

浏览全部资源
扫码关注微信
1.华南理工大学前沿弹性体研究院 华南理工大学机械与汽车工程学院 广州 510640
2.广东省高分子先进制造技术装备重点实验室 华南理工大学 广州 510640
3.国家先进高分子材料产业创新中心 广州 510632
4.华南理工大学前沿弹性体研究院 华南理工大学材料与工程学院 广州 510640
Shui-dong Zhang, E-mail: starch@scut.edu.cn
Received:31 August 2025,
Accepted:26 September 2025,
Published Online:12 November 2025,
Published:20 December 2025
移动端阅览
陆慧娟, 吴博, 吴思武, 张水洞, 郭宝春. 环氧化天然橡胶/马来酰化甲壳素Vitrimer的制备及可反复加工性能研究. 高分子学报, 2025, 56(12), 2430-2440
Lu, H. J.; Wu, B.; Wu, S. W.; Zhang, S. D.; Guo, B. C. Fabrication and reprocessability of epoxidized natural rubber/maleated chitin Vitrimer. Acta Polymerica Sinica, 2025, 56(12), 2430-2440
陆慧娟, 吴博, 吴思武, 张水洞, 郭宝春. 环氧化天然橡胶/马来酰化甲壳素Vitrimer的制备及可反复加工性能研究. 高分子学报, 2025, 56(12), 2430-2440 DOI: 10.11777/j.issn1000-3304.2025.25225. CSTR: 32057.14.GFZXB.2025.7471.
Lu, H. J.; Wu, B.; Wu, S. W.; Zhang, S. D.; Guo, B. C. Fabrication and reprocessability of epoxidized natural rubber/maleated chitin Vitrimer. Acta Polymerica Sinica, 2025, 56(12), 2430-2440 DOI: 10.11777/j.issn1000-3304.2025.25225. CSTR: 32057.14.GFZXB.2025.7471.
以天然多糖为大分子交联剂制备具反复加工生物基环氧化天然橡胶(ENR) Vitrimer,是解决硫化橡胶难循环加工所致的资源浪费与高碳排放问题有效策略,然而天然多糖难以与橡胶发生界面反应且相容性差. 本研究以马来酸酐改性甲壳素(MCh)作为大分子交
联剂,与ENR通过热加工界面反应构建基于
β
-羟基酯键的动态交联网络. 采用傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)、平衡溶胀和硫化曲线测试表征其结构,通过单轴拉伸、动态热机械分析(DMA)、示差扫描量热法(DSC)以及应力松弛与应变回复测试等多种方法评价其力学、动态力学性能和再加工性能. 结果表明,MCh与ENR界面形成的
β
-羟基酯键交联结构,增加了界面相容性. 当MCh添加量为30 phr时,ENR Vitrimer的拉伸强度是纯ENR的8.4倍. 且其酯交换活化能仅为61.8 kJ/mol,经2次加工(180 ℃、15 MPa硫化30 min)后拉伸强度保持率均≥88%,展示动态交联网络重排而具反复加工性优点. 研究结果为制备可再加工的高性能ENR Vitrimer提供新的思路,为复合材料界面增容提供新方法.
Preparation of a recyclable bio-based epoxidized natural rubber (ENR) Vitrimer using natural polysaccharide as a macromolecular crosslinker is an effective strategy to address resource waste and high carbon emissions caused by the difficulty in recycling vulcanized rubber. However
natural polysaccharides struggle to undergo interfacial reactions with rubber and exhibit poor compatibility. In this study
maleic anhydride-modified chitin (MCh) was used as a macromolecular crosslinker to construct a dynamic crosslinking network based on
β
-hydroxy ester bonds with ENR through thermal processing interfacial reactions. The structure was characterized using Fourier transform infrared spectroscopy (FTIR)
X-ray photo
electron spectroscopy (XPS)
equilibrium swelling
and vulcanization curve tests. Mechanical properties
dynamic mechanical properties
and reprocessability were evaluated through uniaxial tensile testing
dynamic mechanical analysis (DMA)
differential scanning calorimetry (DSC)
stress relaxation
and strain recovery tests. The results showed that the
β
-hydroxy ester bonds crosslinking structure formed at the MCh-ENR interface enhances interfacial compatibility. When 30 phr of MCh was added
the tensile strength of the ENR Vitrimer was 8.4 times that of neat ENR. Moreover
its ester exchange activation energy was only 61.8 kJ/mol
and after two processing cycles (180 ℃
15 MPa vulcanization for 30 min)
the tensile strength retention rate was ≥88%
demonstrating the advantages of the dynamic crosslinking network's rearrangement for repeated processability. These findings provide new insights for preparing high-performance
recyclable ENR Vitrimers and offer a novel approach for enhancing interfacial compatibility in composite materials.
Tang Z. H. ; Liu Y. J. ; Guo B. C. ; Zhang L. Q. Malleable, mechanically strong, and adaptive elastomers enabled by interfacial exchangeable bonds . Macromolecules , 2017 , 50 ( 19 ), 7584 - 7592 . doi: 10.1021/acs.macromol.7b01261 http://dx.doi.org/10.1021/acs.macromol.7b01261
Seghar S. ; Asaro L. ; Rolland-Monnet M. ; Aït Hocine N. Thermo-mechanical devulcanization and recycling of rubber industry waste . Resour. Conserv. Recycl. , 2019 , 144 , 180 - 186 . doi: 10.1016/j.resconrec.2019.01.047 http://dx.doi.org/10.1016/j.resconrec.2019.01.047
Sun Y. ; Yan X. S. ; Liang H. H. ; Böhm G. ; Jia L. Rubber recycling: mending the interface between ground rubber particles and virgin rubber . ACS Appl. Mater. Interfaces , 2020 , 12 ( 42 ), 47957 - 47965 . doi: 10.1021/acsami.0c13722 http://dx.doi.org/10.1021/acsami.0c13722
Montarnal D. ; Capelot M. ; Tournilhac F. ; Leibler L. Silica-like malleable materials from permanent organic networks . Science , 2011 , 334 ( 6058 ), 965 - 968 . doi: 10.1126/science.1212648 http://dx.doi.org/10.1126/science.1212648
van den Tempel P. ; van der Boon E. O. ; Winkelman J. G. M. ; Krasnikova A. V. ; Parisi D. ; Deuss P. J. ; Picchioni F. ; Bose R. K. Beyond Diels-Alder: domino reactions in furan-maleimide click networks . Polymer , 2023 , 274 , 125884 . doi: 10.1016/j.polymer.2023.125884 http://dx.doi.org/10.1016/j.polymer.2023.125884
Yang X. L. ; Yang L. ; Teng X. D. ; Wang Q. F. ; Wang Y. Q. ; Xu C. H. Strengthened adipic acid cross-linked epoxidized natural rubber by cellulose nanocrystals . Cellulose , 2023 , 30 ( 11 ), 6971 - 6988 . doi: 10.1007/s10570-023-05320-7 http://dx.doi.org/10.1007/s10570-023-05320-7
Liu Y. ; Wu M. L. ; Li Y. D. ; Li L. Y. ; Zeng J. B. Fully biobased and mechanically robust elastomeric vitrimer based on epoxidized natural rubber and dynamic imine bonds . ACS Sustainable Chem. Eng. , 2023 , 11 ( 48 ), 17190 - 17198 . doi: 10.1021/acssuschemeng.3c06364 http://dx.doi.org/10.1021/acssuschemeng.3c06364
Chen Y. ; Tang Z. H. ; Zhang X. H. ; Liu Y. J. ; Wu S. W. ; Guo B. C. Covalently cross-linked elastomers with self-healing and malleable abilities enabled by boronic ester bonds . ACS Appl. Mater. Interfaces , 2018 , 10 ( 28 ), 24224 - 24231 . doi: 10.1021/acsami.8b09863 http://dx.doi.org/10.1021/acsami.8b09863
Chen Y. ; Tang Z. H. ; Liu Y. J. ; Wu S. W. ; Guo B. C. Mechanically robust, self-healable, and reprocessable elastomers enabled by dynamic dual cross-links . Macromolecules , 2019 , 52 ( 10 ), 3805 - 3812 . doi: 10.1021/acs.macromol.9b00419 http://dx.doi.org/10.1021/acs.macromol.9b00419
Zhang T. W. ; Gao S. J. ; He Y. H. ; Liu Q. T. ; Xu S. ; Zhuang R. H. ; Zeng S. H. ; Yu J. Y. Development of sustainable desulfurized waste crumb rubber modified asphalt with enhanced self-healing properties . Constr. Build. Mater. , 2024 , 451 , 138792 . doi: 10.1016/j.conbuildmat.2024.138792 http://dx.doi.org/10.1016/j.conbuildmat.2024.138792
Xiang P. C. ; Wan B. Q. ; Huang W. J. ; Yang X. ; Yang X. Y. ; Xia B. ; Jung Y. C. ; Zha J. W. Synergistic dual effect dynamic network regulation of self-healing silicone rubber composites for outdoor insulation . Compos. Commun. , 2025 , 56 , 102418 . doi: 10.1016/j.coco.2025.102418 http://dx.doi.org/10.1016/j.coco.2025.102418
Van Zee N. J. ; Nicolaÿ R. Vitrimers: permanently crosslinked polymers with dynamic network topology . Prog. Polym. Sci. , 2020 , 104 , 101233 . doi: 10.1016/j.progpolymsci.2020.101233 http://dx.doi.org/10.1016/j.progpolymsci.2020.101233
Li Y. Y. ; Liu T. ; Zhang S. ; Shao L. ; Fei M. G. ; Yu H. ; Zhang J. W. Catalyst-free vitrimer elastomers based on a dimer acid: robust mechanical performance, adaptability and hydrothermal recyclability . Green Chem. , 2020 , 22 ( 3 ), 870 - 881 . doi: 10.1039/c9gc04080c http://dx.doi.org/10.1039/c9gc04080c
Qiu M. ; Wu S. W. ; Tang Z. H. ; Guo B. C. Exchangeable interfacial crosslinks towards mechanically robust elastomer/carbon nanotubes vitrimers . Compos. Sci. Technol. , 2018 , 165 , 24 - 30 . doi: 10.1016/j.compscitech.2018.06.004 http://dx.doi.org/10.1016/j.compscitech.2018.06.004
Wang J. Y. ; Chen S. B. ; Lin T. F. ; Ke J. H. ; Chen T. X. ; Wu X. ; Lin C. A catalyst-free and recycle-reinforcing elastomer vitrimer with exchangeable links . RSC Adv. , 2020 , 10 ( 64 ), 39271 - 39276 . doi: 10.1039/d0ra07728c http://dx.doi.org/10.1039/d0ra07728c
Tong H. H. ; Chen Y. K. ; Weng Y. X. ; Zhang S. D. Biodegradable-renewable vitrimer fabrication by epoxidized natural rubber and oxidized starch with robust ductility and elastic recovery . ACS Sustainable Chem. Eng. , 2022 , 10 ( 24 ), 7942 - 7953 . doi: 10.1021/acssuschemeng.2c01163 http://dx.doi.org/10.1021/acssuschemeng.2c01163
Bai L. ; Liu L. ; Esquivel M. ; Tardy B. L. ; Huan S. Q. ; Niu X. ; Liu S. X. ; Yang G. H. ; Fan Y. M. ; Rojas O. J. Nanochitin: chemistry, structure, assembly, and applications . Chem. Rev. , 2022 , 122 ( 13 ), 11604 - 11674 . doi: 10.1021/acs.chemrev.2c00125 http://dx.doi.org/10.1021/acs.chemrev.2c00125
Dominic C DM. ; Joseph R. ; Sabura Begum P. M. ; Raghunandanan A. ; Vackkachan N. T. ; Padmanabhan D. ; Formela K. Chitin nanowhiskers from shrimp shell waste as green filler in acrylonitrile-butadiene rubber: Processing and performance properties . Carbohydr. Polym. , 2020 , 245 , 116505 . doi: 10.1016/j.carbpol.2020.116505 http://dx.doi.org/10.1016/j.carbpol.2020.116505
Nie J. D. ; Mou W. J. ; Ding J. P. ; Chen Y. K. Bio-based epoxidized natural rubber/chitin nanocrystals composites: self-healing and enhanced mechanical properties . Compos. Part B Eng. , 2019 , 172 , 152 - 160 . doi: 10.1016/j.compositesb.2019.04.035 http://dx.doi.org/10.1016/j.compositesb.2019.04.035
Aklog Y. F. ; Nagae T. ; Izawa H. ; Morimoto M. ; Saimoto H. ; Ifuku S. Preparation of chitin nanofibers by surface esterification of chitin with maleic anhydride and mechanical treatment . Carbohydr. Polym. , 2016 , 153 , 55 - 59 . doi: 10.1016/j.carbpol.2016.07.060 http://dx.doi.org/10.1016/j.carbpol.2016.07.060
Yang J. H. ; Gao B. B. ; Zhang S. D. ; Chen Y. K. Improved antibacterial and mechanical performances of carboxylated nitrile butadiene rubber via interface reaction of oxidized starch . Carbohydr. Polym. , 2021 , 259 , 117739 . doi: 10.1016/j.carbpol.2021.117739 http://dx.doi.org/10.1016/j.carbpol.2021.117739
Cao L. M. ; Huang J. R. ; Chen Y. K. Dual cross-linked epoxidized natural rubber reinforced by tunicate cellulose nanocrystals with improved strength and extensibility . ACS Sustainable Chem. Eng. , 2018 , 6 ( 11 ), 14802 - 14811 . doi: 10.1021/acssuschemeng.8b03331 http://dx.doi.org/10.1021/acssuschemeng.8b03331
Zhang P. F. ; Raza S. ; Cheng Y. ; Claudine U. ; Hayat A. ; Bashir T. ; Ali T. ; Ghasali E. ; Orooji Y. Fabrication of maleic anhydride-acrylamide copolymer based sodium alginate hydrogel for elimination of metals ions and dyes contaminants from polluted water . Int. J. Biol. Macromol. , 2024 , 261 (Pt 1 ), 129146 . doi: 10.1016/j.ijbiomac.2023.129146 http://dx.doi.org/10.1016/j.ijbiomac.2023.129146
Liu T. G. ; Wang Y. T. ; Li B. ; Deng H. B. ; Huang Z. L. ; Qian L. W. ; Wang X. Urea free synthesis of chitin-based acrylate superabsorbent polymers under homogeneous conditions: effects of the degree of deacetylation and the molecular weight . Carbohydr. Polym. , 2017 , 174 , 464 - 473 . doi: 10.1016/j.carbpol.2017.06.108 http://dx.doi.org/10.1016/j.carbpol.2017.06.108
Han H. C. ; Zhang X. J. ; Kuang W. ; Tian H. L. ; Wang X. Self-healing and recyclable elastomer based on epoxidized natural rubber and carboxylated-chitosan . Compos. Commun. , 2023 , 40 , 101594 . doi: 10.1016/j.coco.2023.101594 http://dx.doi.org/10.1016/j.coco.2023.101594
Salaeh S. ; Das A. ; Wießner S. ; Stapor M. Vitrimer-like material based on a biorenewable elastomer crosslinked with a dimeric fatty acid . Eur. Polym. J. , 2021 , 151 , 110452 . doi: 10.1016/j.eurpolymj.2021.110452 http://dx.doi.org/10.1016/j.eurpolymj.2021.110452
Liu Y. J. ; Tang Z. H. ; Wu S. W. ; Guo B. C. Integrating sacrificial bonds into dynamic covalent networks toward mechanically robust and malleable elastomers . ACS Macro Lett. , 2019 , 8 ( 2 ), 193 - 199 . doi: 10.1021/acsmacrolett.9b00012 http://dx.doi.org/10.1021/acsmacrolett.9b00012
Kar G. P. ; Saed M. O. ; Terentjev E. M. . Scalable upcycling of thermoplastic polyolefins into vitrimers through transesterification . J. Mater. Chem. A , 2020 , 8 ( 45 ), 24137 - 24147 . doi: 10.1039/d0ta07339c http://dx.doi.org/10.1039/d0ta07339c
0
Views
211
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号