

浏览全部资源
扫码关注微信
1.中国科学院大连化学物理研究所 能源材料研究部DNL22 大连 116023
2.浙江帕尔科新材料有限公司 衢州 324000
Ying Zhu, E-mail: zhuying@paek.onaliyun.com
Zhi-peng Wang, E-mail: okko@dicp.ac.cn
Received:09 September 2025,
Accepted:04 November 2025,
Published Online:06 January 2026,
Published:20 January 2026
移动端阅览
钱赠旭, 赵继永, 朱颖, 王志鹏. 含羧基酚酞聚芳醚酮的制备及中空纤维超滤膜性能研究. 高分子学报, 2026, 57(1), 190-199.
Qian, Z. X.; Zhao, J. Y.; Zhu, Y.; Wang, Z. P. Preparation of phenolphthalein poly(aryl ether ketone) containing carboxyl group and the property of hollow fiber ultrafiltration membranes. Acta Polymerica Sinica (in Chinese), 2026, 57(1), 190-199.
钱赠旭, 赵继永, 朱颖, 王志鹏. 含羧基酚酞聚芳醚酮的制备及中空纤维超滤膜性能研究. 高分子学报, 2026, 57(1), 190-199. DOI: 10.11777/j.issn1000-3304.2025.25215. CSTR: 32057.14.GFZXB.2025.7507.
Qian, Z. X.; Zhao, J. Y.; Zhu, Y.; Wang, Z. P. Preparation of phenolphthalein poly(aryl ether ketone) containing carboxyl group and the property of hollow fiber ultrafiltration membranes. Acta Polymerica Sinica (in Chinese), 2026, 57(1), 190-199. DOI: 10.11777/j.issn1000-3304.2025.25215. CSTR: 32057.14.GFZXB.2025.7507.
无定形聚芳醚酮(PAEK)由于其良好的有机溶剂溶解性、成膜性能、优异的透气性和优异的机械性能,在分离膜领域发挥着越来越重要的作用. 然而,其应用受到疏水性的限制. 本工作通过调整酚酞(PHT)和酚酞啉(PPL)在三元共聚中的摩尔比,合成了具有不同羧基含量的PAEK (PPL-PHT)共聚物,采用同轴湿法纺丝制备了PPL-PHT中空纤维超滤膜. 通过红外光谱和核磁氢谱对共聚物进行结构表征,示差扫描量热法和热重分析测试其热性能. 通过扫描电子显微镜、水接触角测试和万能材料试验机对纤维的形态、亲水性及力学性能进行测试. 采用牛血清白蛋白(BSA)和腐植酸(HA)作为抗污性能测试污染物. 结果表明,成功合成了PPL-PHT共聚物,其羧基含量可控,耐热性良好,可满足在分离膜领域的需求. 随着共聚物中羧基含量的增加,纤维膜的拉伸强度、断裂伸长率、亲水性和抗污性能逐渐提高. 当PPL与PHT的摩尔比为50:50时,纤维膜对BSA表现出99.2%的截留率和53.2%的通量恢复率,对HA表现出97.5%的截留率和94.2%的通量恢复率. 这为分离领域的工业生产带来了希望.
Amorphous poly(aryl ether ketone) (PAEK) is increasingly vital in the separation membrane field owing to its excellent organic solvent solubility
film-forming properties
outstanding gas permeability
and superior mechanical performance. However
its application is limited by hydrophobicity. In this study
PAEK (PPL-PHT) copolymers with varying carboxyl group contents were synthesized by adjusting the molar ratio of phenolphthalein (PHT) to phenolphthaleinline (PPL) in a ternary copolymerization. PPL-PHT hollow fiber ultrafiltration membranes were prepared by coaxial wet spinning. The copolymers were structurally characterized using Fourier-transform infrared (FTIR) and proton nuclear magnetic resonance (
1
H-NMR) spectroscopy. Their thermal properties were investigated using differential scanning calorimetry and thermogravimetric analysis. The fiber morphology
surface hydrophilicity
and mechanical properties were examined using scanning electron microscopy
water contact angle measurements
and universal testing machines. The antifouling performance was tested using bovine serum albumin (BSA) and humic acid (HA) as test media. The results indicate the successful synthesis of PPL-PHT copolymers with tunable carboxyl content and excellent thermal stability
meeting the requirements for separation membranes. With increasing carboxyl content
the fiber membranes exhibited progressively enhanced tensile strength
elongation at break
hydrophilicity
and fouling resistance. When the molar ratio of PPL to PHT was 50:50
the fiber membrane exhibited a rejection rate of 99.2% for bovine serum albumin while maintaining a flux recovery rate of 53.2%. For HA
the rejection rate was 97.5%
and the flu
x recovery rate was 94.2%. These results are promising for industrial applications in separation processes.
Tang W. Z. ; Pei Y. S. ; Zheng H. ; Zhao Y. ; Shu L. M. ; Zhang H. Twenty years of China's water pollution control: experiences and challenges . Chemosphere , 2022 , 295 , 133875 . doi: 10.1016/j.chemosphere.2022.133875 http://dx.doi.org/10.1016/j.chemosphere.2022.133875
Ahmaruzzaman M. ; Roy P. ; Bonilla-Petriciolet A. ; Badawi M. ; Ganachari S. V. ; Shetti N. P. ; Aminabhavi T. M. Polymeric hydrogels-based materials for wastewater treatment . Chemosphere , 2023 , 331 , 138743 . doi: 10.1016/j.chemosphere.2023.138743 http://dx.doi.org/10.1016/j.chemosphere.2023.138743
Dwivedi Y. D. ; Manoj Kumar P. ; Gupta A. ; Ahalya N. ; Rana D. ; Sharma M. ; Surakasi R. Experimental study on the treatment of urban garment industry wastewater to mitigate groundwater contamination using a solar evaporative still . Urban Clim. , 2023 , 49 , 101435 . doi: 10.1016/j.uclim.2023.101435 http://dx.doi.org/10.1016/j.uclim.2023.101435
Abidli A. ; Huang Y. F. ; Ben Rejeb Z. ; Zaoui A. ; Park C. B. Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: recent progress, challenges, and future perspectives . Chemosphere , 2022 , 292 , 133102 . doi: 10.1016/j.chemosphere.2021.133102 http://dx.doi.org/10.1016/j.chemosphere.2021.133102
唐金金 , 张守海 , 王丹慧 , 徐培琦 , 徐树刚 , 蹇锡高 . 反离子对磺化杂萘联苯共聚醚砜纳滤膜性能的影响 . 膜科学与技术 , 2021 , 41 ( 5 ), 65 - 72 .
Ali J. ; Alhseinat E. ; Abi Jaoude M. ; Al Nashef I. M. ; Adeyemi I. A. ; Aminabhavi T. M. ; Arafat H. A. A mixed matrix polyimide ultrafiltration membrane for efficient removal of bentazon from water . Chem. Eng. J. , 2022 , 433 , 134596 . doi: 10.1016/j.cej.2022.134596 http://dx.doi.org/10.1016/j.cej.2022.134596
王丹慧 , 张守海 , 潘雨曦 , 王昭琪 , 刘泽元 , 徐树刚 , 蹇锡高 . PPBES基膜厚度对复合膜水蒸气渗透性能的影响 . 膜科学与技术 , 2023 , 43 ( 01 ), 37 - 44 .
Hampu N. ; Werber J. R. ; Chan W. Y. ; Feinberg E. C. ; Hillmyer M. A. Next-generation ultrafiltration membranes enabled by block polymers . ACS Nano , 2020 , 14 ( 12 ), 16446 - 16471 . doi: 10.1021/acsnano.0c07883 http://dx.doi.org/10.1021/acsnano.0c07883
Xiao C. F. ; He B. Q. ; Wu C. R. ; Gong G. H. ; Jiang S. C. Development strategy of hollow fiber membrane technology and industry in China . Chinese J. Eng. Sci. , 2021 , 23 ( 2 ), 153 . doi: 10.15302/j-sscae-2021.02.021 http://dx.doi.org/10.15302/j-sscae-2021.02.021
Huang Y. ; Xiao C. F. ; Huang Q. L. ; Liu H. L. ; Zhao J. Progress on polymeric hollow fiber membrane preparation technique from the perspective of green and sustainable development . Chem. Eng. J. , 2021 , 403 , 126295 . doi: 10.1016/j.cej.2020.126295 http://dx.doi.org/10.1016/j.cej.2020.126295
Kammakakam I. ; Lai Z. P. Next-generation ultrafiltration membranes: a review of material design, properties, recent progress, and challenges . Chemosphere , 2023 , 316 , 137669 . doi: 10.1016/j.chemosphere.2022.137669 http://dx.doi.org/10.1016/j.chemosphere.2022.137669
Qian Z. X. ; Jiang J. W. ; Sun Y. L. ; Yuan Q. L. ; Wang Z. C. ; Wang Z. P. ; Zhou G. Y. Characterization and performance test of phenolphthalein poly(aryl ether ketone) fractionated by incremental poor solvent fractionation . Macromol. Res. , 2023 , 31 ( 8 ), 805 - 815 . doi: 10.1007/s13233-023-00164-3 http://dx.doi.org/10.1007/s13233-023-00164-3
鲍锋 , 刘程 , 宋媛媛 , 邬祚强 , 王锦艳 , 蹇锡高 . 含二氮杂萘酮联苯结构耐高温、可溶解嵌段聚芳醚酮的合成 . 高分子学报 , 2018 , ( 6 ), 692 - 699 .
王明晶 , 刘程 , 刘志勇 , 董黎明 , 蹇锡高 . 含二氮杂萘酮结构聚芳醚腈酮酮的合成及表征 . 高分子学报 , 2007 , ( 9 ), 833 - 837 .
Wang C. L. ; Luan J. S. ; Xu Z. P. ; Zhao W. Y. ; Zhang M. Preparation and properties of a novel, high-performance polyether ether ketone fabric . High Perform. Polym. , 2018 , 30 ( 7 ), 794 - 802 . doi: 10.1177/0954008317731135 http://dx.doi.org/10.1177/0954008317731135
Gong W. Z. ; Gu J. F. ; Ruan S. L. ; Shen C. Y. A high-strength electrospun PPESK fibrous membrane for lithium-ion battery separator . Polym. Bull. , 2019 , 76 ( 10 ), 5451 - 5462 . doi: 10.1007/s00289-018-2631-4 http://dx.doi.org/10.1007/s00289-018-2631-4
Ling M. Q. ; Yu K. F. ; Wang J. ; Wang Z. P. ; Zhou G. Y. Design and synthesis of novel phenolphthalein-based poly (aryl ether) resin containing isopropyl groups . J. Mater. Res. Technol. , 2022 , 21 , 153 - 160 . doi: 10.1016/j.jmrt.2022.09.038 http://dx.doi.org/10.1016/j.jmrt.2022.09.038
Panda J. N. ; Bijwe J. ; Pandey R. K. On the significant tribo-potential of PAEK based composites and their dry bearings . Tribol. Int. , 2020 , 142 , 105994 . doi: 10.1016/j.triboint.2019.105994 http://dx.doi.org/10.1016/j.triboint.2019.105994
Chen P. ; Wang H. Z. ; Su J. ; Tian Y. J. ; Wen S. F. ; Su B. ; Yang C. ; Chen B. L. ; Zhou K. ; Yan C. Z. ; Shi Y. S. Recent advances on high-performance polyaryletherketone materials for additive manufacturing . Adv. Mater. , 2022 , 34 ( 52 ), 2200750 . doi: 10.1002/adma.202270360 http://dx.doi.org/10.1002/adma.202270360
董大林 , 宾月珍 , 蹇锡高 . 聚芳醚酮可纺性和结构优化的研究进展 . 高分子学报 , 2020 , 51 ( 12 ), 1321 - 1334 .
Zhang Y. ; Liu D. ; Wang Z. L. ; Yu J. J. ; Cheng Y. Y. ; Li W. J. ; Wang Z. ; Ni H. Z. ; Wang Y. C. Amino-functionalized UiO-66-doped mixed matrix membranes with high permeation performance and fouling resistance . Chinese J. Chem. Eng. , 2024 , 67 , 68 - 77 . doi: 10.1016/j.cjche.2023.09.015 http://dx.doi.org/10.1016/j.cjche.2023.09.015
Wu X. ; Xie Z. L. ; Wang H. T. ; Zhao C. ; Ng D. ; Zhang K. S. Improved filtration performance and antifouling properties of polyethersulfone ultrafiltration membranes by blending with carboxylic acid functionalized polysulfone . RSC Adv. , 2018 , 8 ( 14 ), 7774 - 7784 . doi: 10.1039/c7ra12447c http://dx.doi.org/10.1039/c7ra12447c
Yang Y. ; Fan Y. F. ; Zhang J. K. ; Liang S. Q. ; Wang C. ; Geng Z. ; Su Z. M. ; Huo M. X. Study on the separation efficiency of hydrophilic PAES-COOH ultrafiltration membrane enhanced by micro-nano bubbles in low temperature environment . J. Water Process. Eng. , 2025 , 71 , 107310 . doi: 10.1016/j.jwpe.2025.107310 http://dx.doi.org/10.1016/j.jwpe.2025.107310
刘志勇 , 王锦艳 , 阎庆玲 , 寇艳 , 蹇锡高 . 含杂环聚芳醚腈酮的亲水改性 . 高分子学报 , 2006 , ( 7 ), 931 - 936 .
Zhao C. S. ; Xue J. M. ; Ran F. ; Sun S. D. Modification of polyethersulfone membranes—a review of methods . Prog. Mater. Sci. , 2013 , 58 ( 1 ), 76 - 150 . doi: 10.1016/j.pmatsci.2012.07.002 http://dx.doi.org/10.1016/j.pmatsci.2012.07.002
Wang S. ; Yin L. ; Dai J. N. ; Chen P. ; Wang S. Y. ; Zhao X. G. ; Chen C. H. ; Zhou H. W. Efficient co-removal of protein and dyes via hybrid ultrafiltration membranes based on carboxy-modified polyaryletherketone . Colloids Surf. A Physicochem. Eng. Aspects , 2024 , 700 , 134715 . doi: 10.1016/j.colsurfa.2024.134715 http://dx.doi.org/10.1016/j.colsurfa.2024.134715
Nunes S. P. ; Culfaz-Emecen P. Z. ; Ramon G. Z. ; Visser T. ; Koops G. H. ; Jin W. Q. ; Ulbricht M. Thinking the future of membranes: perspectives for advanced and new membrane materials and manufacturing processes . J. Membr. Sci. , 2020 , 598 , 117761 . doi: 10.1016/j.memsci.2019.117761 http://dx.doi.org/10.1016/j.memsci.2019.117761
Kallem P. ; Bharath G. ; Rambabu K. ; Srinivasakannan C. ; Banat F. Improved permeability and antifouling performance of polyethersulfone ultrafiltration membranes tailored by hydroxyapatite/boron nitride nanocomposites . Chemosphere , 2021 , 268 , 129306 . doi: 10.1016/j.chemosphere.2020.129306 http://dx.doi.org/10.1016/j.chemosphere.2020.129306
Kallem P. ; Ibrahim Y. ; Hasan S. W. ; Show P. L. ; Banat F. Fabrication of novel polyethersulfone (PES) hybrid ultrafiltration membranes with superior permeability and antifouling properties using environmentally friendly sulfonated functionalized polydopamine nanofillers . Sep. Purif. Technol. , 2021 , 261 , 118311 . doi: 10.1016/j.seppur.2021.118311 http://dx.doi.org/10.1016/j.seppur.2021.118311
Liu Z. X. ; Mi Z. M. ; Chen C. H. ; Zhou H. W. ; Zhao X. G. ; Wang D. M. Preparation of hydrophilic and antifouling polysulfone ultrafiltration membrane derived from phenolphthalin by copolymerization method . Appl. Surf. Sci. , 2017 , 401 , 69 - 78 . doi: 10.1016/j.apsusc.2016.12.228 http://dx.doi.org/10.1016/j.apsusc.2016.12.228
Wang Z. G. ; Chen T. L. ; Xu J. P. Gas and water vapor transport through a series of novel poly(aryl ether sulfone) membranes . Macromolecules , 2001 , 34 ( 26 ), 9015 - 9022 . doi: 10.1021/ma011185c http://dx.doi.org/10.1021/ma011185c
Geleta T. A. ; Maggay I. V. ; Chang Y. ; Venault A. Recent advances on the fabrication of antifouling phase-inversion membranes by physical blending modification method . Membranes , 2023 , 13 ( 1 ), 58 . doi: 10.3390/membranes13010058 http://dx.doi.org/10.3390/membranes13010058
Mu Y. F. ; Feng H. ; Wang S. D. ; Zhang S. L. ; Luan J. S. ; Zhang M. ; Yu Z. X. ; Wang G. B. Combined strategy of blending and surface modification as an effective route to prepare antifouling ultrafiltration membranes . J. Colloid Interface Sci. , 2021 , 589 , 1 - 12 . doi: 10.1016/j.jcis.2020.12.114 http://dx.doi.org/10.1016/j.jcis.2020.12.114
Heidari A. ; Abdollahi E. ; Mohammadi T. ; Asadi A. A. Improving permeability, hydrophilicity and antifouling characteristic of PES hollow fiber UF membrane using carboxylic PES: a promising substrate to fabricate NF layer . Sep. Purif. Technol. , 2021 , 270 , 118811 . doi: 10.1016/j.seppur.2021.118811 http://dx.doi.org/10.1016/j.seppur.2021.118811
Liu Z. X. ; Wang L. ; Mi Z. M. ; Jin S. Z. ; Wang D. M. ; Zhao X. G. ; Zhou H. W. ; Chen C. H. A carboxyl potassium salt polysulfone (PSF-COOK)-embedded mixed matrix membrane with high permeability and anti-fouling properties for the effective separation of dyes and salts . Appl. Surf. Sci. , 2019 , 490 , 7 - 17 . doi: 10.1016/j.apsusc.2019.06.063 http://dx.doi.org/10.1016/j.apsusc.2019.06.063
Liu Z. X. ; Mi Z. M. ; Jin S. Z. ; Wang C. B. ; Wang D. M. ; Zhao X. G. ; Zhou H. W. ; Chen C. H. The influence of sulfonated hyperbranched polyethersulfone-modified halloysite nanotubes on the compatibility and water separation performance of polyethersulfone hybrid ultrafiltration membranes . J. Membr. Sci. , 2018 , 557 , 13 - 23 . doi: 10.1016/j.memsci.2018.04.019 http://dx.doi.org/10.1016/j.memsci.2018.04.019
0
Views
101
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号