

浏览全部资源
扫码关注微信
1.大连理工大学,材料科学与工程学院,大连 116024
2.大连理工大学,精细化工国家重点实验室,大连 116024
Xi-gao Jian, E-mail: jian4616@dlut.edu.cn
Fang-yuan Hu, E-mail: hufangyuan@dlut.edu.cn
Received:05 September 2025,
Accepted:23 October 2025,
Published Online:07 January 2026,
Published:20 January 2026
移动端阅览
王琳, 曲云鹏, 苏畅, 江万源, 蹇锡高, 胡方圆. 多功能协同凝胶聚合物电解质的构建及其宽温域锂金属电池性能. 高分子学报, 2026, 57(1), 245-258.
Wang, L.; Qu, Y. P.; Su, C.; Jiang, W. Y.; Jian, X. G.; Hu, F. Y. Construction of multifunctional synergistic gel polymer electrolyte and its performance in wide-temperature-range lithium metal batteries. Acta Polymerica Sinica (in Chinese), 2026, 57(1), 245-258.
王琳, 曲云鹏, 苏畅, 江万源, 蹇锡高, 胡方圆. 多功能协同凝胶聚合物电解质的构建及其宽温域锂金属电池性能. 高分子学报, 2026, 57(1), 245-258. DOI: 10.11777/j.issn1000-3304.2025.25226. CSTR: 32057.14.GFZXB.2025.7501.
Wang, L.; Qu, Y. P.; Su, C.; Jiang, W. Y.; Jian, X. G.; Hu, F. Y. Construction of multifunctional synergistic gel polymer electrolyte and its performance in wide-temperature-range lithium metal batteries. Acta Polymerica Sinica (in Chinese), 2026, 57(1), 245-258. DOI: 10.11777/j.issn1000-3304.2025.25226. CSTR: 32057.14.GFZXB.2025.7501.
随着当前技术的不断发展,锂金属电池在极端工况下的运行需求日益增长. 然而,现有电解质体系普遍存在热稳定性较差、界面副反应显著以及低温条件下离子电导率不足等问题,在严苛环境应用中,实现电池的安全运行与长周期稳定性仍面临重大挑战,因此开发具有耐高温特性的凝胶聚合物电解质(GPE)显得尤为迫切. 本工作提出了一种基于不可燃电解质的双功能策略,通过本征阻燃特性与界面调控机制的协同作用,实现了电解质优异的热稳定性和高离子电导率. 该电解质凭借自清洁能力及所形成的坚固且富含无机物的界面层,有效保障了锂金属电池在高温下的安全与稳定运行. 实验结果表明,LiFePO
4
/GPE/Li电池在60 ℃下循环100次后容量几乎保持不变,在-20 ℃的低温条件下,能够在0.1 C电流密度下稳定循环100次,所组装的软包电池在弯曲、折叠与切割等极端条件下仍可持续驱动LED屏幕. 综上所述,本工作开发的GPE电解质体系可为宽温度范围内的高安全性与高稳
定性锂金属电池提供有效解决方案.
With the continuous advancement of current technology
there is a growing demand for lithium metal batteries (LMBs) to operate under extreme conditions. However
existing electrolyte systems generally suffer from poor thermal stability
significant interfacial side reactions
and insufficient ionic conductivity at low temperatures. Achieving safe operation and long-term cycling stability in harsh environments remains a major challenge
necessitating the development of high-temperature-resistant solid electrolytes. This study proposed a dual-functional strategy based on a non-flammable electrolyte that achieved exceptional thermal stability and high ionic conductivity through the synergistic effect of intrinsic flame-retardant properties and interfacial modulation mechanisms. Leveraging its self-purification capability and the formation of a robust
inorganic-rich interphase layer
the electrolyte effectively ensured the safety and stability of lithium metal batteries under high-temperature conditions. The experimental results demonstrated that the LFP/GPE/Li cell exhibited a nearly unchanged capacity after 100 cycles at 60 ℃. Furthermore
at a low temperature of -20 ℃
the LFP/GPE/Li cell could stably cycle 100 times at a current density of 0.1 C
and the assembled pouch cell remained capable of continuously driving an LED screen under extreme conditions
such as bending
folding
and cutting. In summary
the GPE electrolyte system developed in this study offers an effective solution for lithium metal batteries with high safety and stability over a wide temperature range.
Liu S. H. ; Tian W. S. ; Shen J. Q. ; Wang Z. K. ; Pan H. ; Kuang X. C. ; Yang C. ; Chen S. W. ; Han X. J. ; Quan H. D. ; Zhu S. M. Bioinspired gel polymer electrolyte for wide temperature lithium metal battery . Nat. Commun. , 2025 , 16 , 2474 . doi: 10.1038/s41467-025-57856-w http://dx.doi.org/10.1038/s41467-025-57856-w
Dong T. T. ; Xu G. J. ; Xie B. ; Liu T. ; Gong T. Y. ; Sun C. H. ; Wang J. Z. ; Zhang S. ; Zhang X. H. ; Zhang H. R. ; Huang L. ; Cui G. L. An electrode-crosstalk-suppressing smart polymer electrolyte for high safety lithium-ion batteries . Adv. Mater. , 2024 , 36 ( 26 ), 2400737 . doi: 10.1002/adma.202400737 http://dx.doi.org/10.1002/adma.202400737
Goodenough J. B. ; Kim Y. Challenges for rechargeable Li batteries . Chem. Mater. , 2010 , 22 ( 3 ), 587 - 603 . doi: 10.1021/cm901452z http://dx.doi.org/10.1021/cm901452z
Jiang W. Y. ; Jin X. ; Li B. R. ; Qu Y. P. ; Wang L. ; Song C. ; Pei M. F. ; Zhang T. P. ; Jian X. G. ; Hu F. Y. Wide temperature range adaptable electric field driven binder for advanced lithium-sulfur batteries . Nat. Commun. , 2025 , 16 , 7860 . doi: 10.1038/s41467-025-62909-1 http://dx.doi.org/10.1038/s41467-025-62909-1
Jin X. ; Pei M. F. ; Mao R. Y. ; Su C. ; Zhuo S. ; Hu N. W. ; Liu D. M. ; Jiang W. Y. ; Li B. R. ; Wang L. ; Liang H. B. ; Li S. M. ; Jian X. G. ; Hu F. Y. Solid-liquid metal single-atom clusters for ultrafast kinetics in fast-charging Na-ion batteries . J. Am. Chem. Soc. , 2025 , 147 ( 37 ), 33518 - 33529 . doi: 10.1021/jacs.5c07886 http://dx.doi.org/10.1021/jacs.5c07886
Dong T. T. ; Zhang H. R. ; Huang L. ; Ma J. ; Mu P. Z. ; Du X. F. ; Zhang X. H. ; Wang X. G. ; Lu C. L. ; Dong S. M. ; Zhou Q. ; Xu G. J. ; Liu W. ; Cui G. L. A smart polymer electrolyte coordinates the trade-off between thermal safety and energy density of lithium batteries . Energy Storage Mater. , 2023 , 58 , 123 - 131 . doi: 10.1016/j.ensm.2023.03.013 http://dx.doi.org/10.1016/j.ensm.2023.03.013
Li B. R. ; Jiang W. Y. ; Qu Y. P. ; Song W. K. ; Jin X. ; Pei M. F. ; Zhuo S. ; Mao R. Y. ; Wang L. ; Liu D. M. ; Jian X. G. ; Hu F. Y. Molecular engineering of polymer brushes enables lithium-sulfur battery stable operation under ultra-wide temperature range . Adv. Mater. , 2025 , 37 ( 35 ), 2503482 . doi: 10.1002/adma.202503482 http://dx.doi.org/10.1002/adma.202503482
Pei M. F. ; Jin X. ; Mao R. Y. ; Liu D. M. ; Su C. ; Zhuo S. ; Yao F. T. ; Qu Y. P. ; Jiang W. Y. ; Li B. R. ; Wang L. ; Song W. K. ; Zhang X. S. ; Jian X. G. ; Hu F. Y. Decoupling self-matching effect between cathode and anode in hybrid electrochemical capacitors . Adv. Mater. , 2025 , 37 ( 32 ), 2507061 . doi: 10.1002/adma.202507061 http://dx.doi.org/10.1002/adma.202507061
董甜甜 , 张建军 , 柴敬超 , 贾庆明 , 崔光磊 . 聚碳酸酯基固态聚合物电解质的研究进展 . 高分子学报 , 2017 , ( 6 ), 906 - 921 .
Wang L. ; Xu S. G. ; Wang Z. ; Yang E. N. ; Jiang W. Y. ; Zhang S. H. ; Jian X. G. ; Hu F. Y. A nano fiber-gel composite electrolyte with high Li + transference number for application in quasi-solid batteries . eScience , 2023 , 3 ( 2 ), 100090 . doi: 10.1016/j.esci.2022.100090 http://dx.doi.org/10.1016/j.esci.2022.100090
Wang L. ; Qu Y. P. ; Su C. ; Li R. Y. ; Liu D. M. ; Jiang W. Y. ; Jin X. ; Pei M. F. ; Jian X. G. ; Hu F. Y. Interfacial engineering of Li anode and Ni-rich cathode via anion-regulated SEI/CEI layers in flame-retardant nanofiber-reinforced polymer electrolyte for lithium metal batteries . Adv. Energy Mater. , 2025 , 15 ( 35 ), 2501185 . doi: 10.1002/aenm.202501185 http://dx.doi.org/10.1002/aenm.202501185
Song W. K. ; Li B. R. ; Qu Y. P. ; Jiang W. Y. ; Pei M. F. ; Hu N. W. ; Zhuo S. ; Su C. ; Jin X. ; Mao R. Y. ; Liu D. M. ; Jian X. G. ; Hu F. Y. Dynamic migration-pulling polymer electrolyte design strategy for low-temperature lithium-sulfur batteries . Angew. Chem. Int. Ed. , 2025 , 64 ( 29 ), e 202505095 . doi: 10.1002/anie.202505095 http://dx.doi.org/10.1002/anie.202505095
Qu Y. P. ; Su C. ; Wang L. ; Li B. R. ; Jiang W. Y. ; Li R. Y. ; Pei M. F. ; Song W. K. ; Zhuo S. ; Jin X. ; Liu D. M. ; Jian X. G. ; Hu F. Y. Interface engineered electrolyte design strategy for ultralong-cycle solid-state lithium batteries over wide temperature range . Angew. Chem. Int. Ed. , 2025 , 64 ( 27 ), e 202506731 . doi: 10.1002/anie.202506731 http://dx.doi.org/10.1002/anie.202506731
Su C. ; Qu Y. P. ; Hu N. W. ; Wang L. ; Song Z. H. ; Pei M. F. ; Mao R. Y. ; Jin X. ; Liu D. M. ; Jian X. G. ; Hu F. Y. Rapid Na + transport pathway and stable interface design enabling ultralong life solid-state sodium metal batteries . Angew. Chem. Int. Ed. , 2025 , 64 ( 7 ), e 202418959 . doi: 10.1002/anie.202418959 http://dx.doi.org/10.1002/anie.202418959
He Y. ; Guo J. P. ; Bi C. C. ; Hao Z. F. ; Zhao B. ; Li C. P. ; Han X. G. ; Wang Q. LaCoO3 doping in PVDF-based electrolytes with long-cycle performance and excellent interface compatibility of solid-state batteries in a wide temperature range . J. Power Sources , 2025 , 640 , 236771 . doi: 10.1016/j.jpowsour.2025.236771 http://dx.doi.org/10.1016/j.jpowsour.2025.236771
He Y. Y. ; Shan X. Y. ; Li Y. ; Li Z. X. ; Li L. ; Zhao S. ; Gao S. L. ; Qu J. L. ; Yang H. B. ; Cao P. F. In-situ formation of quasi-solid polymer electrolyte for wide-temperature applicable Li-metal batteries . Energy Storage Mater. , 2024 , 68 , 103281 . doi: 10.1016/j.ensm.2024.103281 http://dx.doi.org/10.1016/j.ensm.2024.103281
陈云妮 , 肖琴 , 李青音 , 任世杰 . 静电纺丝交联凝胶聚合物电解质的制备与表征 . 高分子学报 , 2020 , 51 ( 2 ), 183 - 190 .
张建军 , 杨金凤 , 吴瀚 , 张敏 , 刘亭亭 , 张津宁 , 董杉木 , 崔光磊 . 二次电池用原位生成聚合物电解质的研究进展 . 高分子学报 , 2019 , 50 ( 9 ), 890 - 914 .
Zhang H. ; Zhang Y. L. ; Du X. F. ; Ge X. S. ; Yuan Z. X. ; Zhang S. J. ; Wang D. ; Lv Z. L. ; Zhou X. H. ; Zhang J. J. ; Cui G. L. The synergy between in situ gradient polymerization and phase separation enables practical solid-state Ni-rich lithium-ion batteries . Adv. Mater. , 2025 , 37 ( 40 ), e 07621 . doi: 10.1002/adma.202507621 http://dx.doi.org/10.1002/adma.202507621
Wang Y. M. ; Zhang S. ; Chen Z. ; Zhang H. R. ; Tian F. Y. ; Wang J. K. ; Zhu Y. Y. ; Yang G. X. ; Li Z. T. ; Cui G. L. Long-life lithium metal batteries enabled by in situ solidified polyphosphoester-based electrolyte . Adv. Mater. , 2025 , e 14210 . doi: 10.1002/adma.202514210 http://dx.doi.org/10.1002/adma.202514210
Han L. F. ; Wang L. ; Chen Z. H. ; Kan Y. C. ; Hu Y. ; Zhang H. ; He X. M. Incombustible polymer electrolyte boosting safety of solid-state lithium batteries: a review . Adv. Funct. Mater. , 2023 , 33 ( 32 ), 2300892 . doi: 10.1002/adfm.202300892 http://dx.doi.org/10.1002/adfm.202300892
Wang S. F. ; He Y. T. ; Zhang G. ; Ma K. H. ; Wang C. ; Zhou F. S. ; Wang Z. H. ; Liu Z. G. ; Lü Z. ; Huang X. Q. ; Zhang Y. H. Multifunctional silicon-based composite electrolyte additive enhances the stability of the lithium metal anode/electrolyte interface . Adv. Energy Mater. , 2024 , 14 ( 37 ), 2401384 . doi: 10.1002/aenm.202401384 http://dx.doi.org/10.1002/aenm.202401384
0
Views
49
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号