian C. C. ; Wang S. ; Miao C. M. ; Wang C. ; Xu L. ; Ning N. Y. ; Tian M. Quantification of interfacial structure at nanoscale and its relationship with viscoelastic glass transition of SiO 2 /elastomer nanocomposites . Polymer , 2023 , 271 , 125798 . doi: 10.1016/j.polymer.2023.125798 http://dx.doi.org/10.1016/j.polymer.2023.125798
王双 ; 田晨晨 ; 宁南英 ; 张立群 ; 吕亚非 ; 田明 . 碳纳米管/橡胶复合材料的界面性能: 碳纳米管的比表面积的影响 . 复合材料学报 , 2021 , 38 ( 2 ), 601 - 611 .
Ning N. Y. ; Mi T. ; Chu G. Y. ; Zhang L. Q. ; Liu L. ; Tian M. ; Yu H. T. ; Lu Y. L. A quantitative approach to study the interface of carbon nanotubes/elastomer nanocomposites . Eur. Polym. J. , 2018 , 102 , 10 - 18 . doi: 10.1016/j.eurpolymj.2018.03.007 http://dx.doi.org/10.1016/j.eurpolymj.2018.03.007
Tian C. C. ; Feng Y. X. ; Chu G. Y. ; Lu Y. L. ; Miao C. M. ; Ning N. Y. ; Zhang L. Q. ; Tian M. Interfacial nanomechanical properties and chain segment dynamics of fibrillar silicate/elastomer nanocomposites . Compos. Part B Eng. , 2020 , 193 , 108048 . doi: 10.1016/j.compositesb.2020.108048 http://dx.doi.org/10.1016/j.compositesb.2020.108048
Huang W. ; Tian C. C. ; Zhao H. ; Yu B. ; Wang W. C. ; Ning N. Y. ; Tian M. Largely improved interfacial adhesion and fatigue life of aramid fiber/polymer composites by developing GO enhanced eco-friendly dip-coating system . Compos. Part A Appl. Sci. Manuf. , 2023 , 175 , 107813 . doi: 10.1016/j.compositesa.2023.107813 http://dx.doi.org/10.1016/j.compositesa.2023.107813
Zheng L. ; Jerrams S. ; Xu Z. C. ; Zhang L. Q. ; Liu L. ; Wen S. P. Enhanced gas barrier properties of graphene oxide/rubber composites with strong interfaces constructed by graphene oxide and sulfur . Chem. Eng. J. , 2020 , 383 , 123100 . doi: 10.1016/j.cej.2019.123100 http://dx.doi.org/10.1016/j.cej.2019.123100
Liang X. B. ; Kojima T. ; Ito M. ; Amino N. ; Liu H. N. ; Koishi M. ; Nakajima K. In situ nanostress visualization method to reveal the micromechanical mechanism of nanocomposites by atomic force microscopy . ACS Appl. Mater. Interfaces , 2023 , 15 ( 9 ), 12414 - 12422 . doi: 10.1021/acsami.2c22971 http://dx.doi.org/10.1021/acsami.2c22971
Liang X. B. ; Nakajima K. Study of the mullins effect in carbon black-filled styrene-butadiene rubber by atomic force microscopy nanomechanics . Macromolecules , 2022 , 55 ( 14 ), 6023 - 6030 . doi: 10.1021/acs.macromol.2c00776 http://dx.doi.org/10.1021/acs.macromol.2c00776
Kawahara S. ; Yamamoto Y. ; Fujii S. ; Isono Y. ; Niihara K. I. ; Jinnai H. ; Nishioka H. ; Takaoka A. FIB-SEM and TEMT observation of highly elastic rubbery material with nanomatrix structure . Macromolecules , 2008 , 41 ( 12 ), 4510 - 4513 . doi: 10.1021/ma7028538 http://dx.doi.org/10.1021/ma7028538
Jinnai H. ; Higuchi T. ; Zhuge X. D. ; Kumamoto A. ; Batenburg K. J. ; Ikuhara Y. Three-dimensional visualization and characterization of polymeric self-assemblies by transmission electron microtomography . Acc. Chem. Res. , 2017 , 50 ( 6 ), 1293 - 1302 . doi: 10.1021/acs.accounts.7b00103 http://dx.doi.org/10.1021/acs.accounts.7b00103
Sugimori H. ; Nishi T. ; Jinnai H. Dual-axis electron tomography for three-dimensional observations of polymeric nanostructures . Macromolecules , 2005 , 38 ( 24 ), 10226 - 10233 . doi: 10.1021/ma051705u http://dx.doi.org/10.1021/ma051705u
Loos J. ; Sourty E. ; Lu K. B. ; de With G. ; van Bavel S. Imaging polymer systems with high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) . Macromolecules , 2009 , 42 ( 7 ), 2581 - 2586 . doi: 10.1021/ma8026589 http://dx.doi.org/10.1021/ma8026589
Eijsbouts S. ; Li X. Q. ; Juan-Alcaniz J. ; van den Oetelaar L. C. A. ; Bergwerff J. A. ; Loos J. ; Carlsson A. ; Vogt E. T. C. Electron tomography reveals the active phase-support interaction in sulfidic hydroprocessing catalysts . ACS Catal. , 2017 , 7 ( 7 ), 4817 - 4821 . doi: 10.1021/acscatal.7b01201 http://dx.doi.org/10.1021/acscatal.7b01201
Hamngren Blomqvist C. ; Gebäck T. ; Altskär A. ; Hermansson A. M. ; Gustafsson S. ; Lorén N. ; Olsson E. Interconnectivity imaged in three dimensions: nano-particulate silica-hydrogel structure revealed using electron tomography . Micron , 2017 , 100 , 91 - 105 . doi: 10.1016/j.micron.2017.04.012 http://dx.doi.org/10.1016/j.micron.2017.04.012
Wang Y. T. ; Jiang W. ; Zhu K. R. ; Wu L. H. ; Chen L. Effects of carbon black surface modification on the morphology and properties in blends with natural rubber studied with high-resolution X-ray computed tomography . Macromol. Mater. Eng. , 2024 , 309 ( 5 ), 2400019 . doi: 10.1002/mame.202400019 http://dx.doi.org/10.1002/mame.202400019
Song L. X. ; Wang Z. ; Tang X. L. ; Chen L. ; Chen P. Z. ; Yuan Q. X. ; Li L. B. Visualizing the toughening mechanism of nanofiller with 3D X-ray nano-CT: stress-induced phase separation of silica nanofiller and silicone polymer double networks . Macromolecules , 2017 , 50 ( 18 ), 7249 - 7257 . doi: 10.1021/acs.macromol.7b00539 http://dx.doi.org/10.1021/acs.macromol.7b00539
Li L. B. In situ synchrotron radiation techniques: watching deformation-induced structural evolutions of polymers . Chinese J. Polym. Sci. , 2018 , 36 ( 10 ), 1093 - 1102 . doi: 10.1007/s10118-018-2169-9 http://dx.doi.org/10.1007/s10118-018-2169-9
Koning R. I. ; Koster A. J. ; Sharp T. H. Advances in cryo-electron tomography for biology and medicine . Ann. Anat. Anat. Anz. , 2018 , 217 , 82 - 96 . doi: 10.1016/j.aanat.2018.02.004 http://dx.doi.org/10.1016/j.aanat.2018.02.004
Weyland M. ; Midgley P. A. ; Thomas J. M. Electron tomography of nanoparticle catalysts on porous supports: a new technique based on Rutherford scattering . J. Phys. Chem. B , 2001 , 105 ( 33 ), 7882 - 7886 . doi: 10.1021/jp011566s http://dx.doi.org/10.1021/jp011566s
Li X. Y. ; Yang Q. P. ; Ye Y. ; Zhang L. Q. ; Hong S. ; Ning N. Y. ; Tian M. Quantifying 3D-nanosized dispersion of SiO 2 in elastomer nanocomposites by 3D-scanning transmission electron microscope (STEM) . Compos. Part A Appl. Sci. Manuf. , 2020 , 131 , 105778 . doi: 10.1016/j.compositesa.2020.105778 http://dx.doi.org/10.1016/j.compositesa.2020.105778
Li X. Y. ; Yang Q. P. ; Li H. ; Zhang L. Q. ; Hong S. ; Ning N. Y. ; Tian M. Quantifying the 3D multiscale dispersion structure of nanofillers in polymer nanocomposites by combining 3D-STEM and Synchrotron Radiation X-ray CT . Compos. Part B Eng. , 2021 , 212 , 108687 . doi: 10.1016/j.compositesb.2021.108687 http://dx.doi.org/10.1016/j.compositesb.2021.108687
田玉莲 ; 肖体乔 ; 朱佩平 ; 黄万霞 ; 黎刚 ; 袁清习 ; 陈敏 . 同步辐射X射线位相衬度成像—x射线位相衬度照相术 . 核技术 , 2004 , ( 06 ), 417 - 421 .
Li X. Y. ; Tian C. C. ; Li H. ; Liu X. Y. ; Zhang L. Q. ; Hong S. ; Ning N. Y. ; Tian M. Combined effect of volume fractions of nanofillers and filler-polymer interactions on 3D multiscale dispersion of nanofiller and Payne effect . Compos. Part A Appl. Sci. Manuf. , 2022 , 152 , 106722 . doi: 10.1016/j.compositesa.2021.106722 http://dx.doi.org/10.1016/j.compositesa.2021.106722
Li Y. Q. ; Xiong Y. Q. ; Kang M. ; Yu F. M. ; Lu A. Quantitative study on reinforcing mechanism of nanofiller network in silicone elastomer based on fluorescence labeling technology . Polymers , 2024 , 16 ( 19 ), 2829 . doi: 10.3390/polym16192829 http://dx.doi.org/10.3390/polym16192829
Zhang Z. K. ; Feng Z. M. ; Tian R. ; Li K. T. ; Lin Y. J. ; Lu C. ; Wang S. H. ; Xue X. J. Novel fluorescence method for determination of spatial interparticle distance in polymer nanocomposites . Anal. Chem. , 2020 , 92 ( 11 ), 7794 - 7799 . doi: 10.1021/acs.analchem.0c00957 http://dx.doi.org/10.1021/acs.analchem.0c00957
Kohjiya S. ; Katoh A. ; Shimanuki J. ; Hasegawa T. ; Ikeda Y. Nano-structural observation of carbon black dispersion in natural rubber matrix by three-dimensional transmission electron microscopy . J. Mater. Sci. , 2005 , 40 ( 9 ), 2553 - 2555 . doi: 10.1007/s10853-005-2072-y http://dx.doi.org/10.1007/s10853-005-2072-y
Staniewicz L. ; Vaudey T. ; Degrandcourt C. ; Couty M. ; Gaboriaud F. ; Midgley P. Electron tomography provides a direct link between the Payne effect and the inter-particle spacing of rubber composites . Sci. Rep. , 2014 , 4 , 7389 . doi: 10.1038/srep07389 http://dx.doi.org/10.1038/srep07389
Liu X. Y. ; Li X. Y. ; Tian C. C. ; Xu L. ; Hong S. ; Ning N. Y. ; Tian M. Electron tomography as a structural bridge: linking interfacial engineering to macroscopic viscoelasticity in silica/rubber nanocomposites . Compos. Sci. Technol. , 2025 , 270 , 111311 . doi: 10.1016/j.compscitech.2025.111311 http://dx.doi.org/10.1016/j.compscitech.2025.111311
Mylvaganam K. ; Zhang L. C. Fabrication of graphene-polymer nanocomposites through ionic polymerization . J. Phys. Chem. A , 2016 , 120 ( 39 ), 7689 - 7693 . doi: 10.1021/acs.jpca.6b05333 http://dx.doi.org/10.1021/acs.jpca.6b05333
Stankovich S. ; Dikin D. A. ; Dommett G. H. B. ; Kohlhaas K. M. ; Zimney E. J. ; Stach E. A. ; Piner R. D. ; Nguyen S. T. ; Ruoff R. S. Graphene-based composite materials . Nature , 2006 , 442 ( 7100 ), 282 - 286 . doi: 10.1038/nature04969 http://dx.doi.org/10.1038/nature04969
Cho J. ; Jeon I. ; Kim S. Y. ; Lim S. ; Jho J. Y. Improving dispersion and barrier properties of polyketone/graphene nanoplatelet composites via noncovalent functionalization using aminopyrene . ACS Appl. Mater. Interfaces , 2017 , 9 ( 33 ), 27984 - 27994 . doi: 10.1021/acsami.7b10474 http://dx.doi.org/10.1021/acsami.7b10474
Das A. ; Boldt R. ; Jurk R. ; Jehnichen D. ; Fischer D. ; Stöckelhuber K. W. ; Heinrich G. Nano-scale morphological analysis of graphene-rubber composites using 3D transmission electron microscopy . RSC Adv. , 2014 , 4 ( 18 ), 9300 - 9307 . doi: 10.1039/c3ra47050d http://dx.doi.org/10.1039/c3ra47050d
0
Views
202
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号