

浏览全部资源
扫码关注微信
武汉纺织大学 纺织新材料及先进加工全国重点实验室 武汉 430200
Received:30 August 2025,
Accepted:11 October 2025,
Published Online:28 November 2025,
Published:20 December 2025
移动端阅览
陈茗, 史芷丞, 陈凤翔, 徐卫林. 界面工程策略赋能纤维增强树脂基复合材料研究进展. 高分子学报, 2025, 56(12), 2246-2261
Chen, M.; Shi, Z. C.; Chen, F. X.; Xu, W. L. Interfacial engineering strategies empowering advanced fiber-reinforced polymer composites: a review. Acta Polymerica Sinica, 2025, 56(12), 2246-2261
陈茗, 史芷丞, 陈凤翔, 徐卫林. 界面工程策略赋能纤维增强树脂基复合材料研究进展. 高分子学报, 2025, 56(12), 2246-2261 DOI: 10.11777/j.issn1000-3304.2025.25224. CSTR: 32057.14.GFZXB.2025.7495.
Chen, M.; Shi, Z. C.; Chen, F. X.; Xu, W. L. Interfacial engineering strategies empowering advanced fiber-reinforced polymer composites: a review. Acta Polymerica Sinica, 2025, 56(12), 2246-2261 DOI: 10.11777/j.issn1000-3304.2025.25224. CSTR: 32057.14.GFZXB.2025.7495.
纤维增强树脂基复合材料因其轻质高强、耐腐蚀性强、热稳定性与绝缘性高、可设计性与加工灵活等优势,已成为航空航天、国防军工、汽车和轨道交通、能源、基础设施等领域的关键材料. 本综述首先从纤维的结构特点、性能优势和应用领域出发,系统总结了代表性高性能无机纤维和有机纤维的优势,通过分析其差异,凝练出共性问题,即高表面化学惰性所导致的与树脂界面相容性差. 针对上述难题,本文探讨了界面调控机制及相应解决策略,综述了先进的界面处理技术及其国内外研究进展,并从新型树脂材料的开发、发展低成本和智能化制造技术、结构-功能一体化设计与应用、发展循环回收再利用新技术、人工智能与复合材料的深度耦合等几个方面展望了纤维增强树脂基复合材料未来的发展趋势,以期为推动该材料体系的进一步发展提供新思路.
Fiber-reinforced polymer composites (FRP) have become key materials in aerospace
defense and military
automotive and rail transportation
energy
infrastructure and other fields due to the light weight
high-strength
excellent corrosion resistance
thermal stability and insulation
as well as flexible design and processing. This review first systematically summarizes the advantages of representative high-performance inorganic and organic fibers from structural characteristics
performance and application fields
points out the common problem of poor compatibility with the resin interface caused by high surface chemical inertness. In response to the above challenges
the interface regulation mechanism and corresponding solutions are discussed. Advanced interface treatment technologies and research progress are reviewed. The future development trends of FRP are prospected from several aspects
including the development of new resin materials
low-cost and intelligent manufacturing technologies
the design and application of structure-function integration
the development of new recycling and reuse technologies
and the deep coupling of artificial intelligence and composite materials
to provide new ideas for promoting the further development of composites material system.
丁辛 . 树脂基纤维增强复合材料 . 纺织学报 , 1995 , 16 ( 6 ), 56 - 58 .
Kausar A. Holistic insights on polyimide nanocomposite nanofiber . Polym. Plast. Technol. Mater. , 2020 , 59 ( 15 ), 1621 - 1639 . doi: 10.1080/25740881.2020.1759635 http://dx.doi.org/10.1080/25740881.2020.1759635
Parvizi P. ; Jalilian M. ; Dearn K. D. Epoxy composites reinforced with nanomaterials and fibres: manufacturing, properties, and applications . Polym. Test. , 2025 , 146 , 108761 . doi: 10.1016/j.polymertesting.2025.108761 http://dx.doi.org/10.1016/j.polymertesting.2025.108761
Soutis C. Fibre reinforced composites in aircraft construction . Prog. Aerosp. Sci. , 2005 , 41 ( 2 ), 143 - 151 . doi: 10.1016/j.paerosci.2005.02.004 http://dx.doi.org/10.1016/j.paerosci.2005.02.004
戴春晖 , 刘钧 , 曾竟成 , 边力平 . 复合材料风电叶片的发展现状及若干问题的对策 . 玻璃钢/复合材料 , 2008 , ( 1 ), 53 - 56 .
杨霜 , 孙康 , 吴人洁 . 混杂纤维复合材料参数设计与力学性能的关系 . 纤维复合材料 , 2001 , 18 ( 4 ), 14 - 18 .
宋传江 , 王虎 . 玻璃纤维增强复合材料工程化应用进展 . 中国塑料 , 2015 , 29 ( 3 ), 9 - 15 .
陈雯娜 . 短切碳纤维增强热塑性复合材料性能影响因素 . 纺织科学研究 , 2021 , 197 ( 5 ), 58 - 63 .
张利平 , 郭羽晴 , 丁博 , 孙洁 . 芳纶纳米纤维/热塑性聚氨酯复合微孔膜与可呼吸覆膜织物制备及其性能 . 纺织学报 , 2025 , 46 ( 7 ), 19 - 27 .
Xue D. B. ; He L. ; Tan S. ; Xue P. ; Cheng X. ; Yang X. H. ; Dong L. Effect of carbon fiber layers on braiding properties during three-dimensional weaving . Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. , 2023 , 237 ( 7 ), 1692 - 1705 . doi: 10.1177/09544062221133045 http://dx.doi.org/10.1177/09544062221133045
王俊勃 , 孙永奇 , 井晓天 . 纤维增强树脂基复合材料分层断裂的研究现状 . 纺织高校基础科学学报 , 1998 , 11 ( 2 ): 95 - 101 .
Sun Z. L. ; Luo Y. X. ; Chen C. Y. ; Dong Z. J. ; Jiang G. M. ; Chen F. X. ; Ma P. B. Mechanical enhancement of carbon fiber-reinforced polymers: from interfacial regulating strategies to advanced processing technologies . Prog. Mater. Sci. , 2024 , 142 , 101221 . doi: 10.1016/j.pmatsci.2023.101221 http://dx.doi.org/10.1016/j.pmatsci.2023.101221
孙文强 , 牛兰刚 , 顾有伟 . 耐高温复合材料用玻璃纤维表面处理的研究(2)高温偶联剂处理的研究 . 玻璃钢/复合材料 , 2000 ( 3 ), 13 - 15 .
Li J. Interfacial studies on the ozone and air-oxidation-modified carbon fiber reinforced PEEK composites . Surf. Interface Anal. , 2009 , 41 ( 4 ), 310 - 315 . doi: 10.1002/sia.3023 http://dx.doi.org/10.1002/sia.3023
Chen Y. Z. ; Xu D. W. ; Zeng Q. ; Liu S. Y. ; Chen P. Influence of DBD-grafted multi-carboxyl polyurethane on interfacial properties of PBO fibre-reinforced BMI resin composites . Appl. Surf. Sci. , 2020 , 512 , 145662 . doi: 10.1016/j.apsusc.2020.145662 http://dx.doi.org/10.1016/j.apsusc.2020.145662
孙文强 , 曾辉 , 牛兰刚 , 顾有伟 . 耐高温复合材料用玻璃纤维表面处理研究(1): 酸碱刻蚀处理的研究 . 玻璃钢/复合材料 , 2000 ( 1 ), 33 - 35 .
Arulvel S. ; Mallikarjuna Reddy D. ; Dsilva Winfred Rufuss D. ; Akinaga T. A comprehensive review on mechanical and surface characteristics of composites reinforced with coated fibres . Surf. Interfaces , 2021 , 27 , 101449 . doi: 10.1016/j.surfin.2021.101449 http://dx.doi.org/10.1016/j.surfin.2021.101449
钱晨 , 黄博翔 , 李永强 , 万军民 , 傅雅琴 . 增强纤维用上浆剂的耐高温化改性研究进展 . 纺织学报 , 2023 , 44 ( 9 ), 232 - 242 .
徐铭涛 , 嵇宇 , 仲越 , 张岩 , 王萍 , 眭建华 , 李媛媛 . 碳纤维/环氧树脂基复合材料增韧改性研究进展 . 纺织学报 , 2022 , 43 ( 9 ), 203 - 210 .
郭伟娜 . 植物纤维增强可降解复合材料的研究现状 . 国外丝绸 , 2009 , 24 ( 1 ), 25 - 29 .
阮芳涛 , 施建 , 徐珍珍 , 邢剑 . 碳纤维增强树脂基复合材料的回收及其再利用研究进展 . 纺织学报 , 2019 , 40 ( 6 ), 153 - 158 .
Baye B. ; Tesfaye T. The new generation fibers: a review of high performance and specialty fibers . Polym. Bull. , 2022 , 79 ( 11 ), 9221 - 9235 . doi: 10.1007/s00289-021-03966-6 http://dx.doi.org/10.1007/s00289-021-03966-6
Liu Z. Z. ; Wang Y. ; Yu J. R. ; Chen Y. J. ; Zhu M. F. The past, present and future of high-performance fibers . Natl. Sci. Rev. , 2024 , 11 ( 10 ), nwae 310 . doi: 10.1093/nsr/nwae310 http://dx.doi.org/10.1093/nsr/nwae310
Cooke T. F. Inorganic fibers: a literature review . J. Am. Ceram. Soc. , 1991 , 74 ( 12 ), 2959 - 2978 . doi: 10.1111/j.1151-2916.1991.tb04289.x http://dx.doi.org/10.1111/j.1151-2916.1991.tb04289.x
Liu T. J. ; Chen M. Y. ; Dong J. ; Sun R. J. ; Yao M. Numerical simulation and experiment verified for heat transfer processes of high-property inorganic fiber woven fabrics . Text. Res. J. , 2022 , 92 ( 13-14 ), 2368 - 2378 . doi: 10.1177/00405175211073787 http://dx.doi.org/10.1177/00405175211073787
Li Y. F. ; Li J. Y. ; Ramanathan G. K. ; Chang S. M. ; Shen M. Y. ; Tsai Y. K. ; Huang C. H. An experimental study on mechanical behaviors of carbon fiber and microwave-assisted pyrolysis recycled carbon fiber-reinforced concrete . Sustainability , 2021 , 13 ( 12 ), 6829 . doi: 10.3390/su13126829 http://dx.doi.org/10.3390/su13126829
Noh Y. D. ; Nam Y. W. ; Kwak B. S. Enhanced thermal and mechanical properties of PAN-based carbon/epoxy composites reinforced with graphite sheets and stitched pitch-based carbon fibers . Polym. Test. , 2025 , 149 , 108856 . doi: 10.1016/j.polymertesting.2025.108856 http://dx.doi.org/10.1016/j.polymertesting.2025.108856
Brown K. R. ; Harrell T. M. ; Skrzypczak L. ; Scherschel A. ; Wu H. F. ; Li X. D. Carbon fibers derived from commodity polymers: a review . Carbon , 2022 , 196 , 422 - 439 . doi: 10.1016/j.carbon.2022.05.005 http://dx.doi.org/10.1016/j.carbon.2022.05.005
Lu X. D. ; Wei Y. Q. ; Wang Q. ; Liu R. X. ; Chen J. Y. ; Ding J. Effect of polycarbosilane (PCS) on the high-temperature properties of phenolic resin (phen) films and quartz fiber/phen-PCS composites . J. Macromol. Sci. Part B , 2025 , 64 ( 9 ), 1101 - 1121 . doi: 10.1080/00222348.2024.2384768 http://dx.doi.org/10.1080/00222348.2024.2384768
郭建业 , 赵英民 , 吴朝军 , 李文静 , 杨洁颖 , 张丽娟 , 苏力军 . 温度对石英纤维毡隔热性能的影响 . 材料导报 , 2020 , 34 ( 24 ), 24019 - 24022 .
彭星玲 , 茶映鹏 , 张华 , 李玉龙 . 单模光纤宏弯损耗的温度响应特性 . 光子学报 , 2018 , 47 ( 11 ), 1106006 .
刘含洋 , 赵伟栋 , 潘玲英 , 崔超 , 孙宝岗 , 蒋文革 . 结构、耐热、透波功能一体化石英/聚酰亚胺研究 . 航空材料学报 , 2015 , 35 ( 4 ), 34 - 38 .
Bozkurt Ö. Y. ; Gökdemir M. E. Effect of basalt fiber hybridization on the vibration-damping behavior of carbon fiber/epoxy composites . Polym. Compos. , 2018 , 39 ( S4 ), E2274 - E2282 . doi: 10.1002/pc.24606 http://dx.doi.org/10.1002/pc.24606
Khandelwal S. ; Rhee K. Y. Recent advances in basalt-fiber-reinforced composites: tailoring the fiber-matrix interface . Compos. Part B Eng. , 2020 , 192 , 108011 . doi: 10.1016/j.compositesb.2020.108011 http://dx.doi.org/10.1016/j.compositesb.2020.108011
Cheng L. L. ; Kong D. W. ; Huang Y. Y. ; Wang Y. F. ; Liu P. ; Zhang Y. J. Research on the strength and thermal conductivity of basalt fiber reinforced phosphogypsum-based composite cementitious materials . Mech. Compos. Mater. , 2025 , 61 ( 1 ), 129 - 144 . doi: 10.1007/s11029-025-10266-x http://dx.doi.org/10.1007/s11029-025-10266-x
Wang X. Y. ; Li P. F. ; Xiang D. ; Wang B. ; Zhang Z. ; Zhang J. ; Zhao C. X. ; Li H. ; Tan W. ; Wang J. J. ; Li Y. T. Influence of high-temperature, high-pressure, and acidic conditions on the structure and properties of high-performance organic fibers . Mater. Test. , 2022 , 64 ( 5 ), 623 - 635 . doi: 10.1515/mt-2021-2099 http://dx.doi.org/10.1515/mt-2021-2099
Chen F. X. ; Zhai L. S. ; Yang H. Y. ; Zhao S. C. ; Wang Z. L. ; Gao C. ; Zhou J. Y. ; Liu X. ; Yu Z. W. ; Qin Y. ; Xu W. L. Unparalleled armour for aramid fiber with excellent UV resistance in extreme environment . Adv. Sci. , 2021 , 8 ( 12 ), 2004171 . doi: 10.1002/advs.202004171 http://dx.doi.org/10.1002/advs.202004171
Zhang Z. Y. ; Wang Y. H. ; Zhou H. ; Dai H. B. ; Luo J. J. ; Chen Y. Z. ; Li Z. L. ; Li M. D. ; Li C. ; Gao E. L. ; Jiao K. ; Zhang J. Fabricating aramid fibers with ultrahigh tensile and compressive strength . Adv. Fiber Mater. , 2025 , 7 ( 3 ), 774 - 783 . doi: 10.1007/s42765-025-00519-8 http://dx.doi.org/10.1007/s42765-025-00519-8
Hu Y. H. ; Yang G. ; Zhou J. T. ; Li H. Y. ; Shi L. ; Xu X. L. ; Cheng B. W. ; Zhuang X. P. Proton donor-regulated mechanically robust aramid nanofiber aerogel membranes for high-temperature thermal insulation . ACS Nano , 2022 , 16 ( 4 ), 5984 - 5993 . doi: 10.1021/acsnano.1c11301 http://dx.doi.org/10.1021/acsnano.1c11301
Yin L. P. ; Zhou Z. T. ; Luo Z. ; Zhong J. C. ; Li P. ; Yang B. ; Yang L. Reinforcing effect of aramid fibers on fatigue behavior of SBR/aramid fiber composites . Polym. Test. , 2019 , 80 , 106092 . doi: 10.1016/j.polymertesting.2019.106092 http://dx.doi.org/10.1016/j.polymertesting.2019.106092
Li Q. H. ; Yin X. ; Huang B. T. ; Luo A. M. ; Lyu Y. ; Sun C. J. ; Xu S. L. Shear interfacial fracture of strain-hardening fiber-reinforced cementitious composites and concrete: a novel approach . Eng. Fract. Mech. , 2021 , 253 , 107849 . doi: 10.1016/j.engfracmech.2021.107849 http://dx.doi.org/10.1016/j.engfracmech.2021.107849
Liu C. X. ; Ma Y. N. ; Xie Y. M. ; Zou J. J. ; Wu H. ; Peng S. H. ; Qian W. ; He D. P. ; Zhang X. ; Li B. W. ; Nan C. W. Enhanced electromagnetic shielding and thermal management properties in MXene/aramid nanofiber films fabricated by intermittent filtration . ACS Appl. Mater. Interfaces , 2023 , 15 ( 3 ), 4516 - 4526 . doi: 10.1021/acsami.2c20101 http://dx.doi.org/10.1021/acsami.2c20101
Liu B. G. ; Kandan K. ; Wadley H. N. G. ; Deshpande V. S. High strain rate compressive response of ultra-high molecular weight polyethylene fibre composites . Int. J. Plast. , 2019 , 122 , 115 - 134 . doi: 10.1016/j.ijplas.2019.04.005 http://dx.doi.org/10.1016/j.ijplas.2019.04.005
Han L. ; Cai H. F. ; Chen X. ; Zheng C. ; Guo W. H. Study of UHMWPE fiber surface modification and the properties of UHMWPE/epoxy composite . Polymers , 2020 , 12 ( 3 ), 521 . doi: 10.3390/polym12030521 http://dx.doi.org/10.3390/polym12030521
Huang W. ; Wang Y. ; Xia Y. M. Statistical dynamic tensile strength of UHMWPE-fibers . Polymer , 2004 , 45 ( 11 ), 3729 - 3734 . doi: 10.1016/j.polymer.2004.03.062 http://dx.doi.org/10.1016/j.polymer.2004.03.062
Yeh J. T. ; Lin S. C. ; Tu C. W. ; Hsie K. H. ; Chang F. C. Investigation of the drawing mechanism of UHMWPE fibers . J. Mater. Sci. , 2008 , 43 ( 14 ), 4892 - 4900 . doi: 10.1007/s10853-008-2711-1 http://dx.doi.org/10.1007/s10853-008-2711-1
Ding Y. C. ; Hou H. Q. ; Zhao Y. ; Zhu Z. T. ; Fong H. Electrospun polyimide nanofibers and their applications . Prog. Polym. Sci. , 2016 , 61 , 67 - 103 . doi: 10.1016/j.progpolymsci.2016.06.006 http://dx.doi.org/10.1016/j.progpolymsci.2016.06.006
Sherif A. ; Faaborg M. W. ; Zeng C. ; Brenner M. P. ; Manoharan V. N. Braiding, twisting, and weaving microscale fibers with capillary forces . Soft Matter , 2024 , 20 ( 15 ), 3337 - 3348 . doi: 10.1039/d3sm01732j http://dx.doi.org/10.1039/d3sm01732j
Kim J. ; Jia X. T. From space to battlefield: a new breed of multifunctional fiber sheets for extreme environments . Matter , 2020 , 3 ( 3 ), 602 - 604 . doi: 10.1016/j.matt.2020.08.016 http://dx.doi.org/10.1016/j.matt.2020.08.016
Li Z. X. ; Chen W. D. ; Seveno D. ; Jiang D. Z. Modeling and mechanism of the mechanical interlocking for the carbon fiber/epoxy interphase . Carbon , 2025 , 233 , 119861 . doi: 10.1016/j.carbon.2024.119861 http://dx.doi.org/10.1016/j.carbon.2024.119861
Sun T. L. ; Feng L. ; Gao X. F. ; Jiang L. Bioinspired surfaces with special wettability . Acc. Chem. Res. , 2005 , 38 ( 8 ), 644 - 652 . doi: 10.1021/ar040224c http://dx.doi.org/10.1021/ar040224c
Zhu P. G. ; Wang L. Q. Microfluidics-enabled soft manufacture of materials with tailorable wettability . Chem. Rev. , 2022 , 122 ( 7 ), 7010 - 7060 . doi: 10.1021/acs.chemrev.1c00530 http://dx.doi.org/10.1021/acs.chemrev.1c00530
Huerre A. ; Josserand C. ; Séon T. Freezing and capillarity . Annu. Rev. Fluid Mech. , 2025 , 57 , 257 - 284 . doi: 10.1146/annurev-fluid-121021-111652 http://dx.doi.org/10.1146/annurev-fluid-121021-111652
赵睿祺 . 含弱相互作用的弹性体材料力学性能及其微观机制研究 . 中国科学技术大学博士学位论文 , 2022 .
Li H. F. ; Liu C. ; Zhu J. B. ; Huan X. H. ; Qi P. F. ; Xu K. ; Geng H. B. ; Guo X. D. ; Wu H. M. ; Zu L. ; Ge L. ; Jia X. L. ; Yang X. P. ; Wang H. Bio-inspired fabrication of “brick-and-mortar” interphase in carbon fiber/epoxy composites with significantly improved high-temperature durability . Adv. Compos. Hybrid Mater. , 2024 , 7 ( 2 ), 72 . doi: 10.1007/s42114-024-00876-9 http://dx.doi.org/10.1007/s42114-024-00876-9
Zou X. ; Chen K. ; Yao H. N. ; Chen C. ; Lu X. P. ; Ding P. ; Wang M. ; Hua X. M. ; Shan A. D. Chemical reaction and bonding mechanism at the polymer-metal interface . ACS Appl. Mater. Interfaces , 2022 , 14 ( 23 ), 27383 - 27396 . doi: 10.1021/acsami.2c04971 http://dx.doi.org/10.1021/acsami.2c04971
Zhan L. Q. ; Zhang S. ; Gao W. Q. ; Zheng W. Z. ; Li Z. H. ; Jiang X. Y. ; Ning Z. J. ; Han L. Y. ; Li Z. ; Stolterfoht M. ; Zhu W. H. ; Wu Y. Z. Reinforced perovskite-substrate interfaces via multi-sited and dual-sided anchoring . Adv. Mater. , 2025 , 37 ( 30 ), 2506048 . doi: 10.1002/adma.202506048 http://dx.doi.org/10.1002/adma.202506048
胡福增 , 柴田健一 , 堤和男 . 硅烷偶联剂对玻璃纤维表面性能的影响 . 复合材料学报 , 1989 , 6 ( 1 ), 7 - 13 .
华中胜 , 姚广春 , 马佳 , 张志刚 , 梁李斯 . 碳纤维表面镍镀层的XPS分析 . 中国有色金属学报 , 2011 , 21 ( 1 ), 165 - 170 .
Zhou X. K. ; Liu S. K. ; Siddique A. ; Min C. Y. ; Pei X. Y. ; Liu S. Q. ; Yin Y. ; Song K. ; Xu Z. W. Construction of nanocomposite interphase with controllable thickness to relieve stress concentration and boost stress transfer from carbon fiber/epoxy resin interface . Chem. Eng. J. , 2025 , 505 , 159542 . doi: 10.1016/j.cej.2025.159542 http://dx.doi.org/10.1016/j.cej.2025.159542
Mylsamy B. ; Shanmugam S. K. M. ; Aruchamy K. ; Palanisamy S. ; Nagarajan R. ; Ayrilmis N. A review on natural fiber composites: polymer matrices, fiber surface treatments, fabrication methods, properties, and applications . Polym. Eng. Sci. , 2024 , 64 ( 6 ), 2345 - 2373 . doi: 10.1002/pen.26713 http://dx.doi.org/10.1002/pen.26713
蒋向 , 邓剑如 . 等离子体处理对芳纶性能的影响 . 合成纤维 , 2006 , 35 ( 12 ), 26 - 29 .
Kurniawan D. ; Kim B. S. ; Lee H. Y. ; Lim J. Y. Atmospheric pressure glow discharge plasma polymerization for surface treatment on sized basalt fiber/polylactic acid composites . Compos. Part B Eng. , 2012 , 43 ( 3 ), 1010 - 1014 . doi: 10.1016/j.compositesb.2011.11.007 http://dx.doi.org/10.1016/j.compositesb.2011.11.007
Xiao J. Q. ; Zhang X. J. ; Zhao Z. H. ; Liu J. ; Chen Q. F. ; Wang X. X. Rapid and continuous atmospheric plasma surface modification of PAN-based carbon fibers . ACS Omega , 2022 , 7 ( 13 ), 10963 - 10969 . doi: 10.1021/acsomega.1c06818 http://dx.doi.org/10.1021/acsomega.1c06818
Galvanetto E. ; Caporali S. ; Zonfrillo G. ; Gulino M. S. ; Pugliese L. ; Vangi D. Increased interaction between Ultra-High Molecular Weight Polyethylene fibres and epoxy matrices for advanced composite materials . IOP Conf. Ser. Mater. Sci. Eng. , 2023 , 1275 ( 1 ), 012007 . doi: 10.1088/1757-899x/1275/1/012007 http://dx.doi.org/10.1088/1757-899x/1275/1/012007
Wei B. ; Cao H. L. ; Song S. H. Tensile behavior contrast of basalt and glass fibers after chemical treatment . Mater. Des. , 2010 , 31 ( 9 ), 4244 - 4250 . doi: 10.1016/j.matdes.2010.04.009 http://dx.doi.org/10.1016/j.matdes.2010.04.009
Lee S. O. ; Rhee K. Y. ; Park S. J. Influence of chemical surface treatment of basalt fibers on interlaminar shear strength and fracture toughness of epoxy-based composites . J. Ind. Eng. Chem. , 2015 , 32 , 153 - 156 . doi: 10.1016/j.jiec.2015.08.009 http://dx.doi.org/10.1016/j.jiec.2015.08.009
Li Y. ; Shi C. W. ; Pan X. L. ; Wang Z. Y. ; Yang L. Construction of an interfacial layer of aramid fibers grafted with glycidyl POSS assisted by heat treatment and evaluation of interfacial adhesion properties with epoxy resin . ACS Omega , 2024 , 9 ( 23 ), 24489 - 24499 . doi: 10.1021/acsomega.4c00260 http://dx.doi.org/10.1021/acsomega.4c00260
Li Y. L. ; Ma C. P. ; Sun X. L. ; Lou Q. H. ; Tong Y. J. ; Wang Y. The effect of in situ electrochemical grafting of KH-792 onto carbon fibers on surface properties . Carbon Trends , 2025 , 20 , 100542 . doi: 10.1016/j.cartre.2025.100542 http://dx.doi.org/10.1016/j.cartre.2025.100542
Arslan C. ; Dogan M. The effects of silane coupling agents on the mechanical properties of basalt fiber reinforced poly(butylene terephthalate) composites . Compos. Part B Eng. , 2018 , 146 , 145 - 154 . doi: 10.1016/j.compositesb.2018.04.023 http://dx.doi.org/10.1016/j.compositesb.2018.04.023
Yu S. ; Oh K. H. ; Hong S. H. Effects of silanization and modification treatments on the stiffness and toughness of BF/SEBS/PA 6 , 6 hybrid composites . Compos. Part B Eng., 2019, 173 , 106922 . doi: 10.1016/j.compositesb.2019.106922 http://dx.doi.org/10.1016/j.compositesb.2019.106922
Li T. ; Wang Z. X. ; Zhang H. ; Hu Z. M. ; Yu J. R. ; Wang Y. Effect of aramid nanofibers on interfacial properties of high performance fiber reinforced composites . Compos. Interfaces , 2022 , 29 ( 3 ), 312 - 326 . doi: 10.1080/09276440.2021.1942668 http://dx.doi.org/10.1080/09276440.2021.1942668
Gao S. ; Mader E. ; Plonka R. Nanocomposite coatings for healing surface defects of glass fibers and improving interfacial adhesion . Compos. Sci. Technol. , 2008 , 68 ( 14 ), 2892 - 2901 . doi: 10.1016/j.compscitech.2007.10.009 http://dx.doi.org/10.1016/j.compscitech.2007.10.009
Salih A. M. ; Vakili-Tahami F. ; Biglari H. Cellulose nanocrystals effect to improve mechanical properties of epoxy-based glass fiber-reinforced composites . Iran. Polym. J. , 2025 , 34 ( 10 ), 1707 - 1720 . doi: 10.1007/s13726-025-01468-0 http://dx.doi.org/10.1007/s13726-025-01468-0
Lee S. ; Hoang Q. N. ; Lee H. S. ; Chung Y. S. ; Park H. ; Lee S. Effect of plasma modification on the anisotropic surface structure of PAN-based graphitic carbon fiber . Carbon , 2025 , 242 , 120429 . doi: 10.1016/j.carbon.2025.120429 http://dx.doi.org/10.1016/j.carbon.2025.120429
Cadavid J. ; Larrañaga A. ; Lizundia E. Structure and nanotoxicity of fungal chitin-glucan nanofibrils with gradient acid and alkaline treatments . Carbohydr. Polym. , 2025 , 357 , 123484 . doi: 10.1016/j.carbpol.2025.123484 http://dx.doi.org/10.1016/j.carbpol.2025.123484
Xu Z. Q. ; Huang J. ; Liu Z. X. ; Chen Z. Y. ; Yuan G. M. Magnetic nanoparticles deposition based on the peculiar pore structure of nanocellulose: preparation and properties of efficient thin-layer wave-absorbing materials . Carbohydr. Polym. , 2025 , 362 , 123679 . doi: 10.1016/j.carbpol.2025.123679 http://dx.doi.org/10.1016/j.carbpol.2025.123679
Xu Y. ; Liu S. L. ; Xu S. M. ; Liu G. ; Li G. H. Flexible and flame retardant cotton fiber-reinforced CS/CNF/EP composites for a sensitive fire warning . Chem. Eng. J. , 2024 , 500 , 156960 . doi: 10.1016/j.cej.2024.156960 http://dx.doi.org/10.1016/j.cej.2024.156960
Shang J. F. ; Liu F. ; Zhang J. R. ; Chang B. N. ; Zhu C. K. ; Zhang W. X. ; Zhu Y. D. ; Ding X. L. Impact resistance of biomimetic gradient sinusoidal composites by 3printingD: tunable structural stiffness and damage tolerance . Compos. Part B Eng. , 2025 , 291 , 112016 . doi: 10.1016/j.compositesb.2024.112016 http://dx.doi.org/10.1016/j.compositesb.2024.112016
Qiu S. Q. ; Zhou Y. C. ; Tang M. L. ; Jiang L. P. ; Sano H. ; Carvalho R. M. ; Fu J. L. The impact of using two fiber-reinforced composites with different placement methods on the flexural strength of two resin materials: an in vitro study . BMC Oral Health , 2025 , 25 ( 1 ), 1006 . doi: 10.1186/s12903-025-06450-z http://dx.doi.org/10.1186/s12903-025-06450-z
Li C. ; Fei J. ; Yan J. F. ; Zhang T. Y. ; Qi L. H. Nano-Fe 3 O 4 modified carbon fiber reinforced polymer composites with friction self-healing and excellent wear resistant functionalities . Compos. Part B Eng. , 2025 , 306 , 112812 . doi: 10.1016/j.compositesb.2025.112812 http://dx.doi.org/10.1016/j.compositesb.2025.112812
Murugadoss P. ; Verma A. ; Ballal S. ; Upadhye V. J. ; Shukla K. K. ; Das P. ; Kamakshi Priya K. Kenaf/basalt fiber-reinforced epoxy matrix hybrid composites: current trends, challenges, and future prospects in advanced material development . Results Eng. , 2025 , 26 , 104816 . doi: 10.1016/j.rineng.2025.104816 http://dx.doi.org/10.1016/j.rineng.2025.104816
Gupta N. ; Wuzella G. ; Mahendran A. R. ; Kaltenbrunner M. Real-time cure monitoring of bio-based resin composites reinforced with natural and glass fibers . Polymer , 2025 , 332 , 128563 . doi: 10.1016/j.polymer.2025.128563 http://dx.doi.org/10.1016/j.polymer.2025.128563
Zhao Z. Y. ; Dong Z. J. ; Chen C. Y. ; Peng J. J. ; Ma P. B. Synergistically improving interface behavior by designing physical twisting structure and “rigid-flexible” interface layer on ultra-high molecular weight polyethylene (UHMWPE) fiber surface . Thin Walled Struct. , 2024 , 199 , 111805 . doi: 10.1016/j.tws.2024.111805 http://dx.doi.org/10.1016/j.tws.2024.111805
Rahmani A. ; Abdulkhani A. ; Ashori A. ; Hosseinzadeh J. Development of high-performance biocomposites through lignin modification and fiber reinforcement . Sci. Rep. , 2024 , 14 ( 1 ), 28932 . doi: 10.1038/s41598-024-80256-x http://dx.doi.org/10.1038/s41598-024-80256-x
Thandavamoorthy R. ; Alagarasan J. K. ; Mohanavel V. ; Velmurugan P. ; Al-Otibi F. O. ; Hossain I. ; Mohammad Soudagar M. E. ; Lee M. Fabrication of green composite made by Cannabis sativa fiber reinforced granite filler blended epoxy matrix composite—Antimicrobial and structural analysis . J. Mater. Res. Technol. , 2024 , 32 , 2474 - 2481 . doi: 10.1016/j.jmrt.2024.08.105 http://dx.doi.org/10.1016/j.jmrt.2024.08.105
He H. W. ; Liu Y. L. ; Peng X. J. ; Ma M. ; Shi Y. Q. ; Zhu Y. L. ; Chen S. ; Wang X. Design of high impact-resistant PBO fiber/epoxy vitrimer composites: multi-scale energy dissipation strategy . Chem. Eng. J. , 2025 , 505 , 159215 . doi: 10.1016/j.cej.2025.159215 http://dx.doi.org/10.1016/j.cej.2025.159215
Esperto V. ; Tucci F. ; Carlone P. Impregnation and saturation analysis of microwave-preheated reactive resin in liquid composite molding . Polym. Compos. , 2025 , 46 ( S1 ), S159 - S170 . doi: 10.1002/pc.29772 http://dx.doi.org/10.1002/pc.29772
Lokesh P. ; Surya Kumari T. S. A. ; Gopi R. ; Babu Loganathan G. A study on mechanical properties of bamboo fiber reinforced polymer composite . Mater. Today Proc. , 2020 , 22 , 897 - 903 . doi: 10.1016/j.matpr.2019.11.100 http://dx.doi.org/10.1016/j.matpr.2019.11.100
Yan S. N. ; Abdin Y. Fatigue behavior of Elium ® -based thermoplastic composites fabricated by liquid composite molding: a review . Compos. Part B Eng. , 2025 , 295 , 112159 . doi: 10.1016/j.compositesb.2025.112159 http://dx.doi.org/10.1016/j.compositesb.2025.112159
0
Views
1028
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号