

浏览全部资源
扫码关注微信
江南大学化学与材料工程学院 合成与生物胶体教育部重点实验室 无锡 214122
Received:30 August 2025,
Accepted:26 September 2025,
Published Online:19 November 2025,
Published:20 December 2025
移动端阅览
杨诗白, 任舒彤, 薛甜甜, 樊玮, 刘天西. 形状记忆高分子气凝胶复合材料研究进展. 高分子学报, 2025, 56(12), 2191-2217
Yang, S. B.; Ren. S. T.; Xue. T. T.; Fan, W.; Liu, T. X. Recent advances in shape memory polymer aerogels. Acta Polymerica Sinica, 2025, 56(12), 2191-2217
杨诗白, 任舒彤, 薛甜甜, 樊玮, 刘天西. 形状记忆高分子气凝胶复合材料研究进展. 高分子学报, 2025, 56(12), 2191-2217 DOI: 10.11777/j.issn1000-3304.2025.25219. CSTR: 32057.14.GFZXB.2025.7473.
Yang, S. B.; Ren. S. T.; Xue. T. T.; Fan, W.; Liu, T. X. Recent advances in shape memory polymer aerogels. Acta Polymerica Sinica, 2025, 56(12), 2191-2217 DOI: 10.11777/j.issn1000-3304.2025.25219. CSTR: 32057.14.GFZXB.2025.7473.
形状记忆高分子气凝胶(shape memory polymer aerogel
SMPA)是一类兼具多孔结构和刺激响应特性的智能材料,能够在温度、湿度、电场等外界刺激下发生可逆形变. 这类材料通过结合气凝胶的轻质多孔结构特性和形状记忆聚合物的刺激响应能力,在航空航天、智能电子、环境能源等领域展现出巨大潜力. 近年来,SMPA的研究在材料体系设计和性能优化方面取得了显著进展,本文系统综述了近年有关SMPA及其复合材料的结构、机理、性能及应用的研究成果,通过材料体系将SMPA分为合成基和生物基2类,讨论其制备方法和性能优化方式,并列举SMPA及其复合材料在不同领域的应用,有助于读者了解当前SMPA及其复合材料的发展趋势、应用和现存挑战,以望引发研究人员对这一领域的进一步探索.
Shape memory polymer aerogels (SMPAs) are a class of intelligent materials that combine a porous structure with stimuli-responsive properties
enabling reversible deformation under external stimuli such as heat
humidity
and electric fields. By integrating the lightweight porous characteristics of aerogels with the stimulus-responsive behavior of shape-memory polymers
SMPAs demonstrate significant potential in various fields including aerospace
smart electronics
and environmental energy applications. In recent years
substantial progress has been made in the design of material systems and performance optimization. This review systematically summarizes recent advances in the structure
mechanisms
properties
and applications of SMPAs and their composite materials. Based on material composition
SMPAs are categorized into synthetic-based and bio-based types
with discussions on their preparation methods and strategies for performance enhancement. Representative applications of SMPAs and their composite materials in different domains are also highlighted. This review aims to provide readers with insights into the current development trends
applications
and existing challenges of SMPAs and their composite materials
thereby inspiring further exploration in this promising field.
Liu T. Z. ; Deng R. ; Zhang Y. L. ; Yang J. L. ; Cai J. G. Composite negative stiffness structure with tunable and temperature-dependent properties induced by viscoelastic and shape-memory materials . Compos. Commun. , 2024 , 48 , 101937 . doi: 10.1016/j.coco.2024.101937 http://dx.doi.org/10.1016/j.coco.2024.101937
Du W. Q. ; Ren H. P. ; Xu W. L. ; Liu Y. Reversible shape memory behavior of knitting-fabric reinforced polymer matrix composites . Compos. Commun. , 2024 , 48 , 101962 . doi: 10.1016/j.coco.2024.101962 http://dx.doi.org/10.1016/j.coco.2024.101962
Yang H. ; D'Ambrosio N. ; Liu P. Y. ; Pasini D. ; Ma L. Shape memory mechanical metamaterials . Mater. Today , 2023 , 66 , 36 - 49 . doi: 10.1016/j.mattod.2023.04.003 http://dx.doi.org/10.1016/j.mattod.2023.04.003
Xu D. ; Ma L. W. ; Zhang F. ; Wang J. K. ; Zheng K. N. ; Guo S. Y. ; Chen H. Preparation of CNTs-SiO 2 hybrids/epoxy superhydrophobic coating with self-healing property activated by shape memory effect . Compos. Commun. , 2024 , 46 , 101839 . doi: 10.1016/j.coco.2024.101839 http://dx.doi.org/10.1016/j.coco.2024.101839
Ping Z. X. ; Xie F. ; Gong X. B. ; Zhang F. H. ; Zheng J. ; Liu Y. J. ; Leng J. S. Tailoring photoweldable shape memory poly urethane with intrinsic photothermal/fluorescence via engineering metal-phenolic systems . Adv. Funct. Mater. , 2024 , 34 ( 38 ), 2402592 . doi: 10.1002/adfm.202402592 http://dx.doi.org/10.1002/adfm.202402592
Liu Y. K. ; Wang L. L. ; Liu Y. J. ; Zhang F. H. ; Leng J. S. Recent progress in shape memory polymer composites: driving modes, forming technologies, and applications . Compos. Commun. , 2024 , 51 , 102062 . doi: 10.1016/j.coco.2024.102062 http://dx.doi.org/10.1016/j.coco.2024.102062
Lokesh N. ; Mallik U. S. ; Shivasiddaramaiaha A. G. ; Mohith T. H. ; Praveen N. Characterization and evaluation of shape memory effect of Cu-Zn-Al shape memory alloy . J. Mines Met. Fuels , 2022 , 324 - 331 . doi: 10.18311/jmmf/2022/31993 http://dx.doi.org/10.18311/jmmf/2022/31993
王晓晗 , 李洋 , 孙俊奇 . 基于聚乙烯醇的高强度可修复超分子形状记忆塑料 . 高分子学报 , 2021 , 52 ( 8 ), 1043 - 1052 . doi: 10.11777/j.issn1000-3304.2021.21133 http://dx.doi.org/10.11777/j.issn1000-3304.2021.21133
Tekay E. ; Aybakan B. ; Aslan V. U. 4D-printable thermo- and light-responsive triple-shape memory polymer nanocomposites containing titanium nitride nanoparticles . Compos. Commun. , 2025 , 56 , 102378 . doi: 10.1016/j.coco.2025.102378 http://dx.doi.org/10.1016/j.coco.2025.102378
Narayane D. ; Taiwade R. V. Tailoring the actuation characteristics of Ni-Ti shape memory alloy/polyimide thin film composites . Compos. Commun. , 2025 , 53 , 102220 . doi: 10.1016/j.coco.2024.102220 http://dx.doi.org/10.1016/j.coco.2024.102220
倪楚君 , 谢涛 . 可时空编程的超分子形状记忆高分子 . 高分子学报 , 2022 , 53 ( 10 ), 1161 - 1172 . doi: 10.11777/j.issn1000-3304.2022.22170 http://dx.doi.org/10.11777/j.issn1000-3304.2022.22170
Zeng C. J. ; Liu L. W. ; Du Y. ; Yu M. ; Xin X. Z. ; Xu P. L. ; Li F. F. ; Wang L. L. ; Zhang F. H. ; Liu Y. J. ; Leng J. S. Space-deployable device based on shape memory cyanate ester composites . Compos. Commun. , 2023 , 42 , 101690 . doi: 10.1016/j.coco.2023.101690 http://dx.doi.org/10.1016/j.coco.2023.101690
Chen L. ; Yang Q. B. ; Yang X. ; Liu Z. Q. ; Song Q. H. An investigation on thermo-mechanical performance of graphene-oxide-reinforced shape memory polymer . Nanotechnol. Rev. , 2022 , 11 ( 1 ), 2349 - 2365 . doi: 10.1515/ntrev-2022-0133 http://dx.doi.org/10.1515/ntrev-2022-0133
Yan Y. J. ; Xia H. ; Qiu Y. P. ; Xu Z. Z. ; Ni Q. Q. Multi-layer graphene oxide coated shape memory polyurethane for adjustable smart switches . Compos. Sci. Technol. , 2019 , 172 , 108 - 116 . doi: 10.1016/j.compscitech.2019.01.013 http://dx.doi.org/10.1016/j.compscitech.2019.01.013
Wu P. ; Yu T. Y. ; Chen M. J. ; Kang N. ; El Mansori M. Electrically/magnetically dual-driven shape memory composites fabricated by multi-material magnetic field-assisted 4D printing . Adv. Funct. Mater. , 2024 , 34 ( 27 ), 2314854 . doi: 10.1002/adfm.202470151 http://dx.doi.org/10.1002/adfm.202470151
Liao W. H. ; Dai N. Current status and challenges of lightweight design and manufacturing technology for aerospace structures . Sci. Insights Discov. Rev. , 2024 , 4 , 181 - 207 . doi: 10.59782/sidr.v4i1.143 http://dx.doi.org/10.59782/sidr.v4i1.143
周硕 , 杨松铭 , 袁金颖 . 基于二氧化碳响应的聚合物及复合材料的构建与功能 . 高分子学报 , 2023 , 54 ( 10 ), 1409 - 1425 .
Wang J. Y. ; Zhang Q. ; Zhang S. ; Liu R. Z. ; Zhang Y. ; Wang Y. M. ; Ming J. F. Multifunctional Polysulfonamide/AgNWs aerogel for electromagnetic interference shielding . Compos. Commun. , 2025 , 56 , 102346 . doi: 10.1016/j.coco.2025.102346 http://dx.doi.org/10.1016/j.coco.2025.102346
姚远 , 张晓红 , 茹越 , 乔金樑 . 超吸湿聚合物气凝胶的制备与性能 . 高分子学报 , 2023 , 54 ( 8 ), 1131 - 1138 . doi: 10.11777/j.issn1000-3304.2023.23044 http://dx.doi.org/10.11777/j.issn1000-3304.2023.23044
Shi W. Z. ; Dong J. K. ; Liu J. S. ; Lu S. F. Progress in the structure and applications of smart phase change materials with shape memory properties . J. Energy Storage , 2024 , 102 , 114138 . doi: 10.1016/j.est.2024.114138 http://dx.doi.org/10.1016/j.est.2024.114138
Liu P. P. ; Chen X. ; Li Y. ; Cheng P. ; Tang Z. D. ; Lv J. J. ; Aftab W. ; Wang G. Aerogels meet phase change materials: fundamentals, advances, and beyond . ACS Nano , 2022 , 16 ( 10 ), 15586 - 15626 . doi: 10.1021/acsnano.2c05067 http://dx.doi.org/10.1021/acsnano.2c05067
Zhou D. Z. ; Xue T. T. ; Fu Z. P. ; Wang S. Y. ; Zhang X. ; Fan W. ; Liu T. X. Lightweight fluorinated block copolyimide aerogels for high-temperature shape memory . Polymer , 2025 , 328 , 128430 . doi: 10.1016/j.polymer.2025.128430 http://dx.doi.org/10.1016/j.polymer.2025.128430
Qi S. Y. ; Tian X. Y. ; Yuan W. Z. High-stretchable solid-solid phase change aerogel surface-modified with Ni-MOF for efficient photothermal energy conversion-storage and thermal-induced shape programming . Adv. Funct. Mater. , 2025 , doi: 10.1002/adfm.2508204. http://dx.doi.org/10.1002/adfm.2508204.
Xiao X. L. ; Huang X. Y. ; Wang A. ; Cao S. J. ; Noroozi M. ; Panahi-Sarmad M. Subtle devising of electro-induced shape memory behavior for cellulose/graphene aerogel nanocomposite . Carbohydr. Polym. , 2022 , 281 , 119042 . doi: 10.1016/j.carbpol.2021.119042 http://dx.doi.org/10.1016/j.carbpol.2021.119042
Jia W. J. ; Zhu B. ; Zhang A. X. ; Hou H. W. ; Qu Z. ; Bu Y. Z. ; Liu L. ; Du B. J. Hydrophilic shape-memory nanozyme aerogel for the development of a reusable and signal-amplified sensor . Adv. Funct. Mater. , 2025 , 35 ( 23 ), 2418910 . doi: 10.1002/adfm.202418910 http://dx.doi.org/10.1002/adfm.202418910
Wang Q. Y. ; Zuo W. ; Tian Y. ; Kong L. C. ; Cai G. Y. ; Zhang H. R. ; Li L. P. ; Zhang J. Flexible brushite/nanofibrillated cellulose aerogels for efficient and selective removal of copper(II) . Chem. Eng. J. , 2022 , 450 , 138262 . doi: 10.1016/j.cej.2022.138262 http://dx.doi.org/10.1016/j.cej.2022.138262
Peng Z. Y. ; Yu C. Y. ; Zhong W. B. Facile preparation of a 3D porous aligned graphene-based wall network architecture by confined self-assembly with shape memory for artificial muscle, pressure sensor, and flexible supercapacitor . ACS Appl. Mater. Interfaces , 2022 , 14 ( 15 ), 17739 - 17753 . doi: 10.1021/acsami.2c00987 http://dx.doi.org/10.1021/acsami.2c00987
Michal B. T. ; Brenn W. A. ; Nguyen B. N. ; McCorkle L. S. ; Meador M. A. B. ; Rowan S. J. Thermoresponsive shape-memory aerogels from thiol-ene networks . Chem. Mater. , 2016 , 28 ( 7 ), 2341 - 2347 . doi: 10.1021/acs.chemmater.6b00474 http://dx.doi.org/10.1021/acs.chemmater.6b00474
Kitamura K. Shape memory properties of Ti-Ni shape memory alloy/shape memory polymer composites using additive manufacturing . Mater. Sci. Forum , 2021 , 1016 , 697 - 701 . doi: 10.4028/www.scientific.net/msf.1016.697 http://dx.doi.org/10.4028/www.scientific.net/msf.1016.697
Dayyoub T. ; Maksimkin A. V. ; Filippova O. V. ; Tcherdyntsev V. V. ; Telyshev D. V. Shape memory polymers as smart materials: a review . Polymers , 2022 , 14 ( 17 ), 3511 . doi: 10.3390/polym14173511 http://dx.doi.org/10.3390/polym14173511
Molaabasi F. ; Zare Y. ; Rhee K. Y. Simple models for tensile modulus of shape memory polymer nanocomposites at ambient temperature . Nanotechnol. Rev. , 2022 , 11 ( 1 ), 874 - 882 . doi: 10.1515/ntrev-2022-0053 http://dx.doi.org/10.1515/ntrev-2022-0053
Junio R. F. P. ; da Silveira P. H. P. M. ; de Mendonça Neuba L. ; Monteiro S. N. ; Nascimento L. F. C. Development and applications of 3D printing-processed auxetic structures for high-velocity impact protection: a review . Eng , 2023 , 4 ( 1 ), 903 - 940 . doi: 10.3390/eng4010054 http://dx.doi.org/10.3390/eng4010054
Shi T. ; Liu H. ; Wang X. D. Multi-stimuli-responsive shape memory flexible composites based on magnetic melamine/polydopamine/phosphorene complex foams and polyethylene glycol . Compos. Part A Appl. Sci. Manuf. , 2024 , 181 , 108117 . doi: 10.1016/j.compositesa.2024.108117 http://dx.doi.org/10.1016/j.compositesa.2024.108117
Guo Q. Y. ; Bishop C. J. ; Meyer R. A. ; Wilson D. R. ; Olasov L. ; Schlesinger D. E. ; Mather P. T. ; Spicer J. B. ; Elisseeff J. H. ; Green J. J. Entanglement-based thermoplastic shape memory polymeric particles with photothermal actuation for biomedical applications . ACS Appl. Mater. Interfaces , 2018 , 10 ( 16 ), 13333 - 13341 . doi: 10.1021/acsami.8b01582 http://dx.doi.org/10.1021/acsami.8b01582
Dong K. ; Wang Y. H. ; Wang Z. H. ; Qiu W. L. ; Zheng P. ; Xiong Y. Reusability and energy absorption behavior of 4D printed continuous fiber-reinforced auxetic composite structures . Compos. Part A Appl. Sci. Manuf. , 2023 , 169 , 107529 . doi: 10.1016/j.compositesa.2023.107529 http://dx.doi.org/10.1016/j.compositesa.2023.107529
Alsaadi M. ; Hinchy E. P. ; McCarthy C. T. ; Moritz V. F. ; Zhuo S. ; Fuenmayor E. ; Devine D. M. Liquid-based 4D printing of shape memory nanocomposites: a review . Journal Manuf. Mater. Process. , 2023 , 7 ( 1 ), 35 . doi: 10.3390/jmmp7010035 http://dx.doi.org/10.3390/jmmp7010035
Wang X. F. ; He Y. ; Xiao X. L. ; Liu Y. J. ; Leng J. S. Properties of shape memory polyimide composites with continuous "brick-and-mortar" layered structure: high flame retardancy, ablation resistance, and high mechanical properties . Compos. Part A Appl. Sci. Manuf. , 2024 , 181 , 108151 . doi: 10.1016/j.compositesa.2024.108151 http://dx.doi.org/10.1016/j.compositesa.2024.108151
Zhou Q. F. ; Hu X. H. ; Chen J. F. ; Chen Y. H. ; Liu L. ; Zhang Z. Z. ; Song X. F. Role of thermal property and interface in shape memory polymers . Surf. Interfaces , 2022 , 32 , 102121 . doi: 10.1016/j.surfin.2022.102121 http://dx.doi.org/10.1016/j.surfin.2022.102121
Hu J. L. ; Chen S. J. A review of actively moving polymers in textile applications . J. Mater. Chem. , 2010 , 20 ( 17 ), 3346 - 3355 . doi: 10.1039/b922872a http://dx.doi.org/10.1039/b922872a
Zende R. ; Ghase V. ; Jamdar V. A review on shape memory polymers . Polym. Plast. Technol. Mater. , 2023 , 62 ( 4 ), 467 - 485 . doi: 10.1080/25740881.2022.2121216 http://dx.doi.org/10.1080/25740881.2022.2121216
Liu X. ; Li H. ; Zhang Y. H. ; Yang Z. W. ; Gu Q. F. ; Wang X. H. ; Zhang Y. F. ; Yang J. C. Cryogenic temperature deformation behavior and shape memory mechanism of NiTiFe alloy . Intermetallics , 2023 , 162 , 107997 . doi: 10.1016/j.intermet.2023.107997 http://dx.doi.org/10.1016/j.intermet.2023.107997
Zhang R. ; Yan W. Q. ; Yang Q. ; Chen X. N. ; Chen K. ; Ding Y. ; Xue P. Analysis of thermal-active bending and cyclic tensile shape memory mechanism of UHMWPE/CNT composite . Polym. Compos. , 2022 , 43 ( 12 ), 9089 - 9099 . doi: 10.1002/pc.27086 http://dx.doi.org/10.1002/pc.27086
Zare M. ; Prabhakaran M. P. ; Parvin N. ; Ramakrishna S. Thermally-induced two-way shape memory polymers: mechanisms, structures, and applications . Chem. Eng. J. , 2019 , 374 , 706 - 720 . doi: 10.1016/j.cej.2019.05.167 http://dx.doi.org/10.1016/j.cej.2019.05.167
Zhang L. Y. ; Li X. ; Ding E. J. ; Guo Z. Y. ; Luo C. Y. ; Zhang H. ; Yu J. Y. Shape memory polyimide/carbon nanotube composite aerogels with physical and chemical crosslinking architectures for thermal insulating applications . Compos. Sci. Technol. , 2024 , 251 , 110588 . doi: 10.1016/j.compscitech.2024.110588 http://dx.doi.org/10.1016/j.compscitech.2024.110588
Khedaioui D. ; Boisson C. ; D'Agosto F. ; Montarnal D. Polyethylene aerogels with combined physical and chemical crosslinking: improved mechanical resilience and shape-memory properties . Angew. Chem. Int. Ed. , 2019 , 58 ( 44 ), 15883 - 15889 . doi: 10.1002/anie.201908257 http://dx.doi.org/10.1002/anie.201908257
Basak S. ; Bandyopadhyay A. Solvent responsive shape memory polymers- evolution, current status, and future outlook . Macromol. Chem. Phys. , 2021 , 222 ( 19 ), 2100195 . doi: 10.1002/macp.202100195 http://dx.doi.org/10.1002/macp.202100195
Li B. ; Xiao Y. ; Du L. ; Fan C. J. ; Xiao W. X. ; Yang K. K. ; Wang Y. Z. Fabrication of shape-memory aerogel based on chitosan/poly(ethylene glycol) diacrylate semi-interpenetrating networks via a facile and eco-friendly strategy . Macromol. Mater. Eng. , 2019 , 304 ( 8 ), 1900169 . doi: 10.1002/mame.201900169 http://dx.doi.org/10.1002/mame.201900169
Xia Y. L. ; He Y. ; Zhang F. H. ; Liu Y. J. ; Leng J. S. A review of shape memory polymers and composites: mechanisms, materials, and applications . Adv. Mater. , 2021 , 33 ( 6 ), 2000713 . doi: 10.1002/adma.202000713 http://dx.doi.org/10.1002/adma.202000713
Panahi-Sarmad M. ; Abrisham M. ; Noroozi M. ; Amirkiai A. ; Dehghan P. ; Goodarzi V. ; Zahiri B. Deep focusing on the role of microstructures in shape memory properties of polymer composites: a critical review . Eur. Polym. J. , 2019 , 117 , 280 - 303 . doi: 10.1016/j.eurpolymj.2019.05.013 http://dx.doi.org/10.1016/j.eurpolymj.2019.05.013
Zhou Y. ; Huang W. M. Shape memory effect in polymeric materials: mechanisms and optimization . Procedia IUTAM , 2015 , 12 , 83 - 92 . doi: 10.1016/j.piutam.2014.12.010 http://dx.doi.org/10.1016/j.piutam.2014.12.010
Jiang Z. C. ; Xiao Y. Y. ; Kang Y. ; Pan M. ; Li B. J. ; Zhang S. Shape memory polymers based on supramolecular interactions . ACS Appl. Mater. Interfaces , 2017 , 9 ( 24 ), 20276 - 20293 . doi: 10.1021/acsami.7b03624 http://dx.doi.org/10.1021/acsami.7b03624
Chen T. Z. ; Shao M. C. ; Zhang Y. M. ; Zhang X. R. ; Xu J. ; Li J. M. ; Wang T. M. ; Wang Q. H. Ultratough supramolecular polyurethane featuring an interwoven network with recyclability, ideal self-healing and editable shape memory properties . ACS Appl. Mater. Interfaces , 2024 , 16 ( 35 ), 46822 - 46833 . doi: 10.1021/acsami.4c10805 http://dx.doi.org/10.1021/acsami.4c10805
Zhao Q. ; Qi H. J. ; Xie T. Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding . Prog. Polym. Sci. , 2015 , 49 - 50 , 79 - 120 . doi: 10.1016/j.progpolymsci.2015.04.001 http://dx.doi.org/10.1016/j.progpolymsci.2015.04.001
Xu C. H. ; Lin B. F. ; Liang X. Q. ; Chen Y. K. Zinc dimethacrylate induced in situ interfacial compatibilization turns EPDM/PP TPVs into a shape memory material . Ind. Eng. Chem. Res. , 2016 , 55 ( 16 ), 4539 - 4548 . doi: 10.1021/acs.iecr.6b00612 http://dx.doi.org/10.1021/acs.iecr.6b00612
Choi S. ; Jang S. ; Yoo S. H. ; Lee G. W. ; Choi D. Evaluation of shape recovery performance of shape memory polymers with carbon-based fillers . Polymers , 2024 , 16 ( 17 ), 2425 . doi: 10.3390/polym16172425 http://dx.doi.org/10.3390/polym16172425
Huang S. ; Leary M. ; Ataalla T. ; Probst K. ; Subic A. Optimisation of Ni-Ti shape memory alloy response time by transient heat transfer analysis . Mater. Des. , 2012 , 35 , 655 - 663 . doi: 10.1016/j.matdes.2011.09.043 http://dx.doi.org/10.1016/j.matdes.2011.09.043
Heidarshenas M. ; Kokabi M. ; Hosseini H. Shape memory conductive electrospun PVA/MWCNT nanocomposite aerogels . Polym. J. , 2019 , 51 ( 6 ), 579 - 590 . doi: 10.1038/s41428-018-0167-y http://dx.doi.org/10.1038/s41428-018-0167-y
Wang C. C. ; Wang M. Q. ; Ying S. J. ; Gu J. P. Fast chemo-responsive shape memory of stretchable polymer nanocomposite aerogels fabricated by one-step method . Macromol. Mater. Eng. , 2020 , 305 ( 1 ), 1900602 . doi: 10.1002/mame.201900602 http://dx.doi.org/10.1002/mame.201900602
Staszczak M. ; Nabavian Kalat M. ; Golasiński K. M. ; Urbański L. ; Takeda K. ; Matsui R. ; Pieczyska E. A. Characterization of polyurethane shape memory polymer and determination of shape fixity and shape recovery in subsequent thermomechanical cycles . Polymers , 2022 , 14 ( 21 ), 4775 . doi: 10.3390/polym14214775 http://dx.doi.org/10.3390/polym14214775
Mao H. I. ; Chen C. W. ; Guo L. Y. ; Rwei S. P. Tunable shape memory property polyurethane with high glass transition temperature composed of polycarbonate diols . J. Appl. Polym. Sci. , 2022 , 139 ( 41 ), e 52986 . doi: 10.1002/app.52986 http://dx.doi.org/10.1002/app.52986
Shaheen ud Doulah A. B. M. ; Mandal C. ; Far H. M. ; Edlabadkar V. A. ; Soni R. U. ; Owusu S. Y. ; Leventis N. ; Sotiriou-Leventis C. Using catalysis to control the morphology and stiffness of shape memory poly(isocyanurate-urethane) (PIR-PUR) aerogels . ACS Appl. Polym. Mater. , 2023 , 5 ( 9 ), 6851 - 6863 . doi: 10.1021/acsapm.3c00882 http://dx.doi.org/10.1021/acsapm.3c00882
Malakooti S. ; ud Doulah A. B. M. S. ; Ren Y. ; Kulkarni V. N. ; Soni R. U. ; Edlabadkar V. A. ; Zhang R. Y. ; Vivod S. L. ; Sotiriou-Leventis C. ; Leventis N. ; Lu H. B. Meta-aerogels: auxetic shape-memory polyurethane aerogels . ACS Appl. Polym. Mater. , 2021 , 3 ( 11 ), 5727 - 5738 . doi: 10.1021/acsapm.1c00987 http://dx.doi.org/10.1021/acsapm.1c00987
Agrawal A. ; Joo P. ; Teo N. ; Jana S. C. Fabrication and characterization of re-entrant honeycomb polyurethane aerogels . ACS Appl. Polym. Mater. , 2022 , 4 ( 5 ), 3791 - 3801 . doi: 10.1021/acsapm.2c00269 http://dx.doi.org/10.1021/acsapm.2c00269
Teymouri M. ; Kokabi M. ; Alamdarnejad G. Conductive shape-memory polyurethane/multiwall carbon nanotube nanocomposite aerogels . J. Appl. Polym. Sci. , 2020 , 137 ( 17 ), 48602 . doi: 10.1002/app.48602 http://dx.doi.org/10.1002/app.48602
Hu W. W. ; Shi X. Y. ; Gao M. H. ; Huang C. H. ; Huang T. ; Zhang N. ; Yang J. H. ; Qi X. D. ; Wang Y. Light-actuated shape memory and self-healing phase change composites supported by MXene/waterborne polyurethane aerogel for superior solar-thermal energy storage . Compos. Commun. , 2021 , 28 , 100980 . doi: 10.1016/j.coco.2021.100980 http://dx.doi.org/10.1016/j.coco.2021.100980
Zhang W. T. ; Liu S. L. ; Liang X. Y. ; He J. Z. ; Lu Y. G. ; Wu Q. L. Super-elastic and multifunctional graphene aerogels with multilayer cross-linked pore structure for dynamic force sensing arrays . Carbon , 2025 , 236 , 120105 . doi: 10.1016/j.carbon.2025.120105 http://dx.doi.org/10.1016/j.carbon.2025.120105
Luo F. ; Lin C. J. ; Jiao L. ; Du Z. J. ; Dong Z. X. ; Dai X. M. ; Duan X. Z. ; Qiu X. P. High glass transition temperature and ultra-low thermal expansion coefficient polyimide films containing rigid pyridine and bisbenzoxazole units . J. Polym. Sci. , 2023 , 61 ( 13 ), 1289 - 1297 . doi: 10.1002/pol.20230086 http://dx.doi.org/10.1002/pol.20230086
刘婷 , 刘源 , 王晓栋 , 沈军 , 张泽 , 习爽 , 刘群 . 聚酰亚胺气凝胶材料的制备及其应用 . 工程科学学报 , 2020 , 42 ( 1 ), 39 - 47 .
Liu W. ; Li J. H. ; Liu J. S. ; Wang T. ; Zhong A. ; Zhang G. P. ; Liu Q. ; Sun R. ; Yu D. Q. Synthesis and properties study of a thermoplastic polyimide with high glass transition temperature for wafer level package . 2021 22nd International Conference on Electronic Packaging Technology (ICEPT). Xiamen , China , 2021 : 1 - 5 . doi: 10.1109/icept52650.2021.9568057 http://dx.doi.org/10.1109/icept52650.2021.9568057
Hou L. Y. ; Wu Y. Y. ; Xiao J. D. ; Guo B. ; Zong Y. Y. Degeneration and damage mechanism of epoxy-based shape memory polymer under 170 keV vacuum proton irradiation . Polym. Degrad. Stab. , 2019 , 166 , 8 - 16 . doi: 10.1016/j.polymdegradstab.2019.05.017 http://dx.doi.org/10.1016/j.polymdegradstab.2019.05.017
Li Y. ; Gao Z. Y. ; Wang Q. F. ; Xu M. S. ; Zhao X. C. ; Zhang T. ; Wang F. H. Effects of polyimide on corrosion and wear resistance of PEO composite coating on AZ91 Mg alloy . Surf. Coat. Technol. , 2024 , 489 , 131115 . doi: 10.1016/j.surfcoat.2024.131115 http://dx.doi.org/10.1016/j.surfcoat.2024.131115
Wang S. Y. ; Zhou D. Z. ; Tang Z. Y. ; Xia Y. ; Lv Y. ; Wang Z. C. ; Ma B. M. ; Zhang X. ; Fan W. ; Liu T. X. Highly loaded actuation achieved by shape memory block copolyimide aerogels with tunable distribution of stationary and reversible phases . Macromolecules , 2025 , 58 ( 11 ), 5852 - 5861 . doi: 10.1021/acs.macromol.5c00483 http://dx.doi.org/10.1021/acs.macromol.5c00483
Guo M. H. ; Zhang Y. F. ; Huang C. ; Zhao X. ; Yan X. P. ; Huang Y. P. ; Li L. ; Liu T. X. Shape memory polyimide aerogel composites with high programming temperatures and exceptional shape recovery capability . Compos. Part A Appl. Sci. Manuf. , 2023 , 174 , 107717 . doi: 10.1016/j.compositesa.2023.107717 http://dx.doi.org/10.1016/j.compositesa.2023.107717
Li X. ; Guo Z. Y. ; Yang P. Y. ; Zhao B. ; Li J. Q. ; Yin M. ; Liu W. S. ; Luo C. Y. ; Zhang L. Y. Regulating porous microstructure of polyimide aerogels toward efficient shape memory performance . Polymer , 2024 , 307 , 127224 . doi: 10.1016/j.polymer.2024.127224 http://dx.doi.org/10.1016/j.polymer.2024.127224
Fu Z. P. ; Yu D. Y. ; Xue T. T. ; Zhang X. ; Fan W. 3D printed polyimide-based composite aerogels with shape memory and thermal insulation properties . Compos. Commun. , 2025 , 56 , 102335 . doi: 10.1016/j.coco.2025.102335 http://dx.doi.org/10.1016/j.coco.2025.102335
Geng M. M. ; Liu T. ; Zhang X. ; Xue T. T. ; Fan W. ; Liu T. X. 4D printed shape memory polyimide composite aerogels with high recovery stress for load driving . ACS Appl. Mater. Interfaces , 2025 , 17 ( 9 ), 14615 - 14622 . doi: 10.1021/acsami.4c23086 http://dx.doi.org/10.1021/acsami.4c23086
Offia-Kalu N. E. ; Nwanonenyi S. C. ; Abdulhakeem B. ; Dzade N. Y. ; Onwalu P. A. Theoretical investigation of electronic, energetic, and mechanical properties of polyvinyl alcohol/cellulose composite hydrogel electrolyte . J. Mol. Graph. Model. , 2024 , 127 , 108667 . doi: 10.1016/j.jmgm.2023.108667 http://dx.doi.org/10.1016/j.jmgm.2023.108667
Li Y. ; Gong C. D. ; Li C. G. ; Ruan K. P. ; Liu C. ; Liu H. ; Gu J. W. Liquid crystalline texture and hydrogen bond on the thermal conductivities of intrinsic thermal conductive polymer films . J. Mater. Sci. Technol. , 2021 , 82 , 250 - 256 . doi: 10.1016/j.jmst.2021.01.017 http://dx.doi.org/10.1016/j.jmst.2021.01.017
Putri R. M. ; Floweri O. ; Mayangsari T. R. ; Aimon A. H. ; Iskandar F. Preliminary study of electrochemical properties of polyethylene oxide (PEO) and polyvinyl alcohol (PVA) composites as material for solid polymer electrolyte . Mater. Today Proc. , 2021 , 44 , 3375 - 3377 . doi: 10.1016/j.matpr.2020.11.663 http://dx.doi.org/10.1016/j.matpr.2020.11.663
Mohsenian Z. ; Kokabi M. ; Alamdarnejad G. Shape memory behaviour of polyvinyl alcohol aerogels cross-linked with Fe 3+ & Cu 2+ metallic ions . Smart Mater. Struct. , 2023 , 32 ( 8 ), 085005 . doi: 10.1088/1361-665x/acdf9c http://dx.doi.org/10.1088/1361-665x/acdf9c
Lv C. Z. ; Zhou Z. J. ; Li Y. Q. ; Lu S. R. ; Bai Y. K. Multi-responsive shape memory porous composites for self-powered sensors and self-sensing actuators . Chem. Eng. J. , 2023 , 477 , 147059 . doi: 10.1016/j.cej.2023.147059 http://dx.doi.org/10.1016/j.cej.2023.147059
Li L. S. ; Yang G. D. ; Lyu J. ; Sheng Z. Z. ; Ma F. G. ; Zhang X. T. Folk arts-inspired twice-coagulated configuration-editable tough aerogels enabled by transformable gel precursors . Nat. Commun. , 2023 , 14 ( 1 ), 8450 . doi: 10.1038/s41467-023-44156-4 http://dx.doi.org/10.1038/s41467-023-44156-4
Yu C. ; Shi Q. Q. ; Zhao H. F. ; Guo J. H. ; Lin D. X. ; Yao Y. W. ; Zhang X. ; Jiang X. H. Multilayer polyvinyl alcohol/carbon composite aerogels with broadband microwave and noise absorption and novel shape memory effect . Adv. Funct. Mater. , 2025 , doi: 10.1002/adfm.2502749. http://dx.doi.org/10.1002/adfm.2502749.
Sun Y. ; Kim M. K. ; Wang M. ; Yu J. M. ; Hong S. Y. ; Nam J. D. ; Ci L. J. ; Suhr J. Bio-inspired multiple-stimuli responsive porous materials with switchable flexibility and programmable shape morphing capability . Carbon , 2020 , 161 , 702 - 711 . doi: 10.1016/j.carbon.2020.01.104 http://dx.doi.org/10.1016/j.carbon.2020.01.104
Wang M. ; Song Y. ; Bisoyi H. K. ; Yang J. F. ; Liu L. ; Yang H. ; Li Q. A liquid crystal elastomer-based unprecedented two-way shape-memory aerogel . Adv. Sci. , 2021 , 8 ( 22 ), 2102674 . doi: 10.1002/advs.202170151 http://dx.doi.org/10.1002/advs.202170151
Wang M. ; Li J. S. ; Yang H. Dynamic diselenide bond-enabled liquid crystal elastomer-based two-way shape memory aerogels with weldability and closed-loop recyclability . Smart Mol. , 2023 , 1 ( 3 ), e 20230009 . doi: 10.1002/smo.20230009 http://dx.doi.org/10.1002/smo.20230009
Jing S. R. ; Huang J. H. ; Wang H. ; Wang Y. L. ; Xie H. ; Zhou S. B. A solvent-templated porous liquid crystal elastomer with tactile sensation beyond reversible actuation toward versatile artificial muscles . ACS Appl. Mater. Interfaces , 2024 , 16 ( 19 ), 25404 - 25414 . doi: 10.1021/acsami.4c03930 http://dx.doi.org/10.1021/acsami.4c03930
Dong H. P. ; Li X. Z. ; Cai Z. Y. ; Wei S. ; Fan S. T. ; Ge Y. L. ; Li X. J. ; Wu Y. Q. Strong, lightweight, and shape-memory bamboo-derived all-cellulose aerogels for versatile scaffolds of sustainable multifunctional materials . Small , 2024 , 20 ( 4 ), 2305857 . doi: 10.1002/smll.202305857 http://dx.doi.org/10.1002/smll.202305857
Garemark J. ; Perea-Buceta J. E. ; Felhofer M. ; Chen B. ; Cortes Ruiz M. F. ; Sapouna I. ; Gierlinger N. ; Kilpeläinen I. A. ; Berglund L. A. ; Li Y. Y. Strong, shape-memory lignocellulosic aerogel via wood cell wall nanoscale reassembly . ACS Nano , 2023 , 17 ( 5 ), 4775 - 4789 . doi: 10.1021/acsnano.2c11220 http://dx.doi.org/10.1021/acsnano.2c11220
Song W. L. ; Pan X. S. ; Wang X. J. ; Wang H. ; Li J. L. ; Li D. N. ; Ma X. J. ; Yin F. Load-bearing structure inspired cellulose-based aerogel with high resilience and water tolerance . Adv. Funct. Mater. , 2025 , 35 ( 9 ), 2415937 . doi: 10.1002/adfm.202415937 http://dx.doi.org/10.1002/adfm.202415937
Sun Y. ; Ye W. J. ; Xi J. F. ; Chu Y. L. ; Xiao H. N. ; Wu W. B. Ultralight and shape recovery bio-based aerogel for oil-water separation . J. Environ. Chem. Eng. , 2022 , 10 ( 6 ), 108822 . doi: 10.1016/j.jece.2022.108822 http://dx.doi.org/10.1016/j.jece.2022.108822
张珂 , 张茜 , 方宇嘉 , 蔡杰 . 基于Hofmeister效应制备高强韧壳聚糖气凝胶 . 高分子学报 , 2023 , 54 ( 5 ), 731 - 740 .
Varamesh A. ; Abraham B. D. ; Wang H. ; Berton P. ; Zhao H. ; Gourlay K. ; Minhas G. ; Lu Q. Y. ; Bryant S. L. ; Hu J. G. Multifunctional fully biobased aerogels for water remediation: applications for dye and heavy metal adsorption and oil/water separation . J. Hazard. Mater. , 2023 , 457 , 131824 . doi: 10.1016/j.jhazmat.2023.131824 http://dx.doi.org/10.1016/j.jhazmat.2023.131824
Shi W. ; Ching Y. C. ; Chuah C. H. Preparation of aerogel beads and microspheres based on chitosan and cellulose for drug delivery: a review . Int. J. Biol. Macromol. , 2021 , 170 , 751 - 767 . doi: 10.1016/j.ijbiomac.2020.12.214 http://dx.doi.org/10.1016/j.ijbiomac.2020.12.214
Tang W. F. ; Zhang A. Z. ; Cheng Y. W. ; Dessie W. ; Liao Y. H. ; Chen H. F. ; Qin Z. D. ; Wang X. ; Jin X. D. Fabrication and application of chitosan-based biomass composites with fire safety, water treatment and antibacterial properties . Int. J. Biol. Macromol. , 2023 , 225 , 266 - 276 . doi: 10.1016/j.ijbiomac.2022.10.261 http://dx.doi.org/10.1016/j.ijbiomac.2022.10.261
Liu Y. ; Ma M. J. ; Shen Y. ; Zhao Z. D. ; Wang X. F. ; Wang J. Q. ; Pan J. B. ; Wang D. ; Wang C. Y. ; Li J. Polyhedral oligomeric sesquioxane cross-linked chitosan-based multi-effective aerogel preparation and its water-driven recovery mechanism . Gels , 2024 , 10 ( 4 ), 279 . doi: 10.3390/gels10040279 http://dx.doi.org/10.3390/gels10040279
Wang D. ; Huang T. ; Zhang T. ; Han W. ; Yu D. ; Wang W. Adaptive infrared stealth aerogel based on temperature-responsive variable emissivity and shape memory thermal isolation effects . ACS Appl. Polym. Mater. , 2025 , 7 , 11117 - 11127 . doi: 10.1021/acsapm.5c01535 http://dx.doi.org/10.1021/acsapm.5c01535
Wang K. L. ; Liu X. R. ; Tan Y. ; Zhang W. ; Zhang S. F. ; Li J. Z. Two-dimensional membrane and three-dimensional bulk aerogel materials via top-down wood nanotechnology for multibehavioral and reusable oil/water separation . Chem. Eng. J. , 2019 , 371 , 769 - 780 . doi: 10.1016/j.cej.2019.04.108 http://dx.doi.org/10.1016/j.cej.2019.04.108
Wang H. Y. ; Liu D. Y. ; Zhang K. N. ; Qian C. ; Dong Y. B. ; Jamaluddin N. ; Matmin J. ; Zhu Y. F. Shape memory HCNTs/PANI/WPU aerogels as dynamically tunable microwave absorbers in response to mechanical deformation . J. Alloys Compd. , 2025 , 1036 , 181930 . doi: 10.1016/j.jallcom.2025.181930 http://dx.doi.org/10.1016/j.jallcom.2025.181930
Hu L. K. ; Luo L. ; Zhang F. H. ; Liu Y. J. ; Leng J. S. Self-Sensing shape memory boron Phenolic-Formaldehyde aerogels with tunable heat insulation for smart thermal protection systems . Chem. Eng. J. , 2025 , 505 , 159558 . doi: 10.1016/j.cej.2025.159558 http://dx.doi.org/10.1016/j.cej.2025.159558
Hu R. X. ; Zhang F. H. ; Luo L. ; Wang L. L. ; Liu Y. J. ; Leng J. S. Reconfigurable high-temperature thermal protection shape memory aerogel based on phthalonitrile resin with facile template method . Carbon , 2025 , 242 , 120378 . doi: 10.1016/j.carbon.2025.120378 http://dx.doi.org/10.1016/j.carbon.2025.120378
Zhao R. X. ; Kang S. B. ; Wu C. ; Cheng Z. J. ; Xie Z. M. ; Liu Y. Y. ; Zhang D. J. Designable electrical/thermal coordinated dual-regulation based on liquid metal shape memory polymer foam for smart switch . Adv. Sci. , 2023 , 10 ( 8 ), 2205428 . doi: 10.1002/advs.202205428 http://dx.doi.org/10.1002/advs.202205428
Huang J. H. ; Liu H. ; Chen Q. Y. ; Xie H. ; Zhou S. B. Shape-programmable lamellar aerogel enabling 3D wireless point-of-care electronics for assistance in pressure injury prevention . Adv. Funct. Mater. , 2025 , 35 ( 13 ), 2418037 . doi: 10.1002/adfm.202418037 http://dx.doi.org/10.1002/adfm.202418037
0
Views
1519
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号