

浏览全部资源
扫码关注微信
1.南京理工大学化学与化工学院 南京 210094
2.扬州大学测试中心 扬州 225009
Jian-hua Xu, E-mail: jianhuaxu@njust.edu.cn
Received:30 August 2025,
Accepted:26 September 2025,
Published Online:12 November 2025,
Published:20 December 2025
移动端阅览
陈官胜, 柳童, 王志峰, 徐建华, 傅佳骏. 柔性抗撕裂自修复聚氨酯/氮化硼层状复合材料的制备及其导热性能研究. 高分子学报, 2025, 56(12), 2418-2429
Chen, G. S., Liu, T., Wang, Z. F., Xu, J. H., Fu, J. J. Fabrication and thermal conductivity of flexible, tear-resistant, and self-healing polyurethane/boron nitride laminated composites. Acta Polymerica Sinica, 2025, 56(12), 2418-2429
陈官胜, 柳童, 王志峰, 徐建华, 傅佳骏. 柔性抗撕裂自修复聚氨酯/氮化硼层状复合材料的制备及其导热性能研究. 高分子学报, 2025, 56(12), 2418-2429 DOI: 10.11777/j.issn1000-3304.2025.25222. CSTR: 32057.14.GFZXB.2025.7472.
Chen, G. S., Liu, T., Wang, Z. F., Xu, J. H., Fu, J. J. Fabrication and thermal conductivity of flexible, tear-resistant, and self-healing polyurethane/boron nitride laminated composites. Acta Polymerica Sinica, 2025, 56(12), 2418-2429 DOI: 10.11777/j.issn1000-3304.2025.25222. CSTR: 32057.14.GFZXB.2025.7472.
柔性导热材料是电子电器、能源与航空航天等领域的关键功能材料,但其应用受到损伤后难以自修复以及裂纹易扩展等问题的严重制约. 本研究通过将羟基化氮化硼纳米片引入自修复聚氨酯基体,并采用层压定构工艺构建有序层状结构,成功制备出兼具优异抗撕裂性能和自修复能力的柔性导热复合材料. 研究表明,该材料的面内导热系数达到5.8 W·m
-1
·K
-1
,断裂能为341.1 kJ·m
-2
,同时在60 ℃条件下可实现表面划痕与机械性能的完全修复,修复效率高达91.03%. 本研究为发展高性能导热材料提供了新的设计思路与实验依据.
Flexible thermal conductive materials are critical functional components in electronics
energy
and aerospace applications. However
their practical utility is severely limited by issues such as the inability to self-repair after damage and a tendency for crack propagation. To address these challenges
this study successfully fabricated a flexible thermal conductive composite with integrated high tear resistance and self-healing capability by incorporating hydroxylated boron nitride nanosheets into a self-healing polyurethane matrix and constructing an ordered layered structure through a lamination process. The resulting material exhibited an in-plane thermal conductivity of 5.8 W·m
-1
·K
-1
and a fracture energy of 341.1 kJ·m
-2
. Moreover
it achieved complete recovery of both surface scratches and mechanical properties at 60 ℃ with a healing efficiency of 91.03%. This work provides a novel design strategy and experimental foundation for developing high-performance thermal management materials.
Zhang D. D. ; Huang T. Y. ; Duan L. Emerging self-emissive technologies for flexible displays . Adv. Mater. , 2020 , 32 ( 15 ), 1902391 . doi: 10.1002/adma.201902391 http://dx.doi.org/10.1002/adma.201902391
Huang X. ; Liu J. Z. ; Zhou P. ; Su G. H. ; Zhou T. ; Zhang X. X. ; Zhang C. H. Ultrarobust photothermal materials via dynamic crosslinking for solar harvesting . Small , 2022 , 18 ( 7 ), 2104048 . doi: 10.1002/smll.202104048 http://dx.doi.org/10.1002/smll.202104048
Niu H. S. ; Li H. ; Gao S. ; Li Y. ; Wei X. ; Chen Y. K. ; Yue W. J. ; Zhou W. J. ; Shen G. Z. Perception-to-cognition tactile sensing based on artificial-intelligence-motivated human full-skin bionic electronic skin . Adv. Mater. , 2022 , 34 ( 31 ), 2202622 . doi: 10.1002/adma.202270225 http://dx.doi.org/10.1002/adma.202270225
Liu G. ; Lv Z. Y. ; Batool S. ; Li M. Z. ; Zhao P. F. ; Guo L. C. ; Wang Y. ; Zhou Y. ; Han S. T. Biocompatible material-based flexible biosensors: from materials design to wearable/implantable devices and integrated sensing systems . Small , 2023 , 19 ( 27 ), 2207879 . doi: 10.1002/smll.202207879 http://dx.doi.org/10.1002/smll.202207879
Hu R. ; Liu Y. D. ; Shin S. ; Huang S. Y. ; Ren X. C. ; Shu W. C. ; Cheng J. J. ; Tao G. M. ; Xu W. L. ; Chen R. K. ; Luo X. B. Emerging materials and strategies for personal thermal management . Adv. Energy Mater. , 2020 , 10 ( 17 ), 1903921 . doi: 10.1002/aenm.201903921 http://dx.doi.org/10.1002/aenm.201903921
Li M. ; Wang M. J. ; Hou X. ; Zhan Z. L. ; Wang H. ; Fu H. ; Lin C. T. ; Fu L. ; Jiang N. ; Yu J. H. Highly thermal conductive and electrical insulating polymer composites with boron nitride . Compos. Part B Eng. , 2020 , 184 , 107746 . doi: 10.1016/j.compositesb.2020.107746 http://dx.doi.org/10.1016/j.compositesb.2020.107746
Sun F. Y. ; Zhang J. Y. ; Liu T. ; Yao H. ; Wang L. ; Meng H. Y. ; Gao Y. L. ; Cao Y. F. ; Yao B. W. ; Xu J. H. ; Fu J. J. A versatile microporous design toward toughened yet softened self-healing materials . Adv. Mater. , 2024 , 36 ( 50 ), 2410650 . doi: 10.1002/adma.202410650 http://dx.doi.org/10.1002/adma.202410650
郭永强 , 李攀 , 赵若琳 , 顾军渭 . 吸波型聚酰亚胺导热相变复合材料的制备及性能研究 . 高分子学报 , 2025 , 56 , doi: 10.11777/j.issn1000- 3304.2025.25144.
Wu K. ; Wang J. M. ; Liu D. Y. ; Lei C. X. ; Liu D. ; Lei W. W. ; Fu Q. Highly thermoconductive, thermostable, and super-flexible film by engineering 1D rigid rod-like aramid nanofiber/2D boron nitride nanosheets . Adv. Mater. , 2020 , 32 ( 8 ), 1906939 . doi: 10.1002/adma.201906939 http://dx.doi.org/10.1002/adma.201906939
Yu H. T. ; Feng Y. Y. ; Gao L. ; Chen C. ; Zhang Z. X. ; Feng W. Self-healing high strength and thermal conductivity of 3D graphene/PDMS composites by the optimization of multiple molecular interactions . Macromolecules , 2020 , 53 ( 16 ), 7161 - 7170 . doi: 10.1021/acs.macromol.9b02544 http://dx.doi.org/10.1021/acs.macromol.9b02544
Guo Y. Q. ; Zhang L. ; Ruan K. P. ; Mu Y. ; He M. K. ; Gu J. W. Enhancing hydrolysis resistance and thermal conductivity of aluminum nitride/polysiloxane composites via block copolymer-modification . Polymer , 2025 , 323 , 128189 . doi: 10.1016/j.polymer.2025.128189 http://dx.doi.org/10.1016/j.polymer.2025.128189
Lin Y. H. ; Tang L. ; Jia M. S. ; He M. K. ; Zhang J. L. ; Tang Y. S. ; Gu J. W. Down-top strategy engineered large-scale fluorographene/PBO nanofibers composite papers with excellent wave-transparent performance and thermal conductivity . Nano Micro Lett. , 2025 , 18 ( 1 ), 35 . doi: 10.1007/s40820-025-01878-y http://dx.doi.org/10.1007/s40820-025-01878-y
Ma X. ; Zhang H. T. ; Guo Y. Q. ; He M. K. ; Guo H. ; Liu Z. Y. ; Jing X. R. ; Zheng X. X. ; Liu Y. J. ; Bai S. L. ; Shi X. T. ; Wang J. T. ; Gu J. W. Enhancing thermal conductivity in polysiloxane composites through synergistic design of liquid crystals and boron nitride nanosheets . J. Mater. Sci. Technol. , 2025 , 231 , 54 - 61 . doi: 10.1016/j.jmst.2025.01.004 http://dx.doi.org/10.1016/j.jmst.2025.01.004
Wang Y. Q. ; Ruan K. P. ; Li M. K. ; Guo Y. Q. ; He M. K. ; Guo H. ; Shi X. T. ; Qiu H. ; Song P. ; Gu J. W. Horizontal array of BNNS@Ni for polydimethylsiloxane composites with high in-plane thermal conductivities and excellent photo-thermal performances . Nano Res. , 2025 , 18 ( 8 ), 94907700 . doi: 10.26599/nr.2025.94907700 http://dx.doi.org/10.26599/nr.2025.94907700
Zhang J. L. ; Tang C. Y. ; Kong Q. Q. ; He M. K. ; Lv P. ; Guo H. ; Guo Y. Q. ; Shi X. T. ; Gu J. W. Strong and tough polyvinyl alcohol hydrogels with high intrinsic thermal conductivity . Soft Sci. , 2025 , 5 ( 1 ), 9 . doi: 10.20517/ss.2024.72 http://dx.doi.org/10.20517/ss.2024.72
Zhao L. H. ; Wang L. ; Jin Y. F. ; Ren J. W. ; Wang Z. ; Jia L. C. Simultaneously improved thermal conductivity and mechanical properties of boron nitride nanosheets/aramid nanofiber films by constructing multilayer gradient structure . Compos. Part B Eng. , 2022 , 229 , 109454 . doi: 10.1016/j.compositesb.2021.109454 http://dx.doi.org/10.1016/j.compositesb.2021.109454
Shtansky D. V. ; Matveev A. T. ; Permyakova E. S. ; Leybo D. V. ; Konopatsky A. S. ; Sorokin P. B. Recent progress in fabrication and application of BN nanostructures and BN-based nanohybrids . Nanomaterials , 2022 , 12 ( 16 ), 2810 . doi: 10.3390/nano12162810 http://dx.doi.org/10.3390/nano12162810
Cai Q. R. ; Li L. H. ; Mateti S. ; Bhattacharjee A. ; Fan Y. ; Huang S. M. ; Chen Y. I. Boron nitride nanosheets: thickness-related properties and applications . Adv. Funct. Mater. , 2024 , 34 ( 40 ), 2403669 . doi: 10.1002/adfm.202403669 http://dx.doi.org/10.1002/adfm.202403669
Ma Y. J. ; Zhang Y. C. ; Cai S. S. ; Han Z. Y. ; Liu X. ; Wang F. L. ; Cao Y. ; Wang Z. H. ; Li H. F. ; Chen Y. H. ; Feng X. Flexible hybrid electronics for digital healthcare . Adv. Mater. , 2020 , 32 ( 15 ), 1902062 . doi: 10.1002/adma.201902062 http://dx.doi.org/10.1002/adma.201902062
Liu S. L. ; Oderinde O. ; Hussain I. ; Yao F. ; Fu G. D. Dual ionic cross-linked double network hydrogel with self-healing, conductive, and force sensitive properties . Polymer , 2018 , 144 , 111 - 120 . doi: 10.1016/j.polymer.2018.01.046 http://dx.doi.org/10.1016/j.polymer.2018.01.046
Tan M. W. M. ; Thornton P. M. ; Thangavel G. ; Bark H. ; Dauskardt R. ; Lee P. S. Toughening self-healing elastomers with chain mobility . Adv. Sci. , 2024 , 11 ( 30 ), 2308154 . doi: 10.1002/advs.202308154 http://dx.doi.org/10.1002/advs.202308154
Zeng X. Y. ; Chen T. ; Liu Y. G. ; Zhang T. ; Wang L. Crosslinked reprocessable phosphor/polyurethane composite networks with thermal induced self-healing capacity and ultraviolet conducted fluorescence effect . Polym. Degrad. Stabil. , 2023 , 210 , 110310 . doi: 10.1016/j.polymdegradstab.2023.110310 http://dx.doi.org/10.1016/j.polymdegradstab.2023.110310
Yang W. J. ; Lu B. B. ; Zhu Y. L. ; Yang Y. ; Puglia D. ; Xu P. W. ; Liu T. X. ; Ma P. M. A fully healable, mechanical self-strengthening and antibacterial Poly(thiocarbamate-urethane) elastomer constructed via dual reversible dynamic networks . Chem. Eng. J. , 2024 , 482 , 149179 . doi: 10.1016/j.cej.2024.149179 http://dx.doi.org/10.1016/j.cej.2024.149179
Willocq B. ; Odent J. ; Dubois P. ; Raquez J. M. Advances in intrinsic self-healing polyurethanes and related composites . RSC Adv. , 2020 , 10 ( 23 ), 13766 - 13782 . doi: 10.1039/d0ra01394c http://dx.doi.org/10.1039/d0ra01394c
Wang L. ; Zhang J. Y. ; Liu T. ; Sun F. Y. ; Wang Q. ; Wang Y. ; Zhang T. C. ; Xu J. H. ; Fu J. J. An active self-healing and UV-resistant anticorrosion coating based on loading-enhanced nanocontainers tailored for Q235 carbon steel protection . Prog. Org. Coat. , 2025 , 201 , 109128 . doi: 10.1016/j.porgcoat.2025.109128 http://dx.doi.org/10.1016/j.porgcoat.2025.109128
Xu J. H. ; Liu T. ; Zhang Y. Z. ; Zhang Y. N. ; Wu K. ; Lei C. X. ; Fu Q. ; Fu J. J. Dragonfly wing-inspired architecture makes a stiff yet tough healable material . Matter , 2021 , 4 ( 7 ), 2474 - 2489 . doi: 10.1016/j.matt.2021.05.001 http://dx.doi.org/10.1016/j.matt.2021.05.001
Hua M. T. ; He X. M. Soft-fiber-reinforced tough and fatigue resistant hydrogels . Matter , 2021 , 4 ( 6 ), 1755 - 1757 . doi: 10.1016/j.matt.2021.05.006 http://dx.doi.org/10.1016/j.matt.2021.05.006
Xiang C. P. ; Wang Z. J. ; Yang C. H. ; Yao X. ; Wang Y. C. ; Suo Z. G. Stretchable and fatigue-resistant materials . Mater. Today , 2020 , 34 , 7 - 16 . doi: 10.1016/j.mattod.2019.08.009 http://dx.doi.org/10.1016/j.mattod.2019.08.009
Li M. X. ; Chen L. L. ; Li Y. R. ; Dai X. B. ; Jin Z. K. ; Zhang Y. C. ; Feng W. W. ; Yan L. T. ; Cao Y. ; Wang C. Superstretchable, yet stiff, fatigue-resistant ligament-like elastomers . Nat. Commun. , 2022 , 13 ( 1 ), 2279 . doi: 10.1038/s41467-022-30021-3 http://dx.doi.org/10.1038/s41467-022-30021-3
Zheng Y. ; Kiyama R. ; Matsuda T. ; Cui K. P. ; Li X. Y. ; Cui W. ; Guo Y. Z. ; Nakajima T. ; Kurokawa T. ; Gong J. P. Nanophase separation in immiscible double network elastomers induces synergetic strengthening, toughening, and fatigue resistance . Chem. Mater. , 2021 , 33 ( 9 ), 3321 - 3334 . doi: 10.1021/acs.chemmater.1c00512 http://dx.doi.org/10.1021/acs.chemmater.1c00512
Liang X. Y. ; Chen G. D. ; Lin S. T. ; Zhang J. J. ; Wang L. ; Zhang P. ; Lan Y. ; Liu J. Bioinspired 2D isotropically fatigue-resistant hydrogels . Adv. Mater. , 2022 , 34 ( 8 ), 2107106 . doi: 10.1002/adma.202270064 http://dx.doi.org/10.1002/adma.202270064
Cui X. X. ; Jin J. J. ; Zou J. J. ; Tang Q. ; Ai Y. ; Zhang X. ; Wang Z. ; Zhou Y. ; Zhu Z. K. ; Tang G. Q. ; Cao Q. ; Liu S. ; Liu X. W. ; Tai Q. D. NiO x nanocrystals with tunable size and energy levels for efficient and UV stable perovskite solar cells . Adv. Funct. Mater. , 2022 , 32 ( 31 ), 2203049 . doi: 10.1002/adfm.202203049 http://dx.doi.org/10.1002/adfm.202203049
Li W. Z. ; Li L. L. ; Zheng S. J. ; Liu Z. Y. ; Zou X. Y. ; Sun Z. ; Guo J. N. ; Yan F. Recyclable, healable, and tough ionogels insensitive to crack propagation . Adv. Mater. , 2022 , 34 ( 28 ), 2203049 . doi: 10.1002/adma.202203049 http://dx.doi.org/10.1002/adma.202203049
Yang H. ; Ji M. K. ; Yang M. ; Shi M. ; Pan Y. D. ; Zhou Y. F. ; Qi H. J. ; Suo Z. G. ; Tang J. D. Fabricating hydrogels to mimic biological tissues of complex shapes and high fatigue resistance . Matter , 2021 , 4 ( 6 ), 1935 - 1946 . doi: 10.1016/j.matt.2021.03.011 http://dx.doi.org/10.1016/j.matt.2021.03.011
Zheng H. T. ; Wu K. ; Zhan Y. J. ; Wang K. X. ; Shi J. High intrinsic thermal conductive polymer films by engineered interchain hydrogen bond interactions . J. Polym. Sci. , 2023 , 61 ( 15 ), 1622 - 1633 . doi: 10.1002/pol.20230105 http://dx.doi.org/10.1002/pol.20230105
0
Views
356
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号