

浏览全部资源
扫码关注微信
东华大学先进纤维材料全国重点实验室 材料科学与工程学院 上海 201620
Received:30 August 2025,
Accepted:09 October 2025,
Published Online:16 December 2025,
Published:20 January 2026
移动端阅览
梁程耀, 黄威蕾, 高宇, 俞森龙, 相恒学, 朱丽萍, 胡泽旭, 成艳华, 朱美芳. 熔融纺高强度聚酰胺纤维及其凝聚态结构调控研究进展. 高分子学报, 2026, 57(1), 79-94.
Liang, C. Y.; Huang, W. L.; Gao, Y.; Yu, S. L.; Xiang, H. X.; Zhu, L. P.; Hu, Z. X.; Chen, Y. H.; Zhu, M. F. Melt-spun high-strength polyamide fibers and their condensed structure evolution. Acta Polymerica Sinica (in Chinese), 2026, 57(1), 79-94.
梁程耀, 黄威蕾, 高宇, 俞森龙, 相恒学, 朱丽萍, 胡泽旭, 成艳华, 朱美芳. 熔融纺高强度聚酰胺纤维及其凝聚态结构调控研究进展. 高分子学报, 2026, 57(1), 79-94. DOI: 10.11777/j.issn1000-3304.2025.25223. CSTR: 32057.14.GFZXB.2025.7488.
Liang, C. Y.; Huang, W. L.; Gao, Y.; Yu, S. L.; Xiang, H. X.; Zhu, L. P.; Hu, Z. X.; Chen, Y. H.; Zhu, M. F. Melt-spun high-strength polyamide fibers and their condensed structure evolution. Acta Polymerica Sinica (in Chinese), 2026, 57(1), 79-94. DOI: 10.11777/j.issn1000-3304.2025.25223. CSTR: 32057.14.GFZXB.2025.7488.
聚酰胺纤维是世界上最早实现工业化生产的合成纤维,也是当今产量第二大的合成纤维,因其具有拉伸断裂强度高、断裂伸长率大、回弹性优等特性,而被广泛应用到纺织服装、工业丝、家纺和特殊防护等领域. 随着工业技术的发展革新,常规的聚酰胺纤维由于断裂强度较低已难以满足某些特殊应用场景的性能需求. 聚酰胺相邻分子链间的酰胺键间极易形成氢键,致使分子链间的相互作用力较强,难以通过高倍牵伸获得高取向结构从而限制了其强度的提高. 为突破现有纺丝体系下聚酰胺纤维力学性能的瓶颈,需要深入了解工艺-结构-性能三元关系,精准调控聚酰胺纤维的多层次结构,进而实现聚酰胺纤维的高强化. 本文就纺丝阶段的三个重要阶段(熔融挤出、牵伸和热定型)讨论了纤维在成形过程中的多尺度结构演变以及纺丝参数对其结构-性能的调控机制,有望为高强聚酰胺纤维工艺设计提供理论指导.
Polyamide fiber was the first synthetic fiber to achieve industrial-scale production and remains the second most widely produced synthetic fiber. Its high tensile strength
large elongation at break
and excellent resilience make it widely applicable in textiles and apparel
industrial yarns
home textiles
and specialized protective applications. With the advancement and innovation of industrial technology
conventional polyamide fibers struggle to meet the performance demands of certain specialized applications because of their relatively low tensile strength. The amide bonds between adjacent molecular chains in polyamides readily form hydrogen bonds
resulting in strong intermolecular interactions. This makes it difficult to achieve highly oriented structures through high-ratio drawing
thereby limiting the strength enhancement. To overcome the mechanical performance limitations of polyamide fibers within existing spinning systems
it is essential to understand the process-structure-property triadic relationship and precisely control the multilevel structure of polyamide fibers
thereby achieving high reinforcement. This review examines the multiscale structural evolution of fibers during the three critical spinning stages (melt extrusion
drawing
and thermal setting) and investigates the regulatory mechanisms of spinning parameters on their structure-property relationships. This study aims to provide theoretical guidance for the process design of high-strength polyamide fibers.
白荣光 , 李鹏洲 . 尼龙(聚酰胺) 66聚合技术研究进展 . 化工进展 , 2014 , 33 ( 1 ), 21 - 24 .
Albano C. ; Sciamanna R. ; Gónzalez R. ; Papa J. ; Navarro O. Analysis of nylon 66 solidification process . Eur. Polym. J. , 2001 , 37 ( 4 ), 851 - 860 . doi: 10.1016/s0014-3057(00)00172-5 http://dx.doi.org/10.1016/s0014-3057(00)00172-5
Najafi M. ; Nasri L. ; Kotek R. High-performance nylon fibers . Structure and Properties of High-performance Fibers. Amsterdam : Elsevier , 2017 , 199 - 244 . doi: 10.1016/b978-0-08-100550-7.00009-7 http://dx.doi.org/10.1016/b978-0-08-100550-7.00009-7
罗巧玲 , 邵力文 , 林琴 , 王冬 , 付少海 . 原液着色生物基尼龙56纤维的制备及其可见光-近红外光谱性能 . 高分子学报 , 2025 , 56 ( 2 ), 322 - 330 .
Ma Y. N. ; Zhou T. ; Su G. H. ; Li Y. ; Zhang A. M. Understanding the crystallization behavior of polyamide 6/polyamide 66 alloys from the perspective of hydrogen bonds: projection moving-window 2D correlation FTIR spectroscopy and the enthalpy . RSC Adv. , 2016 , 6 ( 90 ), 87405 - 87415 . doi: 10.1039/c6ra09611e http://dx.doi.org/10.1039/c6ra09611e
Gardeniers M. ; Leone N. ; Kneepkens R. ; van Diepen A. ; Droste J. ; Hansen M. R. ; Rastogi S. ; Harings J. A. W. Breaking the hydrogen bond barrier reversibly: toward ultradrawable polyamides . ACS Appl. Polym. Mater. , 2025 , 7 ( 11 ), 6825 - 6836 . doi: 10.1021/acsapm.5c00426 http://dx.doi.org/10.1021/acsapm.5c00426
Dawelbeit A. ; Yu M. H. Tentative confinement of ionic liquids in nylon 6 fibers: a bridge between structural developments and high-performance properties . ACS Omega , 2021 , 6 ( 5 ), 3535 - 3547 . doi: 10.1021/acsomega.0c04740 http://dx.doi.org/10.1021/acsomega.0c04740
Xu J. R. ; Ren X. K. ; Yang T. ; Jiang X. Q. ; Chang W. Y. ; Yang S. ; Stroeks A. ; Chen E. Q. Revisiting the thermal transition of β -form polyamide-6: evolution of structure and morphology in uniaxially stretched films . Macromolecules , 2018 , 51 ( 1 ), 137 - 150 . doi: 10.1021/acs.macromol.7b01827 http://dx.doi.org/10.1021/acs.macromol.7b01827
Hufenus R. ; Yan Y. R. ; Dauner M. ; Kikutani T. Melt-spun fibers for textile applications . Materials , 2020 , 13 ( 19 ), 4298 . doi: 10.3390/ma13194298 http://dx.doi.org/10.3390/ma13194298
Samon J. M. ; Schultz J. M. ; Hsiao B. S. Study of the cold drawing of nylon 6 fiber by in situ simultaneous small- and wide-angle X-ray scattering techniques . Polymer , 2000 , 41 ( 6 ), 2169 - 2182 . doi: 10.1016/s0032-3861(99)00378-x http://dx.doi.org/10.1016/s0032-3861(99)00378-x
Ziabicki A. Fundamentals of Fibre Formation: the Science of Fibre Spinning and Drawing . London : Wiley , 1976 . doi: 10.1016/0032-3861(77)90071-4 http://dx.doi.org/10.1016/0032-3861(77)90071-4
Pepin J. ; Miri V. ; Lefebvre J. M. New insights into the brill transition in polyamide 11 and polyamide 6 . Macromolecules , 2016 , 49 ( 2 ), 564 - 573 . doi: 10.1021/acs.macromol.5b01701 http://dx.doi.org/10.1021/acs.macromol.5b01701
Hedicke K. ; Wittich H. ; Mehler C. ; Gruber F. ; Altstädt V. Crystallisation behaviour of polyamide-6 and polyamide-66 nanocomposites . Compos. Sci. Technol. , 2006 , 66 ( 3-4 ), 571 - 575 . doi: 10.1016/j.compscitech.2005.05.023 http://dx.doi.org/10.1016/j.compscitech.2005.05.023
Cavallo D. ; Gardella L. ; Alfonso G. C. ; Portale G. ; Balzano L. ; Androsch R. Effect of cooling rate on the crystal/mesophase polymorphism of polyamide 6 . Colloid Polym. Sci. , 2011 , 289 ( 9 ), 1073 - 1079 . doi: 10.1007/s00396-011-2428-6 http://dx.doi.org/10.1007/s00396-011-2428-6
Samon J. M. ; Schultz J. M. ; Wu J. ; Hsiao B. ; Yeh F. ; Kolb R. Study of the structure development during the melt spinning of nylon 6 fiber by on-line wide-angle synchrotron X-ray scattering techniques . J. Polym. Sci. Part B Polym. Phys. , 1999 , 37 ( 12 ), 1277 - 1287 . doi: 10.1002/(sici)1099-0488(19990615)37:12<1277::aid-polb8>3.0.co;2-x http://dx.doi.org/10.1002/(sici)1099-0488(19990615)37:12<1277::aid-polb8>3.0.co;2-x
Vasanthan N. ; Salem D. R. FTIR spectroscopic characterization of structural changes in polyamide-6 fibers during annealing and drawing . J. Polym. Sci. Part B Polym. Phys. , 2001 , 39 ( 5 ), 536 - 547 . doi: 10.1002/1099-0488(20010301)39:5<536::aid-polb1027>3.0.co;2-8 http://dx.doi.org/10.1002/1099-0488(20010301)39:5<536::aid-polb1027>3.0.co;2-8
Shimizu J. ; Okui N. ; Kikutani T. ; Ono A. ; Takaku A. High speed melt spinning of nylon 6 . Sen'i Gakkaishi , 1981 , 37 ( 4 ), T143 - T152 . doi: 10.2115/fiber.37.4_t143 http://dx.doi.org/10.2115/fiber.37.4_t143
Kim S. L. Effects of spinning speed and quench air temperature on the characteristics of melt spun poly(ethylene terephthalate) yarn1 . Text. Res. J. , 1986 , 56 ( 11 ), 697 - 704 . doi: 10.1177/004051758605601108 http://dx.doi.org/10.1177/004051758605601108
Zhao Z. D. ; Zheng W. T. ; Tian H. W. ; Yu W. X. ; Han D. ; Li B. Crystallization behaviors of secondarily quenched Nylon 6 . Mater. Lett. , 2007 , 61 ( 3 ), 925 - 928 . doi: 10.1016/j.matlet.2006.06.014 http://dx.doi.org/10.1016/j.matlet.2006.06.014
Zheng X. ; Lin Q. Q. ; Jiang P. ; Li Y. J. ; Li J. Y. Ionic liquids incorporating polyamide 6: miscibility and physical properties . Polymers , 2018 , 10 ( 5 ), 562 . doi: 10.3390/polym10050562 http://dx.doi.org/10.3390/polym10050562
Tian Y. C. ; Qin H. L. ; Yang X. Q. ; Chi C. L. ; Liu S. Y. Influence of ionic liquids on the structure of polyamide 6 . Mater. Lett. , 2016 , 180 , 200 - 202 . doi: 10.1016/j.matlet.2016.05.151 http://dx.doi.org/10.1016/j.matlet.2016.05.151
Wang J. N. ; Zhang J. ; Zhu Y. L. ; Yang S. ; Dong Z. F. ; Zhang X. Q. ; Wang R. Crystallization regulation determined spinnability and mechanical properties toward PA66/calcium chloride and its fibers . ACS Omega , 2025 , 10 ( 19 ), 19444 - 19452 . doi: 10.1021/acsomega.4c11028 http://dx.doi.org/10.1021/acsomega.4c11028
Liu S. X. ; Zhang C. F. ; Proniewicz E. ; Proniewicz L. M. ; Kim Y. ; Liu J. ; Zhao Y. ; Xu Y. Z. ; Wu J. G. Crystalline transition and morphology variation of polyamide 6/CaCl 2 composite during the decomplexation process . Spectrochim. Acta Part A Mol. Biomol. Spectrosc. , 2013 , 115 , 783 - 788 . doi: 10.1016/j.saa.2013.06.056 http://dx.doi.org/10.1016/j.saa.2013.06.056
More A. P. ; Donald A. M. The effect of metal halides on the deformation mechanism of thin films of nylon . Polymer , 1992 , 33 ( 19 ), 4081 - 4086 . doi: 10.1016/0032-3861(92)90609-z http://dx.doi.org/10.1016/0032-3861(92)90609-z
Terada M. ; Yamabe R. ; Ichiki M. ; Yamanaka A. Estimation of fiber orientation distribution in carbon-fiber-reinforced polyamide 6 using X-ray diffraction images . Adv. Compos. Mater. , 2023 , 32 ( 5 ), 686 - 701 . doi: 10.1080/09243046.2022.2140621 http://dx.doi.org/10.1080/09243046.2022.2140621
Shi K. H. ; Ye L. ; Li G. X. Thermal oxidative aging behavior and stabilizing mechanism of highly oriented polyamide 6 . J. Therm. Anal. Calorim. , 2016 , 126 ( 2 ), 795 - 805 . doi: 10.1007/s10973-016-5523-6 http://dx.doi.org/10.1007/s10973-016-5523-6
Zhou C. X. ; Zhu P. ; Liu X. R. ; Dong X. ; Wang D. J. The toughening mechanism of core-shell particles by the interface interaction and crystalline transition in polyamide 1012 . Compos. Part B Eng. , 2021 , 206 , 108539 . doi: 10.1016/j.compositesb.2020.108539 http://dx.doi.org/10.1016/j.compositesb.2020.108539
Gao J. C. ; Sato H. Study on the Brill transition of polyamide 6 with different crystal forms using low- and high-frequency Raman spectroscopy . RSC Adv. , 2025 , 15 ( 3 ), 2224 - 2230 . doi: 10.1039/d4ra08523j http://dx.doi.org/10.1039/d4ra08523j
赵中国 , 杨丽岩 , 杨其 , 张鑫 , 贾仕奎 . 微型注塑聚丙烯/聚酰胺6共混体系的取向形态演变和力学性能 . 高分子材料科学与工程 , 2020 , 36 ( 7 ), 118 - 124 .
Chen Z. ; Hu Z. ; Chen S. ; Yu S. ; Zhu L. ; Xiang H. ; Zhu M. Controllable large-scale processing of temperature regulating sheath-core fibers with high-enthalpy for thermal management . Nano Mater. Sci. , 2024 , 6 ( 3 ), 337 - 344 . doi: 10.1016/j.nanoms.2023.10.004 http://dx.doi.org/10.1016/j.nanoms.2023.10.004
Shang Y. T. ; Lou H. C. ; Zhao W. ; Zhang Y. C. ; Cui Z. ; Fu P. ; Pang X. C. ; Zhang X. M. ; Liu M. Y. The structural evolution and mechanical properties of semi-aromatic polyamide 12T after stretching . Polymers , 2022 , 14 ( 22 ), 4805 . doi: 10.3390/polym14224805 http://dx.doi.org/10.3390/polym14224805
Liang C. Y. ; Huang W. L. ; Yu S. L. ; Wang Q. Q. ; Hu Z. X. ; Xiang H. X. ; Zhu M. F. Multiscale evolution of chain orientation and crystal structure under the dual action of temperature and stress . Macromolecules , 2025 , 58 ( 9 ), 4591 - 4601 . doi: 10.1021/acs.macromol.5c00686 http://dx.doi.org/10.1021/acs.macromol.5c00686
Wang D. L. ; Shao C. G. ; Zhao B. J. ; Bai L. G. ; Wang X. ; Yan T. Z. ; Li J. J. ; Pan G. Q. ; Li L. B. Deformation-induced phase transitions of polyamide 12 at different temperatures: an in situ wide-angle X-ray scattering study . Macromolecules , 2010 , 43 ( 5 ), 2406 - 2412 . doi: 10.1021/ma1000282 http://dx.doi.org/10.1021/ma1000282
Miri V. ; Persyn O. ; Seguela R. ; Lefebvre J. M. On the deformation induced order-disorder transitions in the crystalline phase of polyamide 6 . Eur. Polym. J. , 2011 , 47 ( 1 ), 88 - 97 . doi: 10.1016/j.eurpolymj.2010.09.006 http://dx.doi.org/10.1016/j.eurpolymj.2010.09.006
Wang Y. ; Zhu P. ; Qian C. G. ; Zhao Y. ; Wang L. ; Wang D. J. ; Dong X. The Brill transition in long-chain aliphatic polyamide 1012: the role of hydrogen-bonding organization . Macromolecules , 2021 , 54 ( 14 ), 6835 - 6844 . doi: 10.1021/acs.macromol.1c01141 http://dx.doi.org/10.1021/acs.macromol.1c01141
Lin N. ; Wu J. W. ; Yin R. K. ; Kang H. L. ; Liu R. G. Odd-even and even-odd copolyamides PA (56-co-65): synthesis , crystallization, and properties. Macromolecules, 2025 , 58 ( 6 ), 3135 - 3150 . doi: 10.1021/acs.macromol.5c00057 http://dx.doi.org/10.1021/acs.macromol.5c00057
Wang Y. ; Kang H. L. ; Guo Y. F. ; Liu R. G. ; Hao X. M. ; Qiao R. R. ; Yan J. L. The structures and properties of bio-based polyamide 56 fibers prepared by high-speed spinning . J. Appl. Polym. Sci. , 2020 , 137 ( 44 ), 49344 . doi: 10.1002/app.49344 http://dx.doi.org/10.1002/app.49344
王莉莉 , 朱平 , 董侠 , 王笃金 . 长碳链聚酰胺及其共聚物的拉伸诱导结晶 . 高分子学报 , 2020 , 51 ( 1 ), 1 - 11 .
王金铃 , 马驰 , 胡泽旭 , 朱丽萍 , 相恒学 , 朱美芳 . 熔融纺高强度聚酰胺6纤维及其微观结构研究 . 合成纤维 , 2025 , 54 ( 6 ), 11 - 15 .
Zhou J. L. ; Wang Q. Q. ; Jia C. ; Innocent M. T. ; Pan W. N. ; Xiang H. X. ; Zhu M. F. Molecular weight discrete distribution-induced orientation of high-strength copolyamide fibers: effects of component proportion and molecular weight . Macromolecules , 2021 , 54 ( 16 ), 7529 - 7539 . doi: 10.1021/acs.macromol.1c00915 http://dx.doi.org/10.1021/acs.macromol.1c00915
Kang H. L. ; Wang Z. ; Hao X. M. ; Liu R. G. Thermal induced crystalline transition of bio-based polyamide 56 . Polymer , 2022 , 242 , 124540 . doi: 10.1016/j.polymer.2022.124540 http://dx.doi.org/10.1016/j.polymer.2022.124540
Schmack G. ; Schreiber R. ; Veeman W. S. ; Hofmann H. ; Beyreuther R. Relation between molecular orientation and mechanical properties in differently processed polyamide 4.6/6 textile yarns . J. Appl. Polym. Sci. , 1997 , 66 ( 2 ), 377 - 385 . doi: 10.1002/(sici)1097-4628(19971010)66:2<377::aid-app18>3.0.co;2-v http://dx.doi.org/10.1002/(sici)1097-4628(19971010)66:2<377::aid-app18>3.0.co;2-v
Pan W. N. ; Zhou J. L. ; Xiang H. X. ; Innocent M. T. ; Zhai G. X. ; Zhu M. F. Melt-spun industrial super-strong polycaprolactam fiber: effects of Tie-molecules and crystal transformation . Compos. Part B Eng. , 2020 , 185 , 107772 . doi: 10.1016/j.compositesb.2020.107772 http://dx.doi.org/10.1016/j.compositesb.2020.107772
Wang J. L. ; Yu S. L. ; Zhou J. L. ; Liang C. Y. ; Huang W. L. ; Hu Z. X. ; Chen Z. Y. ; Xiang H. X. ; Zhu M. F. Discrete molecular weight strategy modulates hydrogen bonding-induced crystallization and chain orientation for melt-spun high-strength polyamide fibers . Polym. Eng. Sci. , 2024 , 64 ( 9 ), 4053 - 4063 . doi: 10.1002/pen.26832 http://dx.doi.org/10.1002/pen.26832
Gianchandani J. ; Spruiell J. E. ; Clark E. S. Polymorphism and orientation development in melt spinning, drawing, and annealing of nylon-6 filaments . J. Appl. Polym. Sci. , 1982 , 27 ( 9 ), 3527 - 3551 . doi: 10.1002/app.1982.070270928 http://dx.doi.org/10.1002/app.1982.070270928
Miyasaka K. ; Makishima K. Transition of nylon 6 γ -phase crystals by stretching in the chain direction . J. Polym. Sci. Part A 1 Polym. Chem., 1967, 5 ( 12 ), 3017 - 3027 . doi: 10.1002/pol.1967.150051205 http://dx.doi.org/10.1002/pol.1967.150051205
Vasanthan N. Polyamide fiber formation: structure, properties and characterization . Handbook of Textile Fibre Structure. Amsterdam : Elsevier , 2009 , 232 - 256 . doi: 10.1533/9781845696504.2.232 http://dx.doi.org/10.1533/9781845696504.2.232
Heuvel H. M. ; Huisman R. Effects of winding speed, drawing and heating on the crystalline structure of nylon 6 yarns . J. Appl. Polym. Sci. , 1981 , 26 ( 2 ), 713 - 732 . doi: 10.1002/app.1981.070260229 http://dx.doi.org/10.1002/app.1981.070260229
Militký J. ; Venkataraman M. ; Mishra R. The chemistry, manufacture, and tensile behavior of polyamide fibers . Handbook of Properties of Textile and Technical Fibres. Amsterdam : Elsevier , 2018 , 367 - 419 . doi: 10.1016/b978-0-08-101272-7.00012-2 http://dx.doi.org/10.1016/b978-0-08-101272-7.00012-2
Kang H. L. ; Wang Z. ; Lin N. ; Hao X. M. ; Liu R. G. Influence of drawing and annealing on the structure and properties of bio-based polyamide 56 fibers . J. Appl. Polym. Sci. , 2022 , 139 ( 48 ), e 53221 . doi: 10.1002/app.53221 http://dx.doi.org/10.1002/app.53221
王睿 , 张玉梅 , 周芬 , 钱振超 . 熔融纺丝法制备PGA长丝的工艺与性能 . 上海纺织科技 , 2023 , 51 ( 4 ), 27 - 31 .
Zhang Z. ; Yu S. ; Hu Z. ; Zhu L. ; Xiang H. ; Zhu M. A double ring-opening copolymerization strategy for constructing biobased aliphatic-aromatic copolyesters with tunable chemical and crystalline structures . Macromolecules , 2025 , 58 ( 15 ), 8260 - 8270 . doi: 10.1021/acs.macromol.5c01059 http://dx.doi.org/10.1021/acs.macromol.5c01059
Deopura , B. L. Polyamide fibers . Polyesters and Polyamides . Amsterdam : Elsevier , 2008 , 41 - 61 . doi: 10.1533/9781845694609.1.41 http://dx.doi.org/10.1533/9781845694609.1.41
Luo J. ; Zhou T. ; Fu X. L. ; Liang H. W. ; Zhang A. M. Mechanism in Brill transition of polyamide 66 studied by two-dimensional correlation infrared spectroscopy . Eur. Polym. J. , 2011 , 47 ( 2 ), 230 - 237 . doi: 10.1016/j.eurpolymj.2010.11.017 http://dx.doi.org/10.1016/j.eurpolymj.2010.11.017
Anton A. ; Baird , B. R. Polyamides, fibers . Kirk-Othmer Encyclopedia of Chemical Technology . Hoboken : John Wiley & Sons Inc , 2005 . doi: 10.1002/0471238961.0609020501142015.a01.pub2 http://dx.doi.org/10.1002/0471238961.0609020501142015.a01.pub2
Handwerker M. ; Wellnitz J. ; Marzbani H. ; Tetzlaff U. Pressure and heat treatment of continuous fibre reinforced thermoplastics produced by fused filament fabrication . Prog. Addit. Manuf. , 2023 , 8 ( 2 ), 99 - 116 . doi: 10.1007/s40964-022-00315-5 http://dx.doi.org/10.1007/s40964-022-00315-5
Millot C. ; Fillot L. A. ; Lame O. ; Sotta P. ; Seguela R. Assessment of polyamide-6 crystallinity by DSC: temperature dependence of the melting enthalpy . J. Therm. Anal. Calorim. , 2015 , 122 ( 1 ), 307 - 314 . doi: 10.1007/s10973-015-4670-5 http://dx.doi.org/10.1007/s10973-015-4670-5
Kolesov I. ; Androsch R. The rigid amorphous fraction of cold-crystallized polyamide 6 . Polymer , 2012 , 53 ( 21 ), 4770 - 4777 . doi: 10.1016/j.polymer.2012.08.017 http://dx.doi.org/10.1016/j.polymer.2012.08.017
Khanna Y. P. ; Kuhn W. P. Measurement of crystalline index in nylons by DSC: complexities and recommendations . J. Polym. Sci. Part B Polym. Phys. , 1997 , 35 ( 14 ), 2219 - 2231 . doi: 10.1002/(sici)1099-0488(199710)35:14<2219::aid-polb3>3.3.co;2-d http://dx.doi.org/10.1002/(sici)1099-0488(199710)35:14<2219::aid-polb3>3.3.co;2-d
Simal A. L. ; Martin A. R. Structure of heat-treated Nylon 6 and 6.6 fibers. I. the shrinkage mechanism . J. Appl. Polym. Sci. , 1998 , 68 ( 3 ), 441 - 452 . doi: 10.1002/(sici)1097-4628(19980418)68:3<441::aid-app11>3.3.co;2-z http://dx.doi.org/10.1002/(sici)1097-4628(19980418)68:3<441::aid-app11>3.3.co;2-z
Kiss P. ; Glinz J. ; Stadlbauer W. ; Burgstaller C. ; Archodoulaki V. M. The effect of thermally desized carbon fibre reinforcement on the flexural and impact properties of pa6, pps and peek composite laminates: a comparative study . Compos. Part B-Eng , 2021 , 215 , 108844 . doi: 10.1016/j.compositesb.2021.108844 http://dx.doi.org/10.1016/j.compositesb.2021.108844
Shen F. L. ; Chen G. Q. ; Ding J. Z. ; Dai J. Y. Effect of heat-setting temperature on the structure and performance of ultra-fine denier PET full drawing yarn . Adv. Mater. Res. , 2011 , 197 - 198 , 1276 - 1280 .
Huang Y. W. ; Lee W. S. ; Yang F. Q. ; Lee S. Tensile deformation of artificial muscles: annealed nylon 6 lines . Polymer , 2019 , 177 , 49 - 56 . doi: 10.1016/j.polymer.2019.05.070 http://dx.doi.org/10.1016/j.polymer.2019.05.070
Suzuki A. ; Murata H. ; Kunugi T. Application of a high-tension annealing method to nylon 66 fibres . Polymer , 1998 , 39 ( 6-7 ), 1351 - 1355 . doi: 10.1016/s0032-3861(97)00430-8 http://dx.doi.org/10.1016/s0032-3861(97)00430-8
Yasuda T. The effects of tension in heat setting of nylon 6 fibers . Sen'i Gakkaishi , 1968 , 24 ( 10 ), 458 - 465 . doi: 10.2115/fiber.24.458 http://dx.doi.org/10.2115/fiber.24.458
Dadgar M. ; Hosseini Varkiyani S. Comparison heat setting results of superba and power heat set . Tekstilna industrija , 2014 , 62 ( 2 ), 12 - 19 .
Najafi M. ; Avci H. ; Kotek R. High-performance filaments by melt spinning low viscosity nylon 6 using horizontal isothermal bath process . Polym. Eng. Sci. , 2015 , 55 ( 11 ), 2457 - 2464 . doi: 10.1002/pen.24135 http://dx.doi.org/10.1002/pen.24135
Nagahama T. ; Yagi S. ; Yamane H. ; Xu H. Z. Melt spinning of polyamide 4 . Polym. Adv. Technol. , 2022 , 33 ( 10 ), 3658 - 3665 . doi: 10.1002/pat.5818 http://dx.doi.org/10.1002/pat.5818
Imura Y. ; Hogan R. M. C. ; Jaffe M. Advances in filament yarn spinning of textiles and polymers . Cambridge : Woodhead Publishing , 2014 , 187 - 202 . doi: 10.1533/9780857099174.2.187 http://dx.doi.org/10.1533/9780857099174.2.187
杨超 , 周永凯 , 张华 . 拉伸倍数与热定型温度对高强聚酰胺纤维结构的影响 . 天津纺织科技 , 2013 ( 1 ), 4 - 7 .
0
Views
255
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号