

浏览全部资源
扫码关注微信
武汉纺织大学 纺织新材料与先进加工全国重点实验室 武汉 430200
Xun Cui, E-mail: xcui@wtu.edu.cn
Received:30 August 2025,
Accepted:14 October 2025,
Published Online:01 December 2025,
Published:20 December 2025
移动端阅览
朱珍珍, 吴娇娇, 史延群, 夏雨, 靳冉, 武明杰, 崔逊, 杨应奎. 聚多巴胺界面组装构建核壳多孔碳限域钴单原子用于高效氧还原. 高分子学报, 2025, 56(12), 2406-2417
Zhu, Z. Z., Wu, J. J., Shi, Y. Q., Xia, Y., Jin, R., Wu, M. J., Cui, X., Yang, Y. K. Polydopamine interfacial assembly enables core-shell porous carbon-confined cobalt single atoms for efficient oxygen reduction. Acta Polymerica Sinica, 2025, 56(12), 2406-2417
朱珍珍, 吴娇娇, 史延群, 夏雨, 靳冉, 武明杰, 崔逊, 杨应奎. 聚多巴胺界面组装构建核壳多孔碳限域钴单原子用于高效氧还原. 高分子学报, 2025, 56(12), 2406-2417 DOI: 10.11777/j.issn1000-3304.2025.25214. CSTR: 32057.14.GFZXB.2025.7499.
Zhu, Z. Z., Wu, J. J., Shi, Y. Q., Xia, Y., Jin, R., Wu, M. J., Cui, X., Yang, Y. K. Polydopamine interfacial assembly enables core-shell porous carbon-confined cobalt single atoms for efficient oxygen reduction. Acta Polymerica Sinica, 2025, 56(12), 2406-2417 DOI: 10.11777/j.issn1000-3304.2025.25214. CSTR: 32057.14.GFZXB.2025.7499.
氧还原反应(ORR)是燃料电池和金属-空气电池等新型可持续能源转换装置的关键电极过程,但其缓慢动力学严重限制了器件性能. 本研究提出一种分子介导的聚多巴胺(PDA)界面组装策略:通过Pluronic F127 (F127)与盐酸多巴胺(DA)在1
3
5-三甲基苯(TMB)分子调控下的协同组装,在碳纳米管(CNT)表面构筑PDA包覆层(CNT@PDA),经热解后得到分级多孔碳壳层(CNT@HPC). 进一步利用2
2′-联吡啶(bipy)双齿配体螯合钴前驱体,经二次热解将钴单原子稳定锚定于碳基体中,制备出核壳结构分级多孔碳限域钴单原子催化剂(CNT@HPC-Co). 研究表明,钴单原子位点的独特电子结构显著加速了ORR动力学,而CNT内核与多孔碳壳层构成的分级通道有效促进电子传输与氧中间体的扩散传质速率. 电化学测试显示,CNT@HPC-Co在0.1 mol/L KOH中半波电位达0.88 V (versus 可逆氢电极(RHE)),优于商业Pt/C及已报道的同类非贵金属催化剂. 此外,该催化剂在水系和柔性准固态锌-空气电池中均展现出较高功率密度和优异循环稳定性. 本研究通过界面组装与单原子配位化学的协同设计,为构筑低成本、高活性ORR电催化剂提供了新策略.
The oxygen reduction reaction (ORR) is a key electrode process in fuel cells and metal-air batteries
but its sluggish kinetics severely restricts device performance. In this work
we proposed a molecularly mediated polydopamine (PDA) interface assembly strategy. By the cooperative assembly of Pluronic F127 (F127) and dopamine hydrochloride (DA) under the regulation of 1
3
5-trimethylbenzene (TMB)
a PDA coating layer was constructed on the surface of carbon nanotubes (CNT)
yielding CNT@PDA. After pyrolysis
a hierarchical porous carbon shell layer (CNT@HPC) was obtained. Furthermore
the bidentate ligand 2
2′-bipyridine (bipy) was employed to chelate cobalt precursors
and a second pyrolysis step stabilized cobalt single atoms anchored within the carbon matrix
forming a core-shell structured hierarchical porous carbon confined cobalt single-atom catalyst (CNT@HPC-Co). The unique electronic structure of the cobalt single-atom sites markedly accelerated ORR kinetics
while the hierarchical channels composed of the CNT core and porous carbon shell effectively promoted electron transport and oxygen intermediate diffusion. Electrochemical tests revealed that CNT@HPC-Co delivered a half-wave potential of 0.88 V (versus RHE) in 0.1 mol/L KOH
outperforming commercial Pt/C and previously reported non-precious metal catalysts. In addition
the catalyst exhibited high power density and excellent cycling stability in both aqueous and flexible quasi-solid-state zinc-air batteries. This study demonstrated a synergistic design strategy that integrates interfacial assembly and single-atom coordination chemistry
offering a new pathway for the development of low-cost and high-performance ORR electrocatalysts.
Cui X. ; Gao L. K. ; Lei S. ; Liang S. ; Zhang J. W. ; Sewell C. D. ; Xue W. D. ; Liu Q. ; Lin Z. Q. ; Yang Y. K. Simultaneously crafting single-atomic Fe sites and graphitic layer-wrapped Fe 3 C nanoparticles encapsulated within mesoporous carbon tubes for oxygen reduction . Adv. Funct. Mater. , 2021 , 31 ( 10 ), 2009197 . doi: 10.1002/adfm.202170064 http://dx.doi.org/10.1002/adfm.202170064
Xue W. D. ; Zhou Q. X. ; Cui X. ; Jia S. R. ; Zhang J. W. ; Lin Z. Q. Metal-organic frameworks-derived heteroatom-doped carbon electrocatalysts for oxygen reduction reaction . Nano Energy , 2021 , 86 , 106073 . doi: 10.1016/j.nanoen.2021.106073 http://dx.doi.org/10.1016/j.nanoen.2021.106073
Cui X. ; Yang Y. ; Li Y. H. ; Liu F. L. ; Peng H. R. ; Zhang Y. H. ; Xiao P. Electrochemical fabrication of porous Ni 0.5 Co 0.5 Alloy film and its enhanced electrocatalytic activity towards methanol oxidation . J. Electrochem. Soc. , 2015 , 162 ( 14 ), F1415 - F1424 . doi: 10.1149/2.0401514jes http://dx.doi.org/10.1149/2.0401514jes
Harn Y. W. ; Liang S. ; Liu S. L. ; Yan Y. ; Wang Z. W. ; Jiang J. ; Zhang J. W. ; Li Q. ; He Y. J. ; Li Z. L. ; Zhu L. ; Cheng H. P. ; Lin Z. Q. Tailoring electrocatalytic activity of in situ crafted perovskite oxide nanocrystals via size and dopant control . Proc. Natl. Acad. Sci. U. S. A. , 2021 , 118 ( 25 ), e 2014086118 . doi: 10.1073/pnas.2014086118 http://dx.doi.org/10.1073/pnas.2014086118
Yan Y. ; Liang S. ; Wang X. ; Zhang M. Y. ; Hao S. M. ; Cui X. ; Li Z. W. ; Lin Z. Q. Robust wrinkled MoS 2 /N-C bifunctional electrocatalysts interfaced with single Fe atoms for wearable zinc-air batteries . Proc. Natl. Acad. Sci. U. S. A. , 2021 , 118 ( 40 ), e 2110036118 . doi: 10.1073/pnas.2110036118 http://dx.doi.org/10.1073/pnas.2110036118
Gao L. K. ; Cui X. ; Wang Z. W. ; Sewell C. D. ; Li Z. L. ; Liang S. ; Zhang M. Y. ; Li J. ; Hu Y. J. ; Lin Z. Q. operando unraveling photothermal-promoted dynamic active-sites generation in NiFe₂O₄ for markedly enhanced oxygen evolution . Proc. Natl. Acad. Sci. U. S. A. , 2021 , 118 ( 7 ), 1 - 10 . doi: 10.1073/pnas.2023421118 http://dx.doi.org/10.1073/pnas.2023421118
Gao L. K. ; Cui X. ; Sewell C. D. ; Li J. ; Lin Z. Q. Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction . Chem. Soc. Rev. , 2021 , 50 ( 15 ), 8428 - 8469 . doi: 10.1039/d0cs00962h http://dx.doi.org/10.1039/d0cs00962h
Gao F. ; He J. Q. ; Wang H. W. ; Lin J. H. ; Chen R. X. ; Yi K. ; Huang F. ; Lin Z. ; Wang M. Y. Te-mediated electro-driven oxygen evolution reaction . Nano Res. Energy , 2022 , 1 , e9120029 . doi: 10.26599/nre.2022.9120029 http://dx.doi.org/10.26599/nre.2022.9120029
Niu H. T. ; Xia C. F. ; Huang L. ; Zaman S. ; Maiyalagan T. ; Guo W. ; You B. ; Xia B. Y. Rational design and synthesis of one-dimensional platinum-based nanostructures for oxygen-reduction electrocatalysis . Chin. J. Catal. , 2022 , 43 ( 6 ), 1459 - 1472 . doi: 10.1016/s1872-2067(21)63862-7 http://dx.doi.org/10.1016/s1872-2067(21)63862-7
Huang L. ; Zaman S. ; Tian X. L. ; Wang Z. T. ; Fang W. S. ; Xia B. Y. Advanced platinum-based oxygen reduction electrocatalysts for fuel cells . Acc. Chem. Res. , 2021 , 54 ( 2 ), 311 - 322 . doi: 10.1021/acs.accounts.0c00488 http://dx.doi.org/10.1021/acs.accounts.0c00488
Zaman S. ; Huang L. ; Douka A. I. ; Yang H. ; You B. ; Xia B. Y. Oxygen reduction electrocatalysts toward practical fuel cells: progress and perspectives . Angew. Chem. Int. Ed. , 2021 , 60 ( 33 ), 17832 - 17852 . doi: 10.1002/anie.202016977 http://dx.doi.org/10.1002/anie.202016977
Ding L. ; Tang T. ; Hu J. S. Recent progress in proton-exchange membrane fuel cells based on metal-nitrogen-carbon catalysts . Acta Phys. Chim. Sin. , 2020 , 37 ( 9 ), 2010048 .
Deng Y. J. ; Luo J. M. ; Chi B. ; Tang H. B. ; Li J. ; Qiao X. C. ; Shen Y. J. ; Yang Y. J. ; Jia C. M. ; Rao P. ; Liao S. J. ; Tian X. L. Advanced atomically dispersed metal-nitrogen-carbon catalysts toward cathodic oxygen reduction in PEM fuel cells . Adv. Energy Mater. , 2021 , 11 ( 37 ), 2101222 . doi: 10.1002/aenm.202101222 http://dx.doi.org/10.1002/aenm.202101222
Xu H. M. ; Zhu H. R. ; Huang C. J. ; Zhang Z. J. ; Shuai T. Y. ; Zhan Q. N. ; Li G. R. Recent advances in Fe-N-C- and Co-N-C-based materials as bifunctional electrocatalysts for oxygen reduction and oxygen evolution . Sci. China Chem. , 2024 , 67 ( 4 ), 1137 - 1160 . doi: 10.1007/s11426-023-1863-8 http://dx.doi.org/10.1007/s11426-023-1863-8
Sun T. T. ; Zhao S. ; Chen W. X. ; Zhai D. ; Dong J. C. ; Wang Y. ; Zhang S. L. ; Han A. J. ; Gu L. ; Yu R. ; Wen X. D. ; Ren H. L. ; Xu L. B. ; Chen C. ; Peng Q. ; Wang D. S. ; Li Y. D. Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst . Proc. Natl. Acad. Sci. U. S. A. , 2018 , 115 ( 50 ), 12692 - 12697 . doi: 10.1073/pnas.1813605115 http://dx.doi.org/10.1073/pnas.1813605115
Li Z. ; Ji S. F. ; Liu Y. W. ; Cao X. ; Tian S. B. ; Chen Y. J. ; Niu Z. Q. ; Li Y. D. Well-defined materials for heterogeneous catalysis: from nanoparticles to isolated single-atom sites . Chem. Rev. , 2020 , 120 ( 2 ), 623 - 682 . doi: 10.1021/acs.chemrev.9b00311 http://dx.doi.org/10.1021/acs.chemrev.9b00311
Yan Y. ; Wen B. H. ; Liu M. K. ; Lei H. ; Yang J. F. ; He S. Y. ; Qu Z. H. ; Xia W. ; Li H. L. ; Zeng J. Orienting electron fillings in d orbitals of cobalt single atoms for effective zinc-air battery at a subzero temperature . Adv. Funct. Mater. , 2024 , 34 ( 30 ), 2316100 . doi: 10.1002/adfm.202316100 http://dx.doi.org/10.1002/adfm.202316100
Tang C. L. ; Jin R. ; Xia Y. ; Zhang Q. ; Wang J. Z. ; Wu M. J. ; Cui X. ; Yang Y. K. Asymmetric low-coordination tailoring of single-atom cobalt catalysts enabling efficient oxygen reduction reaction . Nano Energy , 2025 , 137 , 110776 . doi: 10.1016/j.nanoen.2025.110776 http://dx.doi.org/10.1016/j.nanoen.2025.110776
Meng Y. ; Gu D. ; Zhang F. Q. ; Shi Y. F. ; Yang H. F. ; Li Z. ; Yu C. Z. ; Tu B. ; Zhao D. Y. Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation . Angew. Chem. Int. Ed. , 2005 , 44 ( 43 ), 7053 - 7059 . doi: 10.1002/anie.200501561 http://dx.doi.org/10.1002/anie.200501561
Zhang F. Q. ; Meng Y. ; Gu D. ; Yan , Yu C. Z. ; Tu B. ; Zhao D. Y. A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia3̄d bicontinuous cubic structure . J. Am. Chem. Soc. , 2005 , 127 ( 39 ), 13508 - 13509 . doi: 10.1021/ja0545721 http://dx.doi.org/10.1021/ja0545721
Zhu J. H. ; Yang J. ; Miao R. R. ; Yao Z. Q. ; Zhuang X. D. ; Feng X. L. Nitrogen-enriched, ordered mesoporous carbons for potential electrochemical energy storage . J. Mater. Chem. A , 2016 , 4 ( 6 ), 2286 - 2292 . doi: 10.1039/c5ta09073c http://dx.doi.org/10.1039/c5ta09073c
Wang S. ; Zhao Q. F. ; Wei H. M. ; Wang J. Q. ; Cho M. ; Cho H. S. ; Terasaki O. ; Wan Y. Aggregation-free gold nanoparticles in ordered mesoporous carbons: toward highly active and stable heterogeneous catalysts . J. Am. Chem. Soc. , 2013 , 135 ( 32 ), 11849 - 11860 . doi: 10.1021/ja403822d http://dx.doi.org/10.1021/ja403822d
Zhu X. H. ; Xia Y. ; Zhang X. M. ; Al-Khalaf A. A. ; Zhao T. C. ; Xu J. X. ; Peng L. ; Hozzein W. N. ; Li W. ; Zhao D. Y. Synthesis of carbon nanotubes@mesoporous carbon core-shell structured electrocatalysts via a molecule-mediated interfacial co-assembly strategy . J. Mater. Chem. A , 2019 , 7 ( 15 ), 8975 - 8983 . doi: 10.1039/c9ta01478k http://dx.doi.org/10.1039/c9ta01478k
Qian X. F. ; Lv Y. Y. ; Li W. ; Xia Y. Y. ; Zhao D. Y. Multiwall carbon nanotube@mesoporous carbon with core-shell configuration: a well-designed composite-structure toward electrochemical capacitor application . J. Mater. Chem. , 2011 , 21 ( 34 ), 13025 . doi: 10.1039/c1jm12082d http://dx.doi.org/10.1039/c1jm12082d
Dong B. ; Pei Y. C. ; Zhao F. ; Goh T. W. ; Qi Z. Y. ; Xiao C. X. ; Chen K. C. ; Huang W. Y. ; Fang N. In situ quantitative single-molecule study of dynamic catalytic processes in nanoconfinement . Nat. Catal. , 2018 , 1 ( 2 ), 135 - 140 . doi: 10.1038/s41929-017-0021-1 http://dx.doi.org/10.1038/s41929-017-0021-1
Xie X. Y. ; Peng L. S. ; Yang H. Z. ; Waterhouse G. I. N. ; Shang L. ; Zhang T. R. MIL-101-derived mesoporous carbon supporting highly exposed Fe single-atom sites as efficient oxygen reduction reaction catalysts . Adv. Mater. , 2021 , 33 ( 23 ), 2101038 . doi: 10.1002/adma.202101038 http://dx.doi.org/10.1002/adma.202101038
He Y. H. ; Guo H. ; Hwang S. ; Yang X. X. ; He Z. Z. ; Braaten J. ; Karakalos S. ; Shan W. T. ; Wang M. Y. ; Zhou H. ; Feng Z. X. ; More K. L. ; Wang G. F. ; Su D. ; Cullen D. A. ; Fei L. ; Litster S. ; Wu G. Single cobalt sites dispersed in hierarchically porous nanofiber networks for durable and high-power PGM-free cathodes in fuel cells . Adv. Mater. , 2020 , 32 ( 46 ), 2003577 . doi: 10.1002/adma.202003577 http://dx.doi.org/10.1002/adma.202003577
Cui X. ; Jin R. ; Gao L. K. ; Wu M. J. ; Liu Y. J. ; Lin Z. Q. ; Yang Y. K. High-loading single atoms via hierarchically porous nanospheres for oxygen reduction reaction with superior activity and durability . Adv. Funct. Mater. , 2025 , 35 ( 39 ), 2510108 . doi: 10.1002/adfm.71552 http://dx.doi.org/10.1002/adfm.71552
Ma R. ; Tang C. L. ; Wang Y. L. ; Xu X. X. ; Wu M. J. ; Cui X. ; Yang Y. K. Linker mediated electronic-state manipulation of conjugated organic polymers enabling highly efficient oxygen reduction . Angew. Chem. Int. Ed. , 2024 , 63 ( 26 ), e 202405594 . doi: 10.1002/anie.202405594 http://dx.doi.org/10.1002/anie.202405594
Cui X. ; Gao L. K. ; Lu C. H. ; Ma R. ; Yang Y. K. ; Lin Z. Q. Rational coordination regulation in carbon-based single-metal-atom catalysts for electrocatalytic oxygen reduction reaction . Nano Convergence , 2022 , 9 ( 1 ), 34 . doi: 10.1186/s40580-022-00324-8 http://dx.doi.org/10.1186/s40580-022-00324-8
Zhao S. ; Liu M. J. ; Qu Z. H. ; Yan Y. ; Zhang Z. R. ; Yang J. F. ; He S. Y. ; Xu Z. ; Zhu Y. Q. ; Luo L. H. ; Hui K. N. ; Liu M. K. ; Zeng J. Cascade synthesis of Fe-N2-Fe dual-atom catalysts for superior oxygen catalysis . Angew. Chem. Int. Ed. , 2024 , 63 ( 40 ), e 202408914 . doi: 10.1002/anie.202408914 http://dx.doi.org/10.1002/anie.202408914
Liu F. ; Hu Y. ; Qu Z. H. ; Ma X. ; Li Z. F. ; Zhu R. ; Yan Y. ; Wen B. H. ; Ma Q. W. ; Liu M. J. ; Zhao S. ; Fan Z. X. ; Zeng J. ; Liu M. K. ; Jin Z. ; Lin Z. Q. Rapid production of kilogram-scale graphene nanoribbons with tunable interlayer spacing for an array of renewable energy . Proc. Natl. Acad. Sci. U. S. A. , 2023 , 120 ( 26 ), e 2303262120 . doi: 10.1073/pnas.2303262120 http://dx.doi.org/10.1073/pnas.2303262120
Zhao Q. L. ; Wang Y. A. ; Lai W. H. ; Xiao F. ; Lyu Y. X. ; Liao C. Z. ; Shao M. H. Approaching a high-rate and sustainable production of hydrogen peroxide: Oxygen reduction on Co-N-C single-atom electrocatalysts in simulated seawater . Energy Environ. Sci. , 2021 , 14 ( 10 ), 5444 - 5456 . doi: 10.1039/d1ee00878a http://dx.doi.org/10.1039/d1ee00878a
Wang X. X. ; Cullen D. A. ; Pan Y. T. ; Hwang S. ; Wang M. Y. ; Feng Z. X. ; Wang J. Y. ; Engelhard M. H. ; Zhang H. G. ; He Y. H. ; Shao Y. Y. ; Su D. ; More K. L. ; Spendelow J. S. ; Wu G. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells . Adv. Mater. , 2018 , 30 ( 11 ), 1706758 . doi: 10.1002/adma.201706758 http://dx.doi.org/10.1002/adma.201706758
Xu W. X. ; Zeng R. ; Rebarchik M. ; Posada-Borbón A. ; Li H. Q. ; Pollock C. J. ; Mavrikakis M. ; Abruña H. D. . Atomically dispersed Zn/co-N-C as ORR electrocatalysts for alkaline fuel cells . J. Am. Chem. Soc. , 2024 , 146 ( 4 ), 2593 - 2603 . doi: 10.1021/jacs.3c11355 http://dx.doi.org/10.1021/jacs.3c11355
Wang M. ; Chen J. L. ; Zhang S. L. ; Sun Y. Y. ; Kong W. L. ; Geng L. N. ; Li Y. ; Dai L. M. ; Li Z. T. ; Wu M. B. Synergistic interactions between co nanoparticles and unsaturated co-N 2 sites for efficient electrocatalysis . Adv. Funct. Mater. , 2024 , 34 ( 51 ), 2410373 . doi: 10.1002/adfm.202410373 http://dx.doi.org/10.1002/adfm.202410373
0
Views
171
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号