

浏览全部资源
扫码关注微信
清华大学化学系 北京 100084
Received:08 September 2025,
Accepted:26 October 2025,
Published Online:10 December 2025,
Published:20 December 2025
移动端阅览
杨湉湉, 许华平. 光响应智能自适应材料体系:光控拓扑重构聚合物. 高分子学报, 2025, 56(12), 2302-2333
Yang T. T.; Xu H. P. Photo-responsive intelligent adaptive material systems: light-controlled topological reconfiguration polymers. Acta Polymerica Sinica, 2025, 56(12), 2302-2333
杨湉湉, 许华平. 光响应智能自适应材料体系:光控拓扑重构聚合物. 高分子学报, 2025, 56(12), 2302-2333 DOI: 10.11777/j.issn1000-3304.2025.25220. CSTR: 32057.14.GFZXB.2025.7502.
Yang T. T.; Xu H. P. Photo-responsive intelligent adaptive material systems: light-controlled topological reconfiguration polymers. Acta Polymerica Sinica, 2025, 56(12), 2302-2333 DOI: 10.11777/j.issn1000-3304.2025.25220. CSTR: 32057.14.GFZXB.2025.7502.
智能自适应材料作为现代高新材料系统重要的组成部分,被广泛应用于制造业、光电子、生物纳米应用等前沿领域.由于相比于其他刺激源(如温度、pH等),光信号具有清洁可再生、高时空分辨率等优点,因此基于光响应的智能自适应材料近年来基础研究与技术应用层面均得到大力发展. 聚合物的拓扑结构作为材料性能的决定性因素,其动态重构能力直接影响材料的智能化水平,因此光诱导拓扑重构成为构建光响应智能自适应材料的核心策略. 本综述首先系统梳理了光响应材料中常用光敏基团的光诱导化学/物理反应机制,继而聚焦光控拓扑结构转变的多层级响应过程:通过典型案例分析,阐明光敏基团的异构化、解离/重组等行为在聚合物链段层级(如交联密度调控)、网络层级(如三维拓扑重构)、网络贯通性层面(如链断裂降解)以及界面工程中的调控机制与功能化设计. 最后,针对当前光控重构材料存在的响应速率不足、效率低、光毒性及生物毒性难以消解等瓶颈问题进行分析,并展望其在自适应涂层、可编程软机器人等领域的应用前景.
Intelligent adaptive materials constitute a vital component
of modern advanced material systems. Compared to other stimuli such as temperature and pH
light exhibit advantageous characters including cleanliness
renewability
and high spatiotemporal resolution. As a result
light-responsive intelligent adaptive materials have witnessed significant development in recent years
both in fundamental research and technological applications. They are now widely applied in frontier fields such as manufacturing
optoelectronics
and bio-nano applications. Polymer topology network
as a decisive factor in material properties
directly influences the material intelligence level through its dynamic reconfiguration capability. This review begins with systematically summarizing the photochemical/physical reaction mechanisms of commonly used photosensitive moieties in light-responsive materials. It then focuses on the multi-level response processes involved in light-controlled topological transformations: through analysis of representative cases
the review elucidates the modulation mechanisms of photo-induced behaviours in photosensitive groups (including isomerization
dissociation/recombination) on material topological structures across multiple molecular-scale aspects—including polymer chain segments (
e.g.
alteration of crosslinking density)
network architecture (
e.g.
three-dimensional topological reconfiguration)
network integrity (
e.g.
chain scission and degradation)
and interface engineering. Finally
the review analyzes current bottlenecks in light-controlled topology reconfigurable materials—such as insufficient response rates
low efficiency
and challenges in mitigating phototoxicity and biotoxicity
and envision their applications in fields like adaptive coatings and programmable soft robotics.
Roy N. ; Bruchmann B. ; Lehn J. M. DYNAMERS: dynamic polymers as self-healing materials . Chem. Soc. Rev. , 2015 , 44 ( 11 ), 3786 - 3807 . doi: 10.1039/c5cs00194c http://dx.doi.org/10.1039/c5cs00194c
Wemyss A. M. ; Ellingford C. ; Morishita Y. ; Bowen C. ; Wan C. Y. Dynamic polymer networks: a new avenue towards sustainable and advanced soft machines . Angew. Chem. Int. Ed. , 2021 , 60 ( 25 ), 13725 - 13736 . doi: 10.1002/anie.202013254 http://dx.doi.org/10.1002/anie.202013254
Lei Z. P. ; Chen H. X. ; Huang S. F. ; Wayment L. J. ; Xu Q. C. ; Zhang W. New advances in covalent network polymers via dynamic covalent chemistry . Chem. Rev. , 2024 , 124 ( 12 ), 7829 - 7906 . doi: 10.1021/acs.chemrev.3c00926 http://dx.doi.org/10.1021/acs.chemrev.3c00926
Maes S. ; Badi N. ; Winne J. M. ; Du PrezF. E. Taking dynamic covalent chemistry out of the lab and into reprocessable industrial thermosets . Nat. Rev. Chem. , 2025 , 9 ( 3 ), 144 - 158 . doi: 10.1038/s41570-025-00686-7 http://dx.doi.org/10.1038/s41570-025-00686-7
Frisch H. ; Marschner D. E. ; Goldmann A. S. ; Barner-Kowollik C. Wavelength-gated dynamic covalent chemistry . Angew. Chem. Int. Ed. , 2018 , 57 ( 8 ), 2036 - 2045 . doi: 10.1002/anie.201709991 http://dx.doi.org/10.1002/anie.201709991
Hansen M. J. ; Velema W. A. ; Lerch M. M. ; Szymanski W. ; Feringa B. L. Wavelength-selective cleavage of photoprotecting groups: strategies and applications in dynamic systems . Chem. Soc. Rev. , 2015 , 44 ( 11 ), 3358 - 3377 . doi: 10.1039/c5cs00118h http://dx.doi.org/10.1039/c5cs00118h
Kathan M. ; Hecht S. Photoswitchable molecules as key ingredients to drive systems away from the global thermodynamic minimum . Chem. Soc. Rev. , 2017 , 46 ( 18 ), 5536 - 5550 . doi: 10.1039/c7cs00112f http://dx.doi.org/10.1039/c7cs00112f
Herder M. ; Lehn J. M. The photodynamic covalent bond: sensitized alkoxyamines as a tool to shift reaction networks out-of-equilibrium using light energy . J. Am. Chem. Soc. , 2018 , 140 ( 24 ), 7647 - 7657 . doi: 10.1021/jacs.8b03633 http://dx.doi.org/10.1021/jacs.8b03633
Weng B. ; Zhang M. ; Lin Y. Z. ; Yang J. C. ; Lv J. Q. ; Han N. ; Xie J. F. ; Jia H. P. ; Su B. L. ; Roeffaers M. ; Hofkens J. ; Zhu Y. F. ; Wang S. B. ; Choi W. ; Zheng Y. M. Photo-assisted technologies for environmental remediation . Nat. Rev. Clean Technol. , 2025 , 1 ( 3 ), 201 - 215 . doi: 10.1038/s44359-025-00037-1 http://dx.doi.org/10.1038/s44359-025-00037-1
Lam K. Y. ; Lee C. S. ; Pichika M. R. ; Cheng S. F. ; Hang Tan R. Y. Light-responsive polyurethanes: classification of light-responsive moieties, light-responsive reactions, and their applications . RSC Adv. , 2022 , 12 ( 24 ), 15261 - 15283 . doi: 10.1039/d2ra01506d http://dx.doi.org/10.1039/d2ra01506d
Lu H. W. ; Ye H. B. ; Zhang M. L. ; Liu Z. M. ; Zou H. X. ; You L. Photoswitchable dynamic conjugate addition-elimination reactions as a tool for light-mediated click and clip chemistry . Nat. Commun. , 2023 , 14 , 4015 . doi: 10.1038/s41467-023-39669-x http://dx.doi.org/10.1038/s41467-023-39669-x
Xu F. ; Feringa B. L. Photoresponsive supramolecular polymers: from light-controlled small molecules to smart materials . Adv. Mater. , 2023 , 35 ( 10 ), 2204413 . doi: 10.1002/adma.202204413 http://dx.doi.org/10.1002/adma.202204413
Younis M. ; Ahmad S. ; Atiq A. ; Amjad Farooq M. ; Huang M. H. ; Abbas M. Recent progress in azobenzene-based supramolecular materials and applications . Chem. Rec. , 2023 , 23 ( 11 ), e 202300126 . doi: 10.1002/tcr.202300126 http://dx.doi.org/10.1002/tcr.202300126
钱思佳 , 聂慧君 , 李申振 , 张望清 . 光响应性高分子的合成与应用 . 中国科学 : 化学 , 2019 , 49 ( 5 ), 704 - 715 .
Xiong X. ; del Campo A. ; Cui J. Photoresponsive polymers . Smart Polymers and their Applications. Amsterdam : Elsevier , 2019 , 87 - 153 . doi: 10.1016/b978-0-08-102416-4.00004-1 http://dx.doi.org/10.1016/b978-0-08-102416-4.00004-1
Upadhyay K. ; Thomas S. ; Tamrakar R. K. ; Kalarikkal N. Advanced Functional Polymers for Biomedical Applications . Amsterdam : Elsevier , 2019 , 211 - 233 . doi: 10.1016/b978-0-12-816349-8.00011-4 http://dx.doi.org/10.1016/b978-0-12-816349-8.00011-4
Limarun P. ; Buaksuntear K. ; Jansrinak S. ; Julbust A. ; Phongphanphanee S. ; Yangthong H. ; Suethao S. ; Kaewpradit P. ; Jittham P. ; Sucharitpwatskul S. ; Mougin K. ; Spangenberg A. ; Le Duigou A. ; Smitthipong W. Photostimulus-responsive non-covalent interactions in polymers: a review . Chinese J. Polym. Sci. , 2025 , 43 ( 5 ), 677 - 694 . doi: 10.1007/s10118-025-3301-2 http://dx.doi.org/10.1007/s10118-025-3301-2
Ping X. N. ; Pan J. J. ; Peng X. ; Yao C. Y. ; Li T. ; Feng H. ; Qian Z. S. Recent advances in photoresponsive fluorescent materials based on [2+2 ] reactionsphotocycloaddition. J. Mater. Chem. C , 2023 , 11 ( 23 ), 7510 - 7525 . doi: 10.1039/d3tc01430d http://dx.doi.org/10.1039/d3tc01430d
Ercole F. ; Davis T. P. ; Evans R. A. Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond . Polym. Chem. , 2010 , 1 ( 1 ), 37 - 54 . doi: 10.1039/b9py00300b http://dx.doi.org/10.1039/b9py00300b
Liang S. F. ; Yuan C. R. ; Wang M. H. ; Wu S. Photoresponsive polymer nanocomposites: dynamic materials with photocontrolled functions . CCS Chem. , 2025 , 7 ( 10 ), 2950 - 2969 . doi: 10.31635/ccschem.025.202505777 http://dx.doi.org/10.31635/ccschem.025.202505777
Trenor S. R. ; Shultz A. R. ; Love B. J. ; Long T. E. Coumarins in polymers: from light harvesting to photo-cross-linkable tissue scaffolds . Chem. Rev. , 2004 , 104 ( 6 ), 3059 - 3078 . doi: 10.1021/cr030037c http://dx.doi.org/10.1021/cr030037c
Masai H. ; Nakagawa T. ; Jun T. R. Recent progress in photoreactive crosslinkers in polymer network materials toward advanced photocontrollability . Polym. J. , 2024 , 56 ( 4 ), 297 - 307 . doi: 10.1038/s41428-023-00875-5 http://dx.doi.org/10.1038/s41428-023-00875-5
Helmy S. ; Leibfarth F. A. ; Oh S. ; Poelma J. E. ; Hawker C. J. ; Read de Alaniz J. Photoswitching using visible light: a new class of organic photochromic molecules . J. Am. Chem. Soc. , 2014 , 136 ( 23 ), 8169 - 8172 . doi: 10.1021/ja503016b http://dx.doi.org/10.1021/ja503016b
Zhang Y. X. ; Huang J. ; Zhang J. ; Ren N. ; Tong G. S. ; Zhu X. Y. Dual photo/thermo-responsive polypeptoids . Chinese J. Polym. Sci. , 2023 , 41 ( 1 ), 24 - 31 . doi: 10.1007/s10118-022-2837-7 http://dx.doi.org/10.1007/s10118-022-2837-7
Saura-Sanmartin A. Photoresponsive metal-organic frameworks as adjustable scaffolds in reticular chemistry . Int. J. Mol. Sci. , 2022 , 23 ( 13 ), 7121 . doi: 10.3390/ijms23137121 http://dx.doi.org/10.3390/ijms23137121
Gao M. H. ; Kwaria D. ; Norikane Y. ; Yue Y. F. Visible-light-switchable azobenzenes: molecular design, supramolecular systems, and applications . Nat. Sci. , 2023 , 3 ( 1 ), e 220020 . doi: 10.1002/ntls.20220020 http://dx.doi.org/10.1002/ntls.20220020
Wang Y. C. ; Yin R. ; Jin L. S. ; Liu M. Z. ; Gao Y. C. ; Raney J. ; Yang S. 3D-printed photoresponsive liquid crystal elastomer composites for free-form actuation . Adv. Funct. Mater. , 2023 , 33 ( 4 ), 2210614 . doi: 10.1002/adfm.202210614 http://dx.doi.org/10.1002/adfm.202210614
Ji S. B. ; Cao W. ; Yu Y. ; Xu H. P. Visible-light-induced self-healing diselenide-containing polyurethane elastomer . Adv. Mater. , 2015 , 27 ( 47 ), 7740 - 7745 . doi: 10.1002/adma.201503661 http://dx.doi.org/10.1002/adma.201503661
Fan F. Q. ; Ji S. B. ; Sun C. X. ; Liu C. ; Yu Y. ; Fu Y. ; Xu H. P. Wavelength-controlled dynamic metathesis: a light-driven exchange reaction between disulfide and diselenide bonds . Angew. Chem. Int. Ed. , 2018 , 57 ( 50 ), 16426 - 16430 . doi: 10.1002/anie.201810297 http://dx.doi.org/10.1002/anie.201810297
Sadownik J. W. ; Mattia E. ; Nowak P. ; Otto S. Diversification of self-replicating molecules . Nat. Chem. , 2016 , 8 ( 3 ), 264 - 269 . doi: 10.1038/nchem.2419 http://dx.doi.org/10.1038/nchem.2419
Otto S. ; Furlan R. L. E. ; Sanders J. K. M. Dynamic combinatorial libraries of macrocyclic disulfides in water . J. Am. Chem. Soc. , 2000 , 122 ( 48 ), 12063 - 12064 . doi: 10.1021/ja005507o http://dx.doi.org/10.1021/ja005507o
Canadell J. ; Goossens H. ; Klumperman B. Self-healing materials based on disulfide links . Macromolecules , 2011 , 44 ( 8 ), 2536 - 2541 . doi: 10.1021/ma2001492 http://dx.doi.org/10.1021/ma2001492
Luo J. C. ; Demchuk Z. ; Zhao X. ; Saito T. ; Tian M. ; Sokolov A. P. ; Cao P. F. Elastic vitrimers: beyond thermoplastic and thermoset elastomers . Matter , 2022 , 5 ( 5 ), 1391 - 1422 . doi: 10.1016/j.matt.2022.04.007 http://dx.doi.org/10.1016/j.matt.2022.04.007
Ji S. B. ; Xia J. H. ; Xu H. P. Dynamic chemistry of selenium: Se―N and Se―Se dynamic covalent bonds in polymeric systems . ACS Macro Lett. , 2016 , 5 ( 1 ), 78 - 82 . doi: 10.1021/acsmacrolett.5b00849 http://dx.doi.org/10.1021/acsmacrolett.5b00849
Tan Y. Z. ; Xu H. P. Selenium-containing dynamic materials: structure programming through selective dissipation . Acc. Mater. Res. , 2024 , 5 ( 6 ), 739 - 751 . doi: 10.1021/accountsmr.4c00065 http://dx.doi.org/10.1021/accountsmr.4c00065
Gu Y. W. ; Zhao J. L. ; Johnson J. A. Polymer networks: from plastics and gels to porous frameworks . Angew. Chem. Int. Ed. , 2020 , 59 ( 13 ), 5022 - 5049 . doi: 10.1002/anie.201902900 http://dx.doi.org/10.1002/anie.201902900
Kloxin C. J. ; Bowman C. N. Covalent adaptable networks: smart, reconfigurable and responsive network systems . Chem. Soc. Rev. , 2013 , 42 ( 17 ), 7161 - 7173 . doi: 10.1039/c3cs60046g http://dx.doi.org/10.1039/c3cs60046g
Gui B. ; Lin G. Q. ; Ding H. M. ; Gao C. ; Mal A. ; Wang C. Three-dimensional covalent organic frameworks: from topology design to applications . Acc. Chem. Res. , 2020 , 53 ( 10 ), 2225 - 2234 . doi: 10.1021/acs.accounts.0c00357 http://dx.doi.org/10.1021/acs.accounts.0c00357
陈兴幸 , 钟倩云 , 王淑娟 , 吴宥伸 , 谭继东 , 雷恒鑫 , 黄绍永 , 张彦峰 . 动态共价键高分子材料的研究进展 . 高分子学报 , 2019 , 50 ( 5 ), 469 - 484 . doi: 10.11777/j.issn1000-3304.2019.18277 http://dx.doi.org/10.11777/j.issn1000-3304.2019.18277
Zheng N. ; Xu Y. ; Zhao Q. ; Xie T. Dynamic covalent polymer networks: a molecular platform for designing functions beyond chemical recycling and self-healing . Chem. Rev. , 2021 , 121 ( 3 ), 1716 - 1745 . doi: 10.1021/acs.chemrev.0c00938 http://dx.doi.org/10.1021/acs.chemrev.0c00938
Si J. Y. ; He C. W. ; Xu H. P. Redox-recyclable tellurium-containing polyurethane thermosets with spatially tunable strain isolation . ACS Appl. Mater. Interfaces , 2025 , 17 ( 25 ), 37090 - 37098 . doi: 10.1021/acsami.5c06714 http://dx.doi.org/10.1021/acsami.5c06714
Li J. B. ; Lopez S. A. Computational chemistry for photochemical reactions . Comprehensive Computational Chemistry. Amsterdam : elsevier , 2024 , 658 - 698 . doi: 10.1016/b978-0-12-821978-2.00012-x http://dx.doi.org/10.1016/b978-0-12-821978-2.00012-x
Romano A. ; Roppolo I. ; Rossegger E. ; Schlögl S. ; Sangermano M. Recent trends in applying ortho -nitrobenzyl esters for the design of photo-responsive polymer networks . Materials , 2020 , 13 ( 12 ), 2777 . doi: 10.3390/ma13122777 http://dx.doi.org/10.3390/ma13122777
Jana R. ; Pradhan K. Shining light on the nitro group: distinct reactivity and selectivity . Chem. Commun. , 2024 , 60 ( 67 ), 8806 - 8823 . doi: 10.1039/d4cc02582b http://dx.doi.org/10.1039/d4cc02582b
Bao C. Y. ; Fan G. S. ; Lin Q. N. ; Li B. ; Cheng S. Y. ; Huang Q. ; Zhu L. Y. Styryl conjugated coumarin caged alcohol: efficient photorelease by either one-photon long wavelength or two-photon NIR excitation . Org. Lett. , 2012 , 14 ( 2 ), 572 - 575 . doi: 10.1021/ol203188h http://dx.doi.org/10.1021/ol203188h
Paderes M. C. ; Jeffrey Diaz M. ; Pagtalunan C. A. ; Bruzon D. A. ; Tapang G. A. Photo-controlled [4+4] cycloaddition of anthryl-polymer systems: a versatile approach to fabricate functional materials . Chem. , 2022 , 17 ( 12 ), e 202200193 . doi: 10.1002/asia.202200193 http://dx.doi.org/10.1002/asia.202200193
Poplata S. ; Tröster A. ; Zou Y. Q. ; Bach T. Recent advances in the synthesis of cyclobutanes by olefin [2+2 ] reactionsphotocycloaddition. Chem. Rev. , 2016 , 116 ( 17 ), 9748 - 9815 . doi: 10.1021/acs.chemrev.5b00723 http://dx.doi.org/10.1021/acs.chemrev.5b00723
Andrzejewska E. Photopolymerization kinetics of multifunctional monomers . Prog. Polym. Sci. , 2001 , 26 ( 4 ), 605 - 665 . doi: 10.1016/s0079-6700(01)00004-1 http://dx.doi.org/10.1016/s0079-6700(01)00004-1
Decker C. Kinetic study and new applications of UV radiation curing . Macromol. Rapid Commun. , 2002 , 23 ( 18 ), 1067 - 1093 . doi: 10.1002/marc.200290014 http://dx.doi.org/10.1002/marc.200290014
Palaganas N. B. ; Palaganas J. O. ; Doroteo S. H. Z. ; Millare J. C. Covalently functionalized cellulose nanocrystal-reinforced photocurable thermosetting elastomer for 3D printing application . Addit. Manuf. , 2023 , 61 , 103295 . doi: 10.1016/j.addma.2022.103295 http://dx.doi.org/10.1016/j.addma.2022.103295
Peng X. T. ; Zhang J. ; Xiao P. Photopolymerization approach to advanced polymer composites: integration of surface-modified nanofillers for enhanced properties . Adv. Mater. , 2024 , 36 ( 33 ), 2400178 . doi: 10.1002/adma.202400178 http://dx.doi.org/10.1002/adma.202400178
Caussin E. ; Moussally C. ; Le Goff S. ; Fasham T. ; Troizier-Cheyne M. ; Tapie L. ; Dursun E. ; Attal J. P. ; François P. Vat photopolymerization 3D printing in dentistry: a comprehensive review of actual popular technologies . Materials , 2024 , 17 ( 4 ), 950 . doi: 10.3390/ma17040950 http://dx.doi.org/10.3390/ma17040950
Colorado H. A. ; Gutierrez-Velasquez E. I. ; Gil L. D. ; de Camargo I. L. Exploring the advantages and applications of nanocomposites produced via vat photopolymerization in additive manufacturing: a review . Adv. Compos. Hybrid Mater. , 2023 , 7 ( 1 ), 1 . doi: 10.1007/s42114-023-00808-z http://dx.doi.org/10.1007/s42114-023-00808-z
夏嘉豪 , 谭以正 , 许华平 . 含硒动态共价高分子 . 高分子学报 , 2020 , 51 ( 11 ), 1190 - 1200 . doi: 10.11777/j.issn1000-3304.2019.19166 http://dx.doi.org/10.11777/j.issn1000-3304.2019.19166
Zhang R. H. ; Nie T. Q. ; Fang Y. F. ; Huang H. ; Wu J. Poly(disulfide)s: from synthesis to drug delivery . Biomacromolecules , 2022 , 23 ( 1 ), 1 - 19 . doi: 10.1021/acs.biomac.1c01210 http://dx.doi.org/10.1021/acs.biomac.1c01210
Xu Y. ; Tang Y. Q. ; Li Q. Visible- and near-infrared light-driven molecular photoswitches for biological applications . Adv. Funct. Mater. , 2025 , 35 ( 22 ), 2416359 . doi: 10.1002/adfm.202570131 http://dx.doi.org/10.1002/adfm.202570131
Kondo M. Photomechanical materials driven by photoisomerization or photodimerization . Polym. J. , 2020 , 52 ( 9 ), 1027 - 1034 . doi: 10.1038/s41428-020-0367-0 http://dx.doi.org/10.1038/s41428-020-0367-0
Xu W. C. ; Sun S. D. ; Wu S. Photoinduced reversible solid-to-liquid transitions for photoswitchable materials . Angew. Chem. Int. Ed. , 2019 , 58 ( 29 ), 9712 - 9740 . doi: 10.1002/anie.201814441 http://dx.doi.org/10.1002/anie.201814441
Leith G. A. ; Martin C. R. ; Mathur A. ; Kittikhunnatham P. ; Park K. C. ; Shustova N. B. Dynamically controlled electronic behavior of stimuli-responsive materials: exploring dimensionality and connectivity . Adv. Energy Mater. , 2022 , 12 ( 4 ), 2100441 . doi: 10.1002/aenm.202100441 http://dx.doi.org/10.1002/aenm.202100441
Grommet A. B. ; Lee L. M. ; Klajn R. Molecular photoswitching in confined spaces . Acc. Chem. Res. , 2020 , 53 ( 11 ), 2600 - 2610 . doi: 10.1021/acs.accounts.0c00434 http://dx.doi.org/10.1021/acs.accounts.0c00434
Wang H. ; Bisoyi H. K. ; Zhang X. F. ; Hassan F. ; Li Q. Visible light-driven molecular switches and motors: recent developments and applications . Chem. , 2022 , 28 ( 18 ), e 202103906 . doi: 10.1002/chem.202103906 http://dx.doi.org/10.1002/chem.202103906
Beharry A. A. ; Woolley G. A. Azobenzene photoswitches for biomolecules . Chem. Soc. Rev. , 2011 , 40 ( 8 ), 4422 . doi: 10.1039/c1cs15023e http://dx.doi.org/10.1039/c1cs15023e
Villarón D. ; Wezenberg S. J. Stiff-stilbene photoswitches: from fundamental studies to emergent applications . Angew. Chem. Int. Ed. , 2020 , 59 ( 32 ), 13192 - 13202 . doi: 10.1002/anie.202001031 http://dx.doi.org/10.1002/anie.202001031
宋昕 , 朱雪锋 , 田威 , 刘鸣华 . 基于偶氮苯聚合物的超分子手性开关 . 高分子学报 , 2022 , 53 ( 10 ), 1239 - 1250 .
Quenneville J. ; Martínez T. J. Ab initio study of Cis - Trans photoisomerization in stilbene and ethylene . J. Phys. Chem. A , 2003 , 107 ( 6 ), 829 - 837 . doi: 10.1021/jp021210w http://dx.doi.org/10.1021/jp021210w
Waldeck D. H. Photoisomerization dynamics of stilbenes . Chem. Rev. , 1991 , 91 ( 3 ), 415 - 436 . doi: 10.1021/cr00003a007 http://dx.doi.org/10.1021/cr00003a007
Nomoto A. ; Inai N. ; Yanai T. ; Okuno Y. Substituent and solvent effects on the photoisomerization of cinnamate derivatives: an XMS-CASPT2 study . J. Phys. Chem. A , 2022 , 126 ( 4 ), 497 - 505 . doi: 10.1021/acs.jpca.1c08504 http://dx.doi.org/10.1021/acs.jpca.1c08504
Rabnawaz M. ; Liu G. J. Preparation and application of a dual light-responsive triblock terpolymer . Macromolecules , 2012 , 45 ( 13 ), 5586 - 5595 . doi: 10.1021/ma3006476 http://dx.doi.org/10.1021/ma3006476
Tunc D. ; Le Coz C. ; Alexandre M. ; Desbois P. ; Lecomte P. ; Carlotti S. Reversible cross-linking of aliphatic polyamides bearing thermo- and photoresponsive cinnamoyl moieties . Macromolecules , 2014 , 47 ( 23 ), 8247 - 8254 . doi: 10.1021/ma502083p http://dx.doi.org/10.1021/ma502083p
Wang W. J. ; Lin L. ; Lu J. ; Liang H. ; Feng H. ; Hu L. F. Synthesis, self-assembly, and formation of photo-crosslinking-stabilized fluorescent micelles covalently containing zinc(II)-bis(8-hydroxyquinoline) for ABC triblock copolymer bearing cinnamoyl and 8-hydroxyquinoline side groups . J. Polym. Sci. Part A Polym. Chem. , 2016 , 54 ( 8 ), 1056 - 1064 . doi: 10.1002/pola.27941 http://dx.doi.org/10.1002/pola.27941
Pan K. ; Li H. Z. ; Liang B. ; Qi G. G. ; Cao B. Synthesis of well-defined responsive membranes with fixable solvent responsiveness . Polym. Int. , 2015 , 64 ( 1 ), 138 - 145 . doi: 10.1002/pi.4772 http://dx.doi.org/10.1002/pi.4772
Kortekaas L. ; Browne W. R. The evolution of spiropyran: fundamentals and progress of an extraordinarily versatile photochrome . Chem. Soc. Rev. , 2019 , 48 ( 12 ), 3406 - 3424 . doi: 10.1039/c9cs00203k http://dx.doi.org/10.1039/c9cs00203k
Bag S. K. ; Pal A. ; Jana S. ; Thakur A. Recent advances on diarylethene-based photoswitching materials: applications in bioimaging, controlled singlet oxygen generation for photodynamic therapy and catalysis . Chem. , 2024 , 19 ( 11 ), e 202400238 . doi: 10.1002/asia.202400238 http://dx.doi.org/10.1002/asia.202400238
Cheng H. B. ; Zhang S. C. ; Bai E. Y. ; Cao X. Q. ; Wang J. Q. ; Qi J. ; Liu J. ; Zhao J. ; Zhang L. Q. ; Yoon J. Future-oriented advanced diarylethene photoswitches: from molecular design to spontaneous assembly systems . Adv. Mater. , 2022 , 34 ( 16 ), 2108289 . doi: 10.1002/adma.202108289 http://dx.doi.org/10.1002/adma.202108289
Li R. J. ; Ou T. ; Wen L. ; Yan Y. H. ; Li W. ; Qin X. L. ; Wang S. X. All-visible-light-activated diarylethene photoswitches . Molecules , 2024 , 29 ( 21 ), 5202 . doi: 10.3390/molecules29215202 http://dx.doi.org/10.3390/molecules29215202
Tian H. ; Yang S. J. Recent progresses on diarylethene based photochromic switches . ChemInform , 2004 , 35 ( 21 ), 200421287 . doi: 10.1002/chin.200421287 http://dx.doi.org/10.1002/chin.200421287
Filatov M. ; Paolino M. ; Min S. K. ; Kim K. S. Fulgides as light-driven molecular rotary motors: computational design of a prototype compound . J. Phys. Chem. Lett. , 2018 , 9 ( 17 ), 4995 - 5001 . doi: 10.1021/acs.jpclett.8b02268 http://dx.doi.org/10.1021/acs.jpclett.8b02268
Abeyrathna N. ; Liao Y. A reversible photoacid functioning in PBS buffer under visible light . J. Am. Chem. Soc. , 2015 , 137 ( 35 ), 11282 - 11284 . doi: 10.1021/jacs.5b06218 http://dx.doi.org/10.1021/jacs.5b06218
Renth F. ; Siewertsen R. ; Temps F. Enhanced photoswitching and ultrafast dynamics in structurally modified photochromic fulgides . Int. Rev. Phys. Chem. , 2013 , 32 ( 1 ), 1 - 38 . doi: 10.1080/0144235x.2012.729331 http://dx.doi.org/10.1080/0144235x.2012.729331
Hartley, G. S. The cis-form of azobenzene . Nature , 1937 , 140 ( 3537 ), 281 . doi: 10.1038/140281a0 http://dx.doi.org/10.1038/140281a0
Di Martino M. ; Sessa L. ; Di Matteo M. ; Panunzi B. ; Piotto S. ; Concilio S. Azobenzene as antimicrobial molecules . Molecules , 2022 , 27 ( 17 ), 5643 . doi: 10.3390/molecules27175643 http://dx.doi.org/10.3390/molecules27175643
Diana R. ; Caruso U. ; Piotto S. ; Concilio S. ; Shikler R. ; Panunzi B. Spectroscopic behaviour of two novel azobenzene fluorescent dyes and their polymeric blends . Molecules , 2020 , 25 ( 6 ), 1368 . doi: 10.3390/molecules25061368 http://dx.doi.org/10.3390/molecules25061368
Villegas O. ; Serrano Martínez M. ; Le Bras L. ; Ottochian A. ; Pineau N. ; Perrier A. ; Lemarchand C. A. Mechanical effect produced by photo-switchable reactions: insights from molecular simulations . Macromol. Theory Simul. , 2024 , 33 ( 6 ), 2400033 . doi: 10.1002/mats.202400033 http://dx.doi.org/10.1002/mats.202400033
Lefebvre C. ; Fortier L. ; Hoffmann N. Photochemical rearrangements in heterocyclic chemistry . Eur. J. Org. Chem. , 2020 , 2020( 10 ), 1393 - 1404 . doi: 10.1002/ejoc.201901190 http://dx.doi.org/10.1002/ejoc.201901190
Oueis E. ; Elkadi M. ; Rios R. Visible‐light‐driven cyclizations . Adv. Synth. Catal. , 2024 , 366 ( 4 ), 635 - 697 . doi: 10.1002/adsc.202301295 http://dx.doi.org/10.1002/adsc.202301295
Li S. Q. ; Dong J. A visible-light-induced cyclization reaction . Curr. Org. Chem. , 2023 , 27 ( 12 ), 1020 - 1035 . doi: 10.2174/1385272827666230911115749 http://dx.doi.org/10.2174/1385272827666230911115749
Imato K. ; Kaneda N. ; Ooyama Y. Recent progress in photoinduced transitions between the solid, glass, and liquid states based on molecular photoswitches . Polym. J. , 2024 , 56 ( 4 ), 269 - 282 . doi: 10.1038/s41428-023-00873-7 http://dx.doi.org/10.1038/s41428-023-00873-7
Kitagawa D. ; Nishi H. ; Kobatake S. Photoinduced twisting of a photochromic diarylethene crystal . Angew. Chem. , 2013 , 125 ( 35 ), 9490 - 9492 . doi: 10.1002/ange.201304670 http://dx.doi.org/10.1002/ange.201304670
Julià-López A. ; Hernando J. ; Ruiz-Molina D. ; González-Monje P. ; Sedó J. ; Roscini C. Temperature-controlled switchable photochromism in solid materials . Angew. Chem. Int. Ed. , 2016 , 55 ( 48 ), 15044 - 15048 . doi: 10.1002/anie.201608408 http://dx.doi.org/10.1002/anie.201608408
Brieke C. ; Heckel A. Spiropyran photoswitches in the context of DNA: synthesis and photochromic properties . Chem. , 2013 , 19 ( 46 ), 15726 - 15734 . doi: 10.1002/chem.201302640 http://dx.doi.org/10.1002/chem.201302640
Lerch M. M. ; Szymański W. ; Feringa B. L. The (photo)chemistry of Stenhouse photoswitches: guiding principles and system design . Chem. Soc. Rev. , 2018 , 47 ( 6 ), 1910 - 1937 . doi: 10.1039/c7cs00772h http://dx.doi.org/10.1039/c7cs00772h
Stenhouse J. Ueber die Oele, die Bei der Einwirkung der Schwefelsäure auf verschiedene Vegetabilien entstehen . Justus Liebigs Ann. Der Chem. , 1850 , 74 ( 3 ), 278 - 297 . doi: 10.1002/jlac.18500740304 http://dx.doi.org/10.1002/jlac.18500740304
Lewis K. G. ; Mulquiney C. E. Aspects of the formation and use of stenhouse salts and related compounds . Tetrahedron , 1977 , 33 ( 5 ), 463 J. 475 . doi: 10.1016/s0040-4020(77)80002-1 http://dx.doi.org/10.1016/s0040-4020(77)80002-1
Clerc M. ; Sandlass S. ; Rifaie-Graham O. ; Peterson J. A. ; Bruns N. ; Read de Alaniz J. ; Boesel L. F. Visible light-responsive materials: the (photo)chemistry and applications of donor-acceptor Stenhouse adducts in polymer science . Chem. Soc. Rev. , 2023 , 52 ( 23 ), 8245 - 8294 . doi: 10.1039/d3cs00508a http://dx.doi.org/10.1039/d3cs00508a
Reyes C. A. ; Karr A. ; Ramsperger C. A. ; K , A . T . G.; Lee, H. J. ; Picazo, E. Compartmentalizing donor-acceptor stenhouse adducts for structure-property relationship analysis. J. Am. Chem. Soc., 2025 , 147 ( 1 ), 10 - 26 . doi: 10.1021/jacs.4c14198 http://dx.doi.org/10.1021/jacs.4c14198
Sinawang G. ; Wang J. L. ; Wu B. ; Wang X. G. ; He Y. N. Photoswitchable aggregation-induced emission polymer containing dithienylethene and tetraphenylethene moieties . RSC Adv. , 2016 , 6 ( 15 ), 12647 - 12651 . doi: 10.1039/c5ra27014f http://dx.doi.org/10.1039/c5ra27014f
Chan J. C. ; Lam W. H. ; Yam V. W. A highly efficient silole-containing dithienylethene with excellent thermal stability and fatigue resistance: a promising candidate for optical memory storage materials . J. Am. Chem. Soc. , 2014 , 136 ( 49 ), 16994 - 16997 . doi: 10.1021/ja5101855 http://dx.doi.org/10.1021/ja5101855
Kong L. C. ; Wong H. L. ; Tam A. Y. ; Lam W. H. ; Wu L. X. ; Yam V. W. Synthesis, characterization, and photophysical properties of bodipy-spirooxazine and-spiropyran conjugates: modulation of fluorescence resonance energy transfer behavior via acidochromic and photochromic switching . ACS Appl. Mater. Interfaces , 2014 , 6 ( 3 ), 1550 - 1562 . doi: 10.1021/am404242a http://dx.doi.org/10.1021/am404242a
Shi Z. ; Peng P. ; Strohecker D. ; Liao Y. Long-lived photoacid based upon a photochromic reaction . J. Am. Chem. Soc. , 2011 , 133 ( 37 ), 14699 - 14703 . doi: 10.1021/ja203851c http://dx.doi.org/10.1021/ja203851c
Yu C. M. ; Hu B. C. ; Gong Z. H. ; Liu C. ; Li J. T. A novel photochromic fulgide based on porphyrin for nondestructive information processing . Chin. Chem. Lett. , 2016 , 27 ( 12 ), 1767 - 1770 . doi: 10.1016/j.cclet.2016.04.025 http://dx.doi.org/10.1016/j.cclet.2016.04.025
Xiong C. Y. ; Xue G. D. ; Mao L. J. ; Gu L. H. ; He C. ; Zheng Y. H. ; Wang D. S. Carbon spacer strategy: control the photoswitching behavior of donor-acceptor stenhouse adducts . Langmuir , 2021 , 37 ( 2 ), 802 - 809 . doi: 10.1021/acs.langmuir.0c03133 http://dx.doi.org/10.1021/acs.langmuir.0c03133
Liu B. S. ; Fan X. N. ; Ma H. ; Xie Y. T. ; Fan H. J. ; Yan Q. ; Xiang J. A DASA displaying highly efficient and rapid reversible isomerization within sustainable nano/micro capsules: one step closer to sustainability . Chem. Sci. , 2024 , 15 ( 41 ), 17200 - 17209 . doi: 10.1039/d4sc04868g http://dx.doi.org/10.1039/d4sc04868g
Ren Y. S. ; Xie S. ; Svensson Grape E. ; Inge A. K. ; Ramström O. Multistimuli-responsive enaminitrile molecular switches displaying H+-induced aggregate emission, metal ion-induced turn-on fluorescence, and organogelation properties . J. Am. Chem. Soc. , 2018 , 140 ( 42 ), 13640 - 13643 . doi: 10.1021/jacs.8b09843 http://dx.doi.org/10.1021/jacs.8b09843
Zhu G. L. ; Sun F. X. ; Ji Y. H. ; Hu H. T. ; Yang M. Y. ; Zhang Y. C. ; Deng X. ; Zheng Y. H. ; Wei C. ; Wang D. S. Developing intelligent control of photoresponsive materials: from switch-type to multi-mode . Chem. Soc. Rev. , 2025 , 54 ( 16 ), 7347 - 7376 . doi: 10.1039/d4cs00296b http://dx.doi.org/10.1039/d4cs00296b
Rosario A. J. ; Ma B. R. Stimuli-responsive polymer networks: application, design, and computational exploration . ACS Appl. Polym. Mater. , 2024 , 6 ( 23 ), 14204 - 14228 . doi: 10.1021/acsapm.4c00002 http://dx.doi.org/10.1021/acsapm.4c00002
Yamamoto T. ; Tezuka Y. Topological polymer chemistry: a cyclic approach toward novel polymer properties and functions . Polym. Chem. , 2011 , 2 ( 9 ), 1930 - 1941 . doi: 10.1039/c1py00088h http://dx.doi.org/10.1039/c1py00088h
Hu J. ; Song T. F. ; Yu M. M. ; Yu H. F. Optically controlled solid-to-liquid phase transition materials based on azo compounds . Chem. Mater. , 2023 , 35 ( 12 ), 4621 - 4648 . doi: 10.1021/acs.chemmater.3c00841 http://dx.doi.org/10.1021/acs.chemmater.3c00841
Barrett C. J. ; Mamiya J. I. ; Yager K. G. ; Ikeda T. Photo-mechanical effects in azobenzene-containing soft materials . Soft Matter , 2007 , 3 ( 10 ), 1249 - 1261 . doi: 10.1039/b705619b http://dx.doi.org/10.1039/b705619b
Giles L. W. ; Faul C. F. J. ; Tabor R. F. Azobenzene isomerization in condensed matter: lessons for the design of efficient light-responsive soft-matter systems . Mater. Adv. , 2021 , 2 ( 13 ), 4152 - 4164 . doi: 10.1039/d1ma00340b http://dx.doi.org/10.1039/d1ma00340b
Baroncini M. ; Bergamini G. Azobenzene: a photoactive building block for supramolecular architectures . Chem. Rec. , 2017 , 17 ( 7 ), 700 - 712 . doi: 10.1002/tcr.201600112 http://dx.doi.org/10.1002/tcr.201600112
Chen C. X. ; Ji Y. F. ; Li H. M. ; Song T. F. ; Yu H. F. Unusual photo-tunable mechanical transformation of azobenzene terminated aliphatic polycarbonate . Nat. Commun. , 2025 , 16 , 2620 . doi: 10.1038/s41467-025-57608-w http://dx.doi.org/10.1038/s41467-025-57608-w
Zhang P. P. ; Zhong Q. ; Qi D. M. ; Müller-Buschbaum P. Facile preparation of silk fabrics with enhanced UV radiation shielding and wrinkle resistance by cross-linking light-responsive copolymers . ACS Appl. Mater. Interfaces , 2022 , 14 ( 23 ), 27187 - 27194 . doi: 10.1021/acsami.2c05726 http://dx.doi.org/10.1021/acsami.2c05726
Pang X. L. ; Lv J. A. ; Zhu C. Y. ; Qin L. ; Yu Y. L. Photodeformable azobenzene-containing liquid crystal polymers and soft actuators . Adv. Mater. , 2019 , 31 ( 52 ), 1904224 . doi: 10.1002/adma.201904224 http://dx.doi.org/10.1002/adma.201904224
Lugger S. J. D. ; Ceamanos L. ; Mulder D. J. ; Sánchez-Somolinos C. ; Schenning A. P. H. J. 4D printing of supramolecular liquid crystal elastomer actuators fueled by light . Adv. Mater. Technol. , 2023 , 8 ( 5 ), 2201472 . doi: 10.1002/admt.202201472 http://dx.doi.org/10.1002/admt.202201472
Qin C. Q. ; Feng Y. Y. ; An H. R. ; Han J. K. ; Cao C. ; Feng W. Tetracarboxylated azobenzene/polymer supramolecular assemblies as high-performance multiresponsive actuators . ACS Appl. Mater. Interfaces , 2017 , 9 ( 4 ), 4066 - 4073 . doi: 10.1021/acsami.6b15075 http://dx.doi.org/10.1021/acsami.6b15075
Yue Y. F. ; Norikane Y. ; Nishibori E. Biomimetic adhesion/detachment using layered polymers with light-induced rapid shape changes . Angew. Chem. Int. Ed. , 2025 , 64 ( 23 ), e 202503748 . doi: 10.1002/anie.202503748 http://dx.doi.org/10.1002/anie.202503748
Zhou J. ; Zhou N. ; Xu W. ; Qian Z. H. ; Dai Z. F. ; Xu J. Q. ; Chen J. ; Xiong Y. B. Photo-tuned solid-liquid transition of azo-grafted poly(thioctic acid) with ultrahigh photothermal conversion efficiency . Angew. Chem. Int. Ed. , 2025 , 64 ( 32 ), e 202508314 . doi: 10.1002/anie.202508314 http://dx.doi.org/10.1002/anie.202508314
Zhao D. X. ; Jiang Q. ; Wang J. ; Qiu Y. ; Liao Y. G. ; Xie X. L. Visible light and temperature regulated reflection colors in self-supporting cholesteric liquid crystal physical gels . Chinese J. Polym. Sci. , 2021 , 39 ( 12 ), 1617 - 1625 . doi: 10.1007/s10118-021-2618-8 http://dx.doi.org/10.1007/s10118-021-2618-8
Guo H. C. ; Chen J. ; Feng B. L. ; Zhang H. L. ; Yang X. Y. ; Wang L. ; Xu P. M. ; Li H. ; Zong C. Y. Multi-responsive itaconic acid-based polymer toward regulatable patterning surfaces and rewritable information storage applications . Chinese J. Polym. Sci. , 2025 , 43 ( 7 ), 1114 - 1124 . doi: 10.1007/s10118-025-3370-2 http://dx.doi.org/10.1007/s10118-025-3370-2
Cui X. X. ; Shang L. ; Liu Z. W. ; Liu Z. T. ; Jiang J. Q. ; Li G. A composite elastomer with photo-responsive shape memory and programmable hygroscopic actuation functionalities . Chinese J. Polym. Sci. , 2024 , 42 ( 10 ), 1470 - 1478 . doi: 10.1007/s10118-024-3187-4 http://dx.doi.org/10.1007/s10118-024-3187-4
Kuang Z. X. ; Liu J. C. ; Meng W. H. ; Ikeda T. ; Wang J. X. ; Jiang L. Click-beetles-inspired light-driven continuous jumping robots based on Janus azobenzene polymer films . Adv. Funct. Mater. , 2025 , 35 ( 14 ), 2421111 . doi: 10.1002/adfm.202421111 http://dx.doi.org/10.1002/adfm.202421111
Zeng H. ; Wani O. M. ; Wasylczyk P. ; Kaczmarek R. ; Priimagi A. Self-regulating iris based on light-actuated liquid crystal elastomer . Adv. Mater. , 2017 , 29 ( 30 ), 1701814 . doi: 10.1002/adma.201770215 http://dx.doi.org/10.1002/adma.201770215
Lee Y. ; Fracassi A. ; Devaraj N. K. Light-driven membrane assembly, shape-shifting, and tissue formation in chemically responsive synthetic cells . J. Am. Chem. Soc. , 2023 , 145 ( 47 ), 25815 - 25823 . doi: 10.1021/jacs.3c09894 http://dx.doi.org/10.1021/jacs.3c09894
Yang J. F. ; Shankar M. R. ; Zeng H. Photochemically responsive polymer films enable tunable gliding flights . Nat. Commun. , 2024 , 15 , 4684 . doi: 10.1038/s41467-024-49108-0 http://dx.doi.org/10.1038/s41467-024-49108-0
Corrado F. ; Bruno U. ; Prato M. ; Carella A. ; Criscuolo V. ; Massaro A. ; Pavone M. ; Muñoz-García A. B. ; Forti S. ; Coletti C. ; Bettucci O. ; Santoro F. Azobenzene-based optoelectronic transistors for neurohybrid building blocks . Nat. Commun. , 2023 , 14 , 6760 . doi: 10.1038/s41467-023-41083-2 http://dx.doi.org/10.1038/s41467-023-41083-2
Klán P. ; Wirz J. Photochemistry of Organic Compounds: from Concepts to Practice . Chichester : Wiley , 2009 . doi: 10.1002/9781444300017 http://dx.doi.org/10.1002/9781444300017
Yang X. Y. ; Jin H. B. ; Tao X. F. ; Xu B. B. ; Lin S. L. Photo-switchable smart superhydrophobic surface with controllable superwettability . Polym. Chem. , 2021 , 12 ( 37 ), 5303 - 5309 . doi: 10.1039/d1py00984b http://dx.doi.org/10.1039/d1py00984b
Yousif E. ; Haddad R. Photodegradation and photostabilization of polymers, especially polystyrene: review . SpringerPlus , 2013 , 2 ( 1 ), 398 . doi: 10.1186/2193-1801-2-398 http://dx.doi.org/10.1186/2193-1801-2-398
Sinha R. P. ; Häder D. P. UV-induced DNA damage and repair: a review . Photochem. Photobiol. Sci. , 2002 , 1 ( 4 ), 225 - 236 . doi: 10.1039/b201230h http://dx.doi.org/10.1039/b201230h
Deng J. X. ; Qu S. L. ; Gu Z. C. ; Wang Y. H. ; Liu G. Q. ; Ding Y. ; Zhao J. ; Bai R. X. ; Fan Z. W. ; Yang L. ; Zhang Z. M. ; You W. ; Song H. W. ; Wang R. H. ; Yu W. ; Yan X. Z. Doubling cross-linking functionality in supramolecular polymer networks via photoinduced quadruple H-bonding formation . CCS Chem. , 2025 , 1 - 13 . doi: 10.31635/ccschem.025.202505681 http://dx.doi.org/10.31635/ccschem.025.202505681
Huang B. Q. ; Nian S. F. ; Cai L. H. A universal strategy for decoupling stiffness and extensibility of polymer networks . Sci. Adv. , 2024 , 10 ( 48 ), eadq 3080 . doi: 10.1126/sciadv.adq3080 http://dx.doi.org/10.1126/sciadv.adq3080
Xue X. ; Li C. ; Yu X. B. ; Chenchai K. ; Zhang X. Y. ; Zhang X. S. ; Zhang G. X. ; Zhang D. Q. Photo-patternable and healable polymer semiconductor enabled by dynamic covalent disulfide bonding . Angew. Chem. Int. Ed. , 2025 , 64 ( 16 ), e 202425172 . doi: 10.1002/anie.202425172 http://dx.doi.org/10.1002/anie.202425172
Tan Y. Z. ; Dai Y. H. ; Zhao P. ; Liu C. ; Xu H. P. Modular 3D shape programming method for multiple substrates . Matter , 2024 , 7 ( 3 ), 1117 - 1130 . doi: 10.1016/j.matt.2023.12.027 http://dx.doi.org/10.1016/j.matt.2023.12.027
Wen T. ; Ma T. J. ; Qian J. ; Song Z. X. ; Jiang X. S. ; Yao Y. Phase-transition-induced dynamic surface wrinkle pattern on gradient photo-crosslinking liquid crystal elastomer . Nat. Commun. , 2024 , 15 , 10821 . doi: 10.1038/s41467-024-55180-3 http://dx.doi.org/10.1038/s41467-024-55180-3
Lin H. ; Li Y. ; He R. ; Zheng W. ; Lai Y. ; Xu Y. ; Zeng B. ; Yuan C. ; Dai L. Fabrication of large-area, ultra-strong, and anti-swelling hydrogel thin films for underwater invisible electronic skin . Adv. Funct. Mater. , 2025 , 35 ( 47 ), 2507606 . doi: 10.1002/adfm.202507606 http://dx.doi.org/10.1002/adfm.202507606
Li X. P. ; Yang F. ; Li Y. R. ; Liu C. ; Zhao P. ; Cao Y. ; Xu H. P. ; Chen Y. L. Diselenide as a dual functional mechanophore capable of stress self-reporting and self-strengthening in polyurethane elastomers . CCS Chem. , 2023 , 5 ( 4 ), 925 - 933 . doi: 10.31635/ccschem.022.202201874 http://dx.doi.org/10.31635/ccschem.022.202201874
Guo Y. C. ; Liu Y. H. ; Zhao X. Y. ; Zhao J. ; Wang Y. M. ; Zhang X. H. ; Guo Z. W. ; Yan X. Z. Synergistic covalent-and-supramolecular polymers with an interwoven topology . ACS Appl. Mater. Interfaces , 2023 , 15 ( 21 ), 25161 - 25172 . doi: 10.1021/acsami.2c10404 http://dx.doi.org/10.1021/acsami.2c10404
Li L. B. Chain flexibility and connectivity: the uniqueness of polymer crystallization . Chinese J. Polym. Sci. , 2023 , 41 ( 1 ), 7 - 13 . doi: 10.1007/s10118-022-2804-3 http://dx.doi.org/10.1007/s10118-022-2804-3
Gu Y. W. ; Zhao J. L. ; Johnson J. A. A (macro)molecular-level understanding of polymer network topology . Trends Chem. , 2019 , 1 ( 3 ), 318 - 334 . doi: 10.1016/j.trechm.2019.02.017 http://dx.doi.org/10.1016/j.trechm.2019.02.017
Chen F. Q. ; Zheng H. R. ; Yusran Y. ; Li H. ; Qiu S. L. ; Fang Q. R. Exploring high-connectivity three-dimensional covalent organic frameworks: topologies, structures, and emerging applications . Chem. Soc. Rev. , 2025 , 54 ( 1 ), 484 - 514 . doi: 10.1039/d4cs00703d http://dx.doi.org/10.1039/d4cs00703d
Wang M. H. ; Jiang J. W. ; Liang S. F. ; Sui C. ; Wu S. Functional semi-interpenetrating polymer networks . Macromol. Rapid Commun. , 2024 , 45 ( 24 ), 2400539 . doi: 10.1002/marc.202400539 http://dx.doi.org/10.1002/marc.202400539
Danielsen S. P. O. ; Beech H. K. ; Wang S. ; El-Zaatari B. M. ; Wang X. D. ; Sapir L. ; Ouchi T. ; Wang Z. ; Johnson P. N. ; Hu Y. X. ; Lundberg D. J. ; Stoychev G. ; Craig S. L. ; Johnson J. A. ; Kalow J. A. ; Olsen B. D. ; Rubinstein M. Molecular characterization of polymer networks . Chem. Rev. , 2021 , 121 ( 8 ), 5042 - 5092 . doi: 10.1021/acs.chemrev.0c01304 http://dx.doi.org/10.1021/acs.chemrev.0c01304
Manning M. L. Rigidity in mechanical biological networks . Curr. Biol. , 2024 , 34 ( 20 ), R1024 - R1030 . doi: 10.1016/j.cub.2024.07.014 http://dx.doi.org/10.1016/j.cub.2024.07.014
Springer M. A. ; Liu T. J. ; Kuc A. ; Heine T. Topological two-dimensional polymers . Chem. Soc. Rev. , 2020 , 49 ( 7 ), 2007 - 2019 . doi: 10.1039/c9cs00893d http://dx.doi.org/10.1039/c9cs00893d
Liarou E. ; Houck H. A. ; Du , PrezF . E . Reversible transformations of polymer topologies through visible light and darkness. J. Am. Chem. Soc. , 2022 , 144 ( 15 ), 6954 - 6963 . doi: 10.1021/jacs.2c01622 http://dx.doi.org/10.1021/jacs.2c01622
Lv W. ; Wang C. ; Lin X. C. ; Mei X. F. ; Wang W. ; Yang E. ; Ling Q. D. ; Lin Z. H. Dithienylmaleimide-based D-A conjugated polymer film: photo-responsive behavior and application in electrical memory and logic gates . Chinese J. Polym. Sci. , 2021 , 39 ( 9 ), 1177 - 1184 . doi: 10.1007/s10118-021-2594-z http://dx.doi.org/10.1007/s10118-021-2594-z
Reisinger D. ; Sietmann A. ; Das A. ; Plutzar S. ; Korotkov R. ; Rossegger E. ; Walluch M. ; Holler-Stangl S. ; Hofer T. S. ; Dielmann F. ; Glorius F. ; Schlögl S. Light-driven, reversible spatiotemporal control of dynamic covalent polymers . Adv. Mater. , 2024 , 36 ( 47 ), 2411307 . doi: 10.1002/adma.202411307 http://dx.doi.org/10.1002/adma.202411307
Yang B. ; Ni T. T. ; Wu J. J. ; Fang Z. Z. ; Yang K. X. ; He B. ; Pu X. Q. ; Chen G. C. ; Ni C. J. ; Chen D. ; Zhao Q. ; Li W. ; Li S. J. ; Li H. ; Zheng N. ; Xie T. Circular 3D printing of high-performance photopolymers through dissociative network design . Science , 2025 , 388 ( 6743 ), 170 - 175 . doi: 10.1126/science.ads3880 http://dx.doi.org/10.1126/science.ads3880
Chatterjee S. ; Molla S. ; Ahmed J. ; Bandyopadhyay S. Light-driven modulation of electrical conductance with photochromic switches: bridging photochemistry with optoelectronics . Chem. Commun. , 2023 , 59 ( 85 ), 12685 - 12698 . doi: 10.1039/d3cc04269c http://dx.doi.org/10.1039/d3cc04269c
Lee S. C. ; Lee S. H. ; Kwon O. P. Photoactive conducting polymers with light-driven conductivity modulation: dual functionality for simple circuits . J. Mater. Chem. C , 2016 , 4 ( 10 ), 1935 - 1944 . doi: 10.1039/c5tc03493k http://dx.doi.org/10.1039/c5tc03493k
Bendaoud U. ; Bhowmik P. K. ; Chen S. L. ; Han H. ; Cox S. L. ; Liebsch J. ; Ros M.B. ; Selvi Velayutham T. ; Aripin N.F.K. ; Martinez-Felipe A. Modulating the conductivity of light-responsive ionic liquid crystals . Molecules , 2024 , 29 , 4459 . doi: 10.3390/molecules29184459 http://dx.doi.org/10.3390/molecules29184459
Nie H. ; Schauser N. S. ; Dolinski N. D. ; Hu J. ; Hawker C. J. ; Segalman R. A. ; Read de Alaniz J. Light-controllable ionic conductivity in a polymeric ionic liquid . Angew. Chem. Int. Ed. , 2020 , 59 ( 13 ), 5123 - 5128 . doi: 10.1002/anie.201912921 http://dx.doi.org/10.1002/anie.201912921
Wang X. Q. ; Yu C. J. ; Wang M. L. ; Zhao S. Y. ; Mao Q. M. ; Wang Y. P. Mechanically tunable slide-ring polymers via photo-regulated topological control . Angew. Chem. Int. Ed. , 2025 , 64 ( 39 ), e 202511493 . doi: 10.1002/anie.202511493 http://dx.doi.org/10.1002/anie.202511493
Miao W. S. ; Zou W. K. ; Jin B. J. ; Ni C. J. ; Zheng N. ; Zhao Q. ; Xie T. On demand shape memory polymer via light regulated topological defects in a dynamic covalent network . Nat. Commun. , 2020 , 11 , 4257 . doi: 10.1038/s41467-020-18116-1 http://dx.doi.org/10.1038/s41467-020-18116-1
Zou W. K. ; Jin B. J. ; Wu Y. ; Song H. J. ; Luo Y. W. ; Huang F. H. ; Qian J. ; Zhao Q. ; Xie T. Light-triggered topological programmability in a dynamic covalent polymer network . Sci. Adv. , 2020 , 6 ( 13 ), eaaz 2362 . doi: 10.1126/sciadv.aaz2362 http://dx.doi.org/10.1126/sciadv.aaz2362
Almadani I. F. ; Almadani M. F. ; AlSawaftah N. ; Abuwatfa W. H. ; Husseini G. A. Nanocarriers responsive to light: a review . Micro , 2024 , 4 ( 4 ), 827 - 844 . doi: 10.3390/micro4040051 http://dx.doi.org/10.3390/micro4040051
Sana B. ; Finne-Wistrand A. ; Pappalardo D. Recent development in near infrared light-responsive polymeric materials for smart drug-delivery systems . Mater. Today Chem. , 2022 , 25 , 100963 . doi: 10.1016/j.mtchem.2022.100963 http://dx.doi.org/10.1016/j.mtchem.2022.100963
Achilleos D. S. ; Hatton T. A. ; Vamvakaki M. Light-regulated supramolecular engineering of polymeric nanocapsules . J. Am. Chem. Soc. , 2012 , 134 ( 13 ), 5726 - 5729 . doi: 10.1021/ja212177q http://dx.doi.org/10.1021/ja212177q
Li J. Q. ; Xie S. T. ; Meng J. H. ; Liu Y. Y. ; Zhan Q. ; Zhang Y. ; Shui L. L. ; Zhou G. F. ; Feringa B. L. ; Chen J. W. Dynamic control of multiple optical patterns of cholesteric liquid crystal microdroplets by light-driven molecular motors . CCS Chem. , 2024 , 6 ( 2 ), 427 - 438 . doi: 10.31635/ccschem.023.202303171 http://dx.doi.org/10.31635/ccschem.023.202303171
Urban D. ; Marcucci N. ; Wölfle C. H. ; Torgersen J. ; Hjelme D. R. ; Descrovi E. Polarization-driven reversible actuation in a photo-responsive polymer composite . Nat. Commun. , 2023 , 14 , 6843 . doi: 10.1038/s41467-023-42590-y http://dx.doi.org/10.1038/s41467-023-42590-y
Li L. ; Scheiger J. M. ; Levkin P. A. Design and applications of photoresponsive hydrogels . Adv. Mater. , 2019 , 31 ( 26 ), 1807333 . doi: 10.1002/adma.201807333 http://dx.doi.org/10.1002/adma.201807333
Bertrand O. ; Gohy J. F. Photo-responsive polymers: synthesis and applications . Polym. Chem. , 2017 , 8 ( 1 ), 52 - 73 . doi: 10.1039/c6py01082b http://dx.doi.org/10.1039/c6py01082b
Szymański W. ; Beierle J. M. ; Kistemaker H. A. V. ; Velema W. A. ; Feringa B. L. Reversible photocontrol of biological systems by the incorporation of molecular photoswitches . Chem. Rev. , 2013 , 113 ( 8 ), 6114 - 6178 . doi: 10.1021/cr300179f http://dx.doi.org/10.1021/cr300179f
Yuan W. Z. ; Gao X. Y. ; Pei E. L. ; Li Z. H. Light- and pH-dually responsive dendrimer-star copolymer containing spiropyran groups: synthesis, self-assembly and controlled drug release . Polym. Chem. , 2018 , 9 ( 26 ), 3651 - 3661 . doi: 10.1039/c8py00721g http://dx.doi.org/10.1039/c8py00721g
Zhou D. , Guo J. , Kim G.B. , Li J. , Chen X. , Yang J. ; Huang Y. Simultaneously photo-cleavable and activatable prodrug-backboned block copolymer micelles for precise anticancer drug delivery . Adv. Healthc. Mater. , 2016 , 5 ( 19 ), 2493 - 2499 . doi: 10.1002/adhm.201600470 http://dx.doi.org/10.1002/adhm.201600470
Nehls E. M. ; Rosales A. M. ; Anseth K. S. Enhanced user-control of small molecule drug release from a poly(ethylene glycol) hydrogel via azobenzene/cyclodextrin complex tethers . J. Mater. Chem. B , 2016 , 4 ( 6 ), 1035 - 1039 . doi: 10.1039/c5tb02004b http://dx.doi.org/10.1039/c5tb02004b
Park C. ; Lee K. ; Kim C. Photoresponsive cyclodextrin-covered nanocontainers and their sol-gel transition induced by molecular recognition . Angew. Chem. Int. Ed. , 2009 , 48 ( 7 ), 1275 - 1278 . doi: 10.1002/anie.200803880 http://dx.doi.org/10.1002/anie.200803880
Fomina N. ; McFearin C. L. ; Sermsakdi M. ; Morachis J. M. ; Almutairi A. Low power, biologically benign NIR light triggers polymer disassembly . Macromolecules , 2011 , 44 ( 21 ), 8590 - 8597 . doi: 10.1021/ma201850q http://dx.doi.org/10.1021/ma201850q
Zhang Y. P. ; Qiu Y. X. ; Karimi A. B. ; Smith B. R. Systematic review: mechanisms of photoactive nanocarriers for imaging and therapy including controlled drug delivery . Eur. J. Nucl. Med. Mol. Imag. , 2025 , 52 ( 4 ), 1576 - 1595 . doi: 10.1007/s00259-024-07014-z http://dx.doi.org/10.1007/s00259-024-07014-z
Stoychev G. ; Kirillova A. ; Ionov L. Light-responsive shape-changing polymers . Adv. Opt. Mater. , 2019 , 7 ( 16 ), 1900067 . doi: 10.1002/adom.201900067 http://dx.doi.org/10.1002/adom.201900067
Ilami M. ; Bagheri H. ; Ahmed R. ; Skowronek E. O. ; Marvi H. Materials, actuators, and sensors for soft bioinspired robots . Adv. Mater. , 2021 , 33 ( 19 ), 2003139 . doi: 10.1002/adma.202003139 http://dx.doi.org/10.1002/adma.202003139
Liu H. ; Liu R. N. ; Chen K. ; Liu Y. Y. ; Zhao Y. ; Cui X. Y. ; Tian Y. Bioinspired gradient structured soft actuators: From fabrication to application . Chem. Eng. J. , 2023 , 461 , 141966 . doi: 10.1016/j.cej.2023.141966 http://dx.doi.org/10.1016/j.cej.2023.141966
Li C. ; Iscen A. ; Sai H. ; Sato K. ; Sather N. A. ; Chin S. M. ; Álvarez Z. ; Palmer L. C. ; Schatz G. C. ; Stupp S. I. Supramolecular-covalent hybrid polymers for light-activated mechanical actuation . Nat. Mater. , 2020 , 19 ( 8 ), 900 - 909 . doi: 10.1038/s41563-020-0707-7 http://dx.doi.org/10.1038/s41563-020-0707-7
Perrot A. ; Wang W. Z. ; Buhler E. ; Moulin E. ; Giuseppone N. Bending actuation of hydrogels through rotation of light-driven molecular motors . Angew. Chem. Int. Ed. , 2023 , 62 ( 13 ), e 202300263 . doi: 10.1002/anie.202300263 http://dx.doi.org/10.1002/anie.202300263
Iwaso K. ; Takashima Y. ; Harada A. Fast response dry-type artificial molecular muscles with [c 2 ] chainsdaisy. Nat. Chem. , 2016 , 8 ( 6 ), 625 - 632 . doi: 10.1038/nchem.2513 http://dx.doi.org/10.1038/nchem.2513
Fei G. H. ; Parra-Cabrera C. ; Zhong K. ; Clays K. ; Ameloot R. From grayscale photopolymerization 3D printing to functionally graded materials . Adv. Funct. Mater. , 2024 , 34 ( 32 ), 2470180 . doi: 10.1002/adfm.202470180 http://dx.doi.org/10.1002/adfm.202470180
Feng P. ; Yang F. ; Jia J. Y. ; Zhang J. ; Tan W. ; Shuai C. J. Mechanism and manufacturing of 4D printing: derived and beyond the combination of 3D printing and shape memory material . Int. J. Extrem. Manuf. , 2024 , 6 ( 6 ), 062011 . doi: 10.1088/2631-7990/ad7e5f http://dx.doi.org/10.1088/2631-7990/ad7e5f
Ding A. X. ; Tang F. ; Alsberg E. 4D printing: a comprehensive review of technologies, materials, stimuli, design, and emerging applications . Chem. Rev. , 2025 , 125 ( 7 ), 3663 - 3771 . doi: 10.1021/acs.chemrev.4c00070 http://dx.doi.org/10.1021/acs.chemrev.4c00070
Chekkaramkodi D. ; Jacob L. ; Muhammed Shebeeb C. ; Umer R. ; Butt H. Review of vat photopolymerization 3D printing of photonic devices . Addit. Manuf. , 2024 , 86 , 104189 . doi: 10.1016/j.addma.2024.104189 http://dx.doi.org/10.1016/j.addma.2024.104189
Chen D. ; Ni C. J. ; Xie L. L. ; Li Y. ; Deng S. H. ; Zhao Q. ; Xie T. Homeostatic growth of dynamic covalent polymer network toward ultrafast direct soft lithography . Sci. Adv. , 2021 , 7 ( 43 ), eabi 7360 . doi: 10.1126/sciadv.abi7360 http://dx.doi.org/10.1126/sciadv.abi7360
Zhou R. H. ; Cao M. Q. ; Tan Y. Z. ; Neisser M. ; Xu H. P. Polytelluoxane as the ideal formulation for EUV photoresist . Sci. Adv. , 2025 , 11 ( 29 ), eadx 1918 . doi: 10.1126/sciadv.adx1918 http://dx.doi.org/10.1126/sciadv.adx1918
Shin S. ; Kwon Y. ; Hwang C. ; Jeon W. ; Yu Y. ; Paik H. J. ; Lee W. ; Kwon M. S. ; Ahn D. Visible-light-driven rapid 3 D printing of photoresponsive resins for optically clear multifunctional 3 D objects . Adv. Mater., 2024, 36 ( 19 ), 2311917 . doi: 10.1002/adma.202470147 http://dx.doi.org/10.1002/adma.202470147
Kim J. W. ; Allen M. J. ; Recker E. A. ; Stevens L. M. ; Cater H. L. ; Uddin A. ; Gao A. ; Eckstrom W. ; Arrowood A. J. ; Sanoja G. E. ; Cullinan M. A. ; Freeman B. D. ; Page Z. A. Hybrid epoxy-acrylate resins for wavelength-selective multimaterial 3D printing . Nat. Mater. , 2025 , 24 ( 7 ), 1116 - 1125 . doi: 10.1038/s41563-025-02249-z http://dx.doi.org/10.1038/s41563-025-02249-z
Li M. Z. ; Yue L. ; Rajan A. C. ; Yu L. X. ; Sahu H. ; Montgomery S. M. ; Ramprasad R. ; Qi H. J. Low-temperature 3D printing of transparent silica glass microstructures . Sci. Adv. , 2023 , 9 ( 40 ), eadi 2958 . doi: 10.1126/sciadv.adi2958 http://dx.doi.org/10.1126/sciadv.adi2958
Zhang Z. W. ; Li J. T. ; Wei W. Y. ; Wei J. ; Guo J. B. A luminescent dicyanodistyrylbenzene-based liquid crystal polymer network for photochemically patterned photonic composite film . Chinese J. Polym. Sci. , 2018 , 36 ( 6 ), 776 - 782 . doi: 10.1007/s10118-018-2072-4 http://dx.doi.org/10.1007/s10118-018-2072-4
Dhand A. P. ; Davidson M. D. ; Zlotnick H. M. ; Kolibaba T. J. ; Killgore J. P. ; Burdick J. A. Additive manufacturing of highly entangled polymer networks . Science , 2024 , 385 ( 6708 ), 566 - 572 . doi: 10.1126/science.adn6925 http://dx.doi.org/10.1126/science.adn6925
Li B. R. ; Cao P. F. ; Saito T. ; Sokolov A. P. Intrinsically self-healing polymers: from mechanistic insight to current challenges . Chem. Rev. , 2023 , 123 ( 2 ), 701 - 735 . doi: 10.1021/acs.chemrev.2c00575 http://dx.doi.org/10.1021/acs.chemrev.2c00575
Liu C. H. ; Xu Y. ; Shi Y. L. ; Jiang Z. J. ; Wang P. Y. ; Wei J. X. ; Yang Y. Y. Research and application progress of photo-induced self-healing polymers . Mater. Today Commun. , 2025 , 43 , 111752 . doi: 10.1016/j.mtcomm.2025.111752 http://dx.doi.org/10.1016/j.mtcomm.2025.111752
Tamesue S. ; Takashima Y. ; Yamaguchi H. ; Shinkai S. ; Harada A. Photoswitchable supramolecular hydrogels formed by cyclodextrins and azobenzene polymers . Angew. Chem. , 2010 , 122 ( 41 ), 7623 - 7626 . doi: 10.1002/ange.201003567 http://dx.doi.org/10.1002/ange.201003567
Liao X. J. ; Chen G. S. ; Liu X. X. ; Chen W. X. ; Chen F. E. ; Jiang M. Photoresponsive pseudopolyrotaxane hydrogels based on competition of host-guest interactions . Angew. Chem. Int. Ed. , 2010 , 49 ( 26 ), 4409 - 4413 . doi: 10.1002/anie.201000141 http://dx.doi.org/10.1002/anie.201000141
Amamoto Y. ; Otsuka H. ; Takahara A. ; Matyjaszewski K. Self-healing of covalently cross-linked polymers by reshuffling thiuram disulfide moieties in air under visible light . Adv. Mater. , 2012 , 24 ( 29 ), 3975 - 3980 . doi: 10.1002/adma.201201928 http://dx.doi.org/10.1002/adma.201201928
Wimberger L. ; Ng G. ; Boyer C. Light-driven polymer recycling to monomers and small molecules . Nat. Commun. , 2024 , 15 , 2510 . doi: 10.1038/s41467-024-46656-3 http://dx.doi.org/10.1038/s41467-024-46656-3
Psarrou M. ; Chatzaki I. ; Mavromanolakis A. ; Manouras T. ; Vlassopoulos D. ; Vamvakaki M. On-demand photodegradable and thermo-reversible, soft, transparent dithioacetal hydrogels . Angew. Chem. Int. Ed. , 2025 , 64 ( 36 ), e 202508160 . doi: 10.1002/anie.202508160 http://dx.doi.org/10.1002/anie.202508160
Yalin A. S. ; Schara P. ; Tomović Ž. ; Eisenreich F. A light-driven closed-loop chemical recycling system for polypinacols . Adv. Mater. , 2025 , 37 ( 38 ), 2506733 . doi: 10.1002/adma.202506733 http://dx.doi.org/10.1002/adma.202506733
Abdollahi A. ; Roghani-Mamaqani H. ; Razavi B. Stimuli-chromism of photoswitches in smart polymers: recent advances and applications as chemosensors . Prog. Polym. Sci. , 2019 , 98 , 101149 . doi: 10.1016/j.progpolymsci.2019.101149 http://dx.doi.org/10.1016/j.progpolymsci.2019.101149
Zhang L. D. ; Liang H. R. ; Jacob J. ; Naumov P. Photogated humidity-driven motility . Nat. Commun. , 2015 , 6 , 7429 . doi: 10.1038/ncomms8429 http://dx.doi.org/10.1038/ncomms8429
Musarurwa H. ; Tavengwa N. T. Stimuli-responsive polymers and their applications in separation science . React. Funct. Polym. , 2022 , 175 , 105282 . doi: 10.1016/j.reactfunctpolym.2022.105282 http://dx.doi.org/10.1016/j.reactfunctpolym.2022.105282
Abousalman-Rezvani Z. ; Roghani-Mamaqani H. ; Riazi H. ; Abousalman-Rezvani O. Water treatment using stimuli-responsive polymers . Polym. Chem. , 2022 , 13 ( 42 ), 5940 - 5964 . doi: 10.1039/d2py00992g http://dx.doi.org/10.1039/d2py00992g
Genovese M. E. ; Caputo G. ; Nanni G. ; Setti C. ; Bustreo M. ; Perotto G. ; Athanassiou A. ; Fragouli D. Light responsive silk nanofibers: an optochemical platform for environmental applications . ACS Appl. Mater. Interfaces , 2017 , 9 ( 46 ), 40707 - 40715 . doi: 10.1021/acsami.7b13372 http://dx.doi.org/10.1021/acsami.7b13372
Liu G. J. ; Wang M. ; Gao H. ; Cui C. C. ; Gao J. Spiropyran modified polyvinyl alcohol sponge as a light-responsive adsorbent for the removal of Pb(II) in aqueous solution . Eur. Polym. J. , 2021 , 161 , 110828 . doi: 10.1016/j.eurpolymj.2021.110828 http://dx.doi.org/10.1016/j.eurpolymj.2021.110828
Shiraishi Y. ; Sumiya S. ; Manabe K. ; Hirai T. Thermoresponsive copolymer containing a coumarin-spiropyran conjugate: reusable fluorescent sensor for cyanide anion detection in water . ACS Appl. Mater. Interfaces , 2011 , 3 ( 12 ), 4649 - 4656 . doi: 10.1021/am201069n http://dx.doi.org/10.1021/am201069n
Schöller K. ; Küpfer S. ; Baumann L. ; Hoyer P. M. ; de Courten D. ; Rossi R. M. ; Vetushka A. ; Wolf M. ; Bruns N. ; Scherer L. J. From membrane to skin: aqueous permeation control through light-responsive amphiphilic polymer co-networks . Adv. Funct. Mater. , 2014 , 24 ( 33 ), 5194 - 5201 . doi: 10.1002/adfm.201400671 http://dx.doi.org/10.1002/adfm.201400671
Sharif Bakhsh E. ; Tavakoli Dare M. ; Jafari A. ; Shahi F. Light-activated nanofibers: advances in photo-responsive electrospun polymer technologies . Polym. Plast. Technol. Mater. , 2025 , 64 ( 4 ), 397 - 438 . doi: 10.1080/25740881.2024.2408346 http://dx.doi.org/10.1080/25740881.2024.2408346
0
Views
90
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号