

浏览全部资源
扫码关注微信
1.大连海事大学 交通运输工程学院 大连 116026
2.中国科学院大连化学物理研究所 高性能高分子材料研究中心DN
L22 大连 116023
Ming-yi Liao, E-mail: liaomy@dlmu.edu.cn
Pi-bo Liu, E-mail: pibo.liu@dicp.ac.cn
Received:30 August 2025,
Accepted:12 November 2025,
Published Online:31 December 2025,
Published:20 January 2026
移动端阅览
赵彤瑶, 廖明义, 刘丕博. 结构可控聚亚丙烯荧光探针用于硝基芳烃的检测性能研究. 高分子学报, 2026, 57(1), 218-231.
Zhao, T. Y.; Liao, M. Y.; Liu, P. B. Fluorescent probes based on structure-controlled polypropenylenes for nitroaromatic detection. Acta Polymerica Sinica (in Chinese), 2026, 57(1), 218-231.
赵彤瑶, 廖明义, 刘丕博. 结构可控聚亚丙烯荧光探针用于硝基芳烃的检测性能研究. 高分子学报, 2026, 57(1), 218-231. DOI: 10.11777/j.issn1000-3304.2025.25217. CSTR: 32057.14.GFZXB.2025.7516.
Zhao, T. Y.; Liao, M. Y.; Liu, P. B. Fluorescent probes based on structure-controlled polypropenylenes for nitroaromatic detection. Acta Polymerica Sinica (in Chinese), 2026, 57(1), 218-231. DOI: 10.11777/j.issn1000-3304.2025.25217. CSTR: 32057.14.GFZXB.2025.7516.
为应对硝基芳烃类爆炸物构成的持续公共安全威胁,开发高灵敏、高选择性的检测方法至关重要,其中,开发具有新颖结构和独特传感机理的非共轭聚合物仍是该领域的一大挑战. 本工作以一类具有非传统发光特性的新兴不饱和聚合物(聚亚丙烯)为荧光探针,研究了其主链结构与侧链官能团(苯基及卤代苯基)对硝基芳烃荧光响应的构效关系. 结果表明,该系列聚合物对2
4
6-三硝基苯酚(TNP)、2
4
6-三硝基甲苯(TNT)及硝基苯(NB)均表现出显著的动态荧光淬灭,其中,对TNP的响应尤为突出,淬灭常数(
K
sv
)高达1.43×10
6
L/mol,检测极限(LOD)低至1.54×10
-7
mol/L,综合性能优于多数已报道的荧光探针材料. 机理研究表明其对硝基化合物的检测特性源于3-苯基聚亚丙烯(P3-PhAY)主链的超共轭效应及2-卤代苯基聚亚丙烯(P2-4FPhAY、P2-4ClPhAY和P2-4BrPhAY)侧链的卤素放大了光诱导电子转移(PET)过程,而与TNP之间独特的荧光共振能量转移(FRET)通道则赋予了体系超高的选择性. 本工作不仅为爆炸物检测提供了一种高性能探针,更通过阐明其“结构-机理-性能”关系,为设计新一代非共轭聚合物荧光传感器提供了全新的策略和理论依据.
In response to the persistent public security threat posed by nitroaromatic explosives
developing highly sensitive and selective detection methods is crucial. The development of nonconjugated polymers with novel structures and unique sensing mechanisms remains a major challenge in this field. This study investigated a class of emerging unsaturated polymers with non-traditional luminescent properties
polypropenylene
as a fluorescent probe
examining the structure-activity relationship between the backbone structure and side-chain functional groups (phenyl and halogenated phenyl) regarding their fluorescence response to nitroaromatic compounds. The results demonstrated that this series of polymers exhibited significant dynamic fluorescence quenching toward 2
4
6-trinitrophenol (TNP)
2
4
6-trinitrotoluene (TNT)
and nitrobenzene (NB). Among them
the response to TNP was particularly outstanding
with a quenching constant (
K
sv
) as high as 1.43×10
6
L/mol and a detection limit (LOD) as low as 1.54×10
-7
mol/L
outperforming most reported fluorescent sensing materials in terms of overall performance. More importantly
mechanistic studies revealed that the exceptional sensing performance originated from the hyperconjugation effect in the backbone of P3-PhAY and the halogen atoms in the side chains of P2-4FPhAY
P2-4ClPhAY
and P2-4BrPhAY
which collectively enhanced the photoinduced electron transfer (PET) process. Moreover
a unique fluorescence resonance energy transfer (FRET) pathway with TNP endows the system with ultra-high selectivity. This study not only provides a high-performance probe for explosive detection but also offers a novel strategy and theoretical foundation for designing a new generation of non-conjugated
polymer-based fluorescent sensors by elucidating the "structure-mechanism-performance" relationship.
De Iacovo A. ; Mitri F. ; De Santis S. ; Giansante C. ; Colace L. Colloidal quantum dots for explosive detection: trends and perspectives . ACS Sens. , 2024 , 9 ( 2 ), 555 - 576 . doi: 10.1021/acssensors.3c02097 http://dx.doi.org/10.1021/acssensors.3c02097
Junaid H. M. ; Waseem M. T. ; Khan Z. A. ; Gul H. ; Yu C. ; Shaikh A. J. ; Shahzad S. A. Fluorescent and colorimetric sensors for selective detection of TNT and TNP explosives in aqueous medium through fluorescence emission enhancement mechanism . J. Photochem. Photobiol. A Chem. , 2022 , 428 , 113865 . doi: 10.1016/j.jphotochem.2022.113865 http://dx.doi.org/10.1016/j.jphotochem.2022.113865
Walsh M. Determination of nitroaromatic, nitramine, and nitrate ester explosives in soil by gas chromatography and an electron capture detector . Talanta , 2001 , 54 ( 3 ), 427 - 438 . doi: 10.1016/s0039-9140(00)00541-5 http://dx.doi.org/10.1016/s0039-9140(00)00541-5
Hallowell S. Screening people for illicit substances: a survey of current portal technology . Talanta , 2001 , 54 ( 3 ), 447 - 458 . doi: 10.1016/s0039-9140(00)00543-9 http://dx.doi.org/10.1016/s0039-9140(00)00543-9
Sylvia J. M. ; Janni J. A. ; Klein J. D. ; Spencer K. M. Surface-enhanced Raman detection of 2,4-dinitrotoluene impurity vapor as a marker to locate landmines . Anal. Chem. , 2000 , 72 ( 23 ), 5834 - 5840 . doi: 10.1021/ac0006573 http://dx.doi.org/10.1021/ac0006573
Buryakov T. I. ; Buryakov I. A. Detection of trace amounts of explosives in the presence of lactic acid by ion mobility spectrometry . J. Anal. Chem. , 2022 , 77 ( 1 ), 43 - 52 . doi: 10.1134/s1061934821120030 http://dx.doi.org/10.1134/s1061934821120030
Vourvopoulos G. Pulsed fast/thermal neutron analysis: a technique for explosives detection . Talanta , 2001 , 54 ( 3 ), 459 - 468 . doi: 10.1016/s0039-9140(00)00544-0 http://dx.doi.org/10.1016/s0039-9140(00)00544-0
Swamy P C. A. ; Thilagar P. Polyfunctional Lewis acids: intriguing solid-state structure and selective detection and discrimination of nitroaromatic explosives . Chem. , 2015 , 21 ( 24 ), 8874 - 8882 . doi: 10.1002/chem.201500727 http://dx.doi.org/10.1002/chem.201500727
Yang Y. F. ; Gao F. C. ; Wang Y. D. ; Li H. ; Zhang J. ; Sun Z. W. ; Jiang Y. Y. Fluorescent organic small molecule probes for bioimaging and detection applications . Molecules , 2022 , 27 ( 23 ), 8421 . doi: 10.3390/molecules27238421 http://dx.doi.org/10.3390/molecules27238421
Liu W. ; Cui H. L. ; Zhou J. ; Su Z. T. ; Zhang Y. Z. ; Chen X. L. ; Yue E. L. Synthesis of a Cd-MOF fluorescence sensor and its detection of Fe 3+ , fluazinam, TNP, and sulfasalazine enteric-coated tablets in aqueous solution. ACS Omega, 2023 , 8 ( 27 ), 24635 - 24643 . doi: 10.1021/acsomega.3c03073 http://dx.doi.org/10.1021/acsomega.3c03073
Bonardd S. ; Díaz Díaz D. ; Leiva A. ; Saldías C. Chromophoric dendrimer-based materials: an overview of holistic-integrated molecular systems for fluorescence resonance energy transfer (FRET) phenomenon . Polymers , 2021 , 13 ( 24 ), 4404 . doi: 10.3390/polym13244404 http://dx.doi.org/10.3390/polym13244404
Wang Z. ; Ma J. ; Li C. L. ; Zhang H. C. Conjugated aggregation-induced fluorescent materials for biofluorescent probes: a review . Biosensors , 2023 , 13 ( 2 ), 159 . doi: 10.3390/bios13020159 http://dx.doi.org/10.3390/bios13020159
Ma H. W. ; He C. Y. ; Li X. L. ; Ablikim O. ; Zhang S. T. ; Zhang M. A fluorescent probe for TNP detection in aqueous solution based on joint properties of intramolecular charge transfer and aggregation-induced enhanced emission . Sens. Actuat. B Chem. , 2016 , 230 , 746 - 752 . doi: 10.1016/j.snb.2016.02.112 http://dx.doi.org/10.1016/j.snb.2016.02.112
Li D. D. ; Liu J. Z. ; Kwok R. T. K. ; Liang Z. Q. ; Tang B. Z. ; Yu J. H. Supersensitive detection of explosives by recyclable AIE luminogen-functionalized mesoporous materials . Chem. Commun. , 2012 , 48 ( 57 ), 7167 - 7169 . doi: 10.1039/c2cc31890c http://dx.doi.org/10.1039/c2cc31890c
Wang D. ; Hadjichristidis N. Terpolymers from borane-initiated copolymerization of triphenyl arsonium and sulfoxonium ylides: an unexpected light emission . Angew. Chem. Int. Ed. , 2019 , 58 ( 19 ), 6295 - 6299 . doi: 10.1002/anie.201901094 http://dx.doi.org/10.1002/anie.201901094
Elling B. R. ; Su J. K. ; Xia Y. Polymerization of cyclopropenes: taming the strain for the synthesis of controlled and sequence-regulated polymers . Acc. Chem. Res. , 2021 , 54 ( 2 ), 356 - 365 . doi: 10.1021/acs.accounts.0c00638 http://dx.doi.org/10.1021/acs.accounts.0c00638
Zhao T. Y. ; Liao M. Y. ; Bai Y. ; Hu Y. M. ; Liu P. B. ; Hadjichristidis N. Magnesium-mediated polymerization of halogenated phenyl-substituted arsonium ylides for the synthesis of functionalized C3 polymers . Eur. Polym. J. , 2025 , 236 , 114163 . doi: 10.1016/j.eurpolymj.2025.114163 http://dx.doi.org/10.1016/j.eurpolymj.2025.114163
Liu P. B. ; Hadjichristidis N. Boron-catalyzed polymerization of phenyl-substituted allylic arsonium ylides toward nonconjugated emissive materials from C3/C1 monomeric units . ACS Macro Lett. , 2021 , 10 ( 10 ), 1287 - 1294 . doi: 10.1021/acsmacrolett.1c00514 http://dx.doi.org/10.1021/acsmacrolett.1c00514
Lv M. H. ; Cai Z. X. ; Gao Y. ; Zhang Y. H. ; Wang T. T. ; Zhang Y. F. ; Song J. Q. ; Li W. Z. ; Liu J. Y. Theoretical study on the sensing mechanism of fluorescent probes based on benzimidazole for TNT and TNP detection . Chem. Phys. Lett. , 2024 , 839 , 141127 . doi: 10.1016/j.cplett.2024.141127 http://dx.doi.org/10.1016/j.cplett.2024.141127
Liu Y. S. ; Xue R. ; Zhu K. ; Yan B. σ - π Hyperconjugation as a design strategy for high-performance fluorescent covalent organic frameworks . Angew. Chem. Int. Ed. , 2025 , 64 ( 17 ), e 202425436 . doi: 10.1002/anie.202425436 http://dx.doi.org/10.1002/anie.202425436
Xu J. W. ; Wu X. ; Li J. S. ; Zhao Z. J. ; Tang B. Z. Regulating photophysical property of aggregation-induced delayed fluorescence luminogens via heavy atom effect to achieve efficient organic light-emitting diodes . Adv. Opt. Mater. , 2022 , 10 ( 7 ), 2102568 . doi: 10.1002/adom.202102568 http://dx.doi.org/10.1002/adom.202102568
Hu F. ; Long Z. C. ; Zhao F. M. ; Shi W. Q. ; Zhou M. ; Wang Q. M. Anti-heavy-atom effect observed in near-infrared emissive bimetallic nanoclusters Au 28 Cu 12 X 4 C l4 ( X = Cl, Br, and I) . J. Am. Chem. Soc. , 2025 , 147 ( 23 ), 19886 - 19892 . doi: 10.1021/jacs.5c04083 http://dx.doi.org/10.1021/jacs.5c04083
Li H. ; Li H. H. ; Gu J. ; He F. ; Peng H. ; Tao Y. ; Tian D. ; Yang Q. Q. ; Li P. ; Zheng C. ; Huang W. ; Chen R. F. Fluorine-induced aggregate-interlocking for color-tunable organic afterglow with a simultaneously improved efficiency and lifetime . Chem. Sci. , 2021 , 12 ( 10 ), 3580 - 3586 . doi: 10.1039/d0sc06025a http://dx.doi.org/10.1039/d0sc06025a
Gao Y. ; Qiu J. W. ; Liu M. ; Xiong X. Y. ; Zhu H. A guideline for design of photoinduced electron transfer-based viscosity probe with rigid fluorophore-quencher configuration . Chem. Eng. J. , 2023 , 466 , 143100 . doi: 10.1016/j.cej.2023.143100 http://dx.doi.org/10.1016/j.cej.2023.143100
Bhupathi P. ; Elhassan A-Elgadir T. M. ; Mohammed Ali R. H. ; Sanaan Jabbar H. ; Gulnoza D. ; Joshi S. K. ; Kadhem Abid M. ; Ahmed Said E. ; Alawadi A. ; Alsaalamy A. Fluorescence resonance energy transfer (FRET)-based sensor for detection of foodborne pathogenic bacteria: a review . Crit. Rev. Anal. Chem. , 2025 , 55 ( 2 ), 233 - 250 . doi: 10.1080/10408347.2023.2274050 http://dx.doi.org/10.1080/10408347.2023.2274050
Zheng Y. H. ; Miao M. S. ; Kemei M. C. ; Seshadri R. ; Wudl F. The pyreno-triazinyl radical-magnetic and sensor properties . Isr. J. Chem. , 2014 , 54 ( 5-6 ), 774 - 778 . doi: 10.1002/ijch.201400034 http://dx.doi.org/10.1002/ijch.201400034
Peng Y. ; Zhang A. J. ; Dong M. ; Wang Y. W. A colorimetric and fluorescent chemosensor for the detection of an explosive : 2 , 4 , 6 -trinitrophenol (TNP) . Chem. Commun., 2011, 47 ( 15 ), 4505 . doi: 10.1039/c1cc10400d http://dx.doi.org/10.1039/c1cc10400d
Ye J. W. ; Wang X. X. ; Bogale R. F. ; Zhao L. M. ; Cheng H. ; Gong W. T. ; Zhao J. Z. ; Ning G. L. A fluorescent zinc-pamoate coordination polymer for highly selective sensing of 2,4,6-trinitrophenol and Cu 2+ ion . Sens. Actuat. B Chem. , 2015 , 210 , 566 - 573 . doi: 10.1016/j.snb.2014.12.132 http://dx.doi.org/10.1016/j.snb.2014.12.132
Liu T. H. ; Zhao K. R. ; Liu K. ; Ding L. P. ; Yin S. W. ; Fang Y. Synthesis, optical properties and explosive sensing performances of a series of novel π-conjugated aromatic end-capped oligothiophenes . J. Hazard. Mater. , 2013 , 246 - 247 , 52 - 60 .
Xu Y. Q. ; Li B. H. ; Li W. W. ; Zhao J. ; Sun S. G. ; Pang Y. "ICT-not-quenching" near infrared ratiometric fluorescent detection of picric acid in aqueous media . Chem. Commun. , 2013 , 49 ( 42 ), 4764 - 4766 . doi: 10.1039/c3cc41994k http://dx.doi.org/10.1039/c3cc41994k
Ding A. X. ; Yang L. M. ; Zhang Y. Y. ; Zhang G. B. ; Kong L. ; Zhang X. J. ; Tian Y. P. ; Tao X. T. ; Yang J. X. Complex-formation-enhanced fluorescence quenching effect for efficient detection of picric acid . Chem. , 2014 , 20 ( 38 ), 12215 - 12222 . doi: 10.1002/chem.201402790 http://dx.doi.org/10.1002/chem.201402790
Meaney M. S. ; McGuffin V. L. Investigation of common fluorophores for the detection of nitrated explosives by fluorescence quenching . Anal. Chim. Acta , 2008 , 610 ( 1 ), 57 - 67 . doi: 10.1016/j.aca.2008.01.016 http://dx.doi.org/10.1016/j.aca.2008.01.016
Wei W. ; Huang X. B. ; Chen K. Y. ; Tao Y. M. ; Tang X. Z. Fluorescent organic-inorganic hybrid polyphosphazene microspheres for the trace detection of nitroaromatic explosives . RSC Adv. , 2012 , 2 ( 9 ), 3765 - 3771 . doi: 10.1039/c2ra20263h http://dx.doi.org/10.1039/c2ra20263h
Ramachandra S. ; Popovic' Z. D. ; Schuermann K. C. ; Cucinotta F. ; Calzaferri G. ; De Cola L. Förster resonance energy transfer in quantum dot-dye-loaded zeolite L nanoassemblies . Small , 2011 , 7 ( 10 ), 1488 - 1494 . doi: 10.1002/smll.201100010 http://dx.doi.org/10.1002/smll.201100010
0
Views
48
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号