

浏览全部资源
扫码关注微信
北京化工大学材料科学与工程学院 有机无机复合材料国家重点实验室 北京 100029
Received:31 August 2025,
Accepted:09 October 2025,
Published Online:01 December 2025,
Published:20 December 2025
移动端阅览
郝心玥, 王婕, 于冰, 田明, 曹鹏飞. 动态共价交联通用合成橡胶. 高分子学报, 2025, 56(12), 2218-2245
Hao, X. Y.; Wang, J.; Yu, B.; Tian, M.; Cao, P. F. Dynamic covalent crosslinked general synthetic rubber. Acta Polymerica Sinica, 2025, 56(12), 2218-2245
郝心玥, 王婕, 于冰, 田明, 曹鹏飞. 动态共价交联通用合成橡胶. 高分子学报, 2025, 56(12), 2218-2245 DOI: 10.11777/j.issn1000-3304.2025.25227. CSTR: 32057.14.GFZXB.2025.7489.
Hao, X. Y.; Wang, J.; Yu, B.; Tian, M.; Cao, P. F. Dynamic covalent crosslinked general synthetic rubber. Acta Polymerica Sinica, 2025, 56(12), 2218-2245 DOI: 10.11777/j.issn1000-3304.2025.25227. CSTR: 32057.14.GFZXB.2025.7489.
动态交联通用合成橡胶作为一种新兴的高性能材料,可以有效解决传统热固性橡胶优异力学性能、高稳定性与热塑性橡胶易加工、可回收难以兼顾的矛盾. 本综述系统梳理了动态共价网络(DCNs)的核心化学机理,对多种动态键进行了归纳,深入辨析了解离型与缔合型交换机制的本质区别、相互转化及其对材料宏观流变行为的影响. 随后,重点论述了对于不同化学结构通用合成橡胶针对性设计的动态交联策略与功能化实例. 最后,剖析了动态交联通用合成橡胶在工业化连续加工方面所面临的挑战与创新解决方案. 本综述旨在构建“化学机理—材料设计—加工应用”的完整闭环,为开发下一代高性能、多功能、可持续的合成橡胶提供依据与参考.
Dynamically crosslinked synthetic rubber represents an emerging class of green
high-performance materials. These materials effectively resolve the trade-off between the superior properties of traditional thermosets and the facile processing and recyclability characteristic of thermoplastics. This review first systematically elucidates the core chemical mechanisms of dynamic covalent networks (DCNs) and categorizes the various dynamic bonds involved. A central focus is the in-depth analysis of the fundamental differences and interconversion between dissociative and associative exchange mechanisms. Subsequently
the discussion highlights tailored design strategies for dynamic crosslinking and their applications across synthetic rubbers with diverse chemical backbones. Finally
the challenges and prospective solutions for the continuous industrial processing of these materials are analyzed. Ultimately
this review seeks to establish a cohesive framework connecting fundamental chemistry with material design and processing applications. The goal is to provide a theoretical reference and valuable insights for developing the next generation of high-performance
multifunctional
and sustainable dynamic synthetic rubbers.
Chen X. X. ; Zhong Q. Y. ; Cui C. H. ; Ma L. ; Liu S. ; Zhang Q. ; Wu Y. S. ; An L. ; Cheng Y. L. ; Ye S. B. ; Chen X. M. ; Dong Z. ; Chen Q. ; Zhang Y. F. Extremely tough, puncture-resistant, transparent, and photoluminescent polyurethane elastomers for crack self-diagnose and healing tracking . ACS Appl. Mater. Interfaces , 2020 , 12 ( 27 ), 30847 - 30855 . doi: 10.1021/acsami.0c07727 http://dx.doi.org/10.1021/acsami.0c07727
徐林 , 曾本忠 , 王超 , 张付宝 . 我国高性能合成橡胶材料发展现状与展望 . 中国工程科学 , 2020 , 22 ( 5 ), 128 - 136 .
崔小明 . 2024年我国橡胶原材料的进出口概况 . 橡胶科技 , 2025 , 23 ( 3 ), 174 - 177 .
国家统计局 . 2024年7—12月我国合成橡胶、轮胎和汽车产量 . 橡胶科技 , 2025 , 23 ( 3 ), 178 .
Cywar R. M. ; Ling C. ; Clarke R. W. ; Kim D. H. ; Kneucker C. M. ; Salvachúa D. ; Addison B. ; Hesse S. A. ; Takacs C. J. ; Xu S. ; Demirtas M. U. ; Woodworth S. P. ; Rorrer N. A. ; Johnson C. W. ; Tassone C. J. ; Allen R. D. ; Chen E. Y. ; Beckham G. T. Elastomeric vitrimers from designer polyhydroxyalkanoates with recyclability and biodegradability . Sci. Adv. , 2023 , 9 ( 47 ), eadi 1735 . doi: 10.1126/sciadv.adi1735 http://dx.doi.org/10.1126/sciadv.adi1735
Luo J. C. ; Demchuk Z. ; Zhao X. ; Saito T. ; Tian M. ; Sokolov A. P. ; Cao P. F. Elastic vitrimers: beyond thermoplastic and thermoset elastomers . Matter , 2022 , 5 ( 5 ), 1391 - 1422 . doi: 10.1016/j.matt.2022.04.007 http://dx.doi.org/10.1016/j.matt.2022.04.007
Yang Y. ; Xu Y. S. ; Ji Y. ; Wei Y. Functional epoxy vitrimers and composites . Prog. Mater. Sci. , 2021 , 120 , 100710 . doi: 10.1016/j.pmatsci.2020.100710 http://dx.doi.org/10.1016/j.pmatsci.2020.100710
余双舰 , 吴思武 , 唐征海 , 郭宝春 , 张立群 . 动态共价交联橡胶: 机遇与挑战 . 橡胶工业 , 2023 , 70 ( 9 ), 703 - 711 .
Deng S. H. ; Wu J. J. ; Dickey M. D. ; Zhao Q. ; Xie T. Rapid open-air digital light 3D printing of thermoplastic polymer . Adv. Mater. , 2019 , 31 ( 39 ), 1903970 . doi: 10.1002/adma.201903970 http://dx.doi.org/10.1002/adma.201903970
Niu Z. H. ; Wang Y. M. ; Wang X. ; Yin D. X. ; Shou T. ; Cao P. F. ; Zhao X. Y. ; Hu S. K. ; Zhang L. Q. Investigating the effect of chain extender on the phase separation and mechanical properties of polybutadiene-based polyurethane . Macromol. Rapid Commun. , 2024 , 45 ( 19 ), 2400259 . doi: 10.1002/marc.202400259 http://dx.doi.org/10.1002/marc.202400259
Wang W. T. ; Huang J. R. ; Gong Z. ; Fan J. F. ; Cao L. M. ; Chen Y. K. Biobased PLA/NR-PMMA TPV with balanced stiffness-toughness: in situ interfacial compatibilization, performance and toughening model . Polym. Test. , 2020 , 81 , 106268 . doi: 10.1016/j.polymertesting.2019.106268 http://dx.doi.org/10.1016/j.polymertesting.2019.106268
Li B. R. ; Cao P. F. ; Saito T. ; Sokolov A. P. Intrinsically self-healing polymers: from mechanistic insight to current challenges . Chem. Rev. , 2023 , 123 ( 2 ), 701 - 735 . doi: 10.1021/acs.chemrev.2c00575 http://dx.doi.org/10.1021/acs.chemrev.2c00575
Zhang M. Y. ; Choi W. ; Kim M. ; Choi J. ; Zang X. R. ; Ren Y. J. ; Chen H. ; Tsukruk V. ; Peng J. ; Liu Y. J. ; Kim D. H. ; Lin Z. Q. Recent advances in environmentally friendly dual-crosslinking polymer networks . Angew. Chem. Int. Ed. , 2024 , 63 ( 24 ), e 202318035 . doi: 10.1002/anie.202318035 http://dx.doi.org/10.1002/anie.202318035
Zheng N. ; Xu Y. ; Zhao Q. ; Xie T. Dynamic covalent polymer networks: a molecular platform for designing functions beyond chemical recycling and self-healing . Chem. Rev. , 2021 , 121 ( 3 ), 1716 - 1745 . doi: 10.1021/acs.chemrev.0c00938 http://dx.doi.org/10.1021/acs.chemrev.0c00938
Hsissou R. ; Seghiri R. ; Benzekri Z. ; Hilali M. ; Rafik M. ; Elharfi A. Polymer composite materials: a comprehensive review . Compos. Struct. , 2021 , 262 , 113640 . doi: 10.1016/j.compstruct.2021.113640 http://dx.doi.org/10.1016/j.compstruct.2021.113640
Samanta S. ; Kim S. ; Saito T. ; Sokolov A. P. Polymers with dynamic bonds: adaptive functional materials for a sustainable future . J. Phys. Chem. B , 2021 , 125 ( 33 ), 9389 - 9401 . doi: 10.1021/acs.jpcb.1c03511 http://dx.doi.org/10.1021/acs.jpcb.1c03511
Alabiso W. ; Schlögl S. The impact of vitrimers on the industry of the future: chemistry, properties and sustainable forward-looking applications . Polymers , 2020 , 12 ( 8 ), 1660 . doi: 10.3390/polym12081660 http://dx.doi.org/10.3390/polym12081660
Gosecki M. ; Gosecka M. Boronic acid esters and anhydrates as dynamic cross-links in vitrimers . Polymers , 2022 , 14 ( 4 ), 842 . doi: 10.3390/polym14040842 http://dx.doi.org/10.3390/polym14040842
Montarnal D. ; Capelot M. ; Tournilhac F. ; Leibler L. Silica-like malleable materials from permanent organic networks . Science , 334 ( 6058 ), 965 - 968 . doi: 10.1126/science.1212648 http://dx.doi.org/10.1126/science.1212648
Adzima B. J. ; Aguirre H. A. ; Kloxin C. J. ; Scott T. F. ; Bowman C. N. Rheological and chemical analysis of reverse gelation in a covalently cross-linked Diels-Alder polymer network . Macromolecules , 2008 , 41 ( 23 ), 9112 - 9117 . doi: 10.1021/ma801863d http://dx.doi.org/10.1021/ma801863d
Gandini A. ; Coelho D. ; Silvestre A. J. D. Reversible click chemistry at the service of macromolecular materials. Part 1: kinetics of the diels-alder reaction applied to furan-maleimide model compounds and linear polymerizations . Eur. Polym. J. , 2008 , 44 ( 12 ), 4029 - 4036 . doi: 10.1016/j.eurpolymj.2008.09.026 http://dx.doi.org/10.1016/j.eurpolymj.2008.09.026
Gandini A. The furan/maleimide Diels-Alder reaction: a versatile click-unclick tool in macromolecular synthesis . Prog. Polym. Sci. , 2013 , 38 ( 1 ), 1 - 29 . doi: 10.1016/j.progpolymsci.2012.04.002 http://dx.doi.org/10.1016/j.progpolymsci.2012.04.002
Gopalaiah K. Chiral iron catalysts for asymmetric synthesis . Chem. Rev. , 2013 , 113 ( 5 ), 3248 - 3296 . doi: 10.1021/cr300236r http://dx.doi.org/10.1021/cr300236r
Knall A. C. ; Slugovc C. Inverse electron demand Diels-Alder (iEDDA)-initiated conjugation: a (high) potential click chemistry scheme . Chem. Soc. Rev. , 2013 , 42 ( 12 ), 5131 . doi: 10.1039/c3cs60049a http://dx.doi.org/10.1039/c3cs60049a
Yu S. ; Zhang R. C. ; Wu Q. ; Chen T. H. ; Sun P. C. Bio-inspired high-performance and recyclable cross-linked polymers . Adv. Mater. , 2013 , 25 ( 35 ), 4912 - 4917 . doi: 10.1002/adma.201301513 http://dx.doi.org/10.1002/adma.201301513
Feng D. W. ; Gu Z. Y. ; Chen Y. P. ; Park J. ; Wei Z. W. ; Sun Y. J. ; Bosch M. ; Yuan S. ; Zhou H. C. A highly stable porphyrinic zirconium metal-organic framework with shp-a topology . J. Am. Chem. Soc. , 2014 , 136 ( 51 ), 17714 - 17717 . doi: 10.1021/ja510525s http://dx.doi.org/10.1021/ja510525s
Hu W. ; Ren Z. ; Li J. P. ; Askounis E. ; Xie Z. X. ; Pei Q. B. New dielectric elastomers with variable moduli . Adv. Funct. Mater. , 2015 , 25 ( 30 ), 4827 - 4836 . doi: 10.1002/adfm.201501530 http://dx.doi.org/10.1002/adfm.201501530
Zhao J. J. ; Sun S. B. ; He S. H. ; Wu Q. ; Shi F. Catalytic asymmetric inverse-electron-demand oxa-Diels-alder reaction of In Situ generated ortho-quinone methides with 3-methyl-2-vinylindoles . Angew. Chem. Int. Ed. , 2015 , 54 ( 18 ), 5460 - 5464 . doi: 10.1002/anie.201500215 http://dx.doi.org/10.1002/anie.201500215
Zhang G. G. ; Zhao Q. ; Yang L. P. ; Zou W. K. ; Xi X. Y. ; Xie T. Exploring dynamic equilibrium of Diels-alder reaction for solid state plasticity in remoldable shape memory polymer network . ACS Macro Lett. , 2016 , 5 ( 7 ), 805 - 808 . doi: 10.1021/acsmacrolett.6b00357 http://dx.doi.org/10.1021/acsmacrolett.6b00357
Polgar L. M. ; Kingma A. ; Roelfs M. ; van Essen M. ; van Duin M. ; Picchioni F. Kinetics of cross-linking and de-cross-linking of EPM rubber with thermoreversible Diels-Alder chemistry . Eur. Polym. J. , 2017 , 90 , 150 - 161 . doi: 10.1016/j.eurpolymj.2017.03.020 http://dx.doi.org/10.1016/j.eurpolymj.2017.03.020
Cardosa-Gutierrez M. ; De Bo G. ; Duwez A. S. ; Remacle F. Bond breaking of furan-maleimide adducts via a diradical sequential mechanism under an external mechanical force . Chem. Sci. , 2023 , 14 ( 5 ), 1263 - 1271 . doi: 10.1039/d2sc05051j http://dx.doi.org/10.1039/d2sc05051j
del Barrio J. ; Sánchez-Somolinos C. Light to shape the future: from photolithography to 4D printing . Adv. Opt. Mater. , 2019 , 7 ( 16 ), 1900598 . doi: 10.1002/adom.201900598 http://dx.doi.org/10.1002/adom.201900598
Nguyen T. D. ; Lee J. S. Dynamic bonds in biopolymers: enhancing performance and properties . Polymers , 2025 , 17 ( 4 ), 457 . doi: 10.3390/polym17040457 http://dx.doi.org/10.3390/polym17040457
Bouas-Laurent H. ; Castellan A. ; Desvergne J. P. ; Lapouyade R. Photodimerization of anthracenes in fluid solution: structural aspects . Chem. Soc. Rev. , 2000 , 29 ( 1 ), 43 - 55 . doi: 10.1039/a801821i http://dx.doi.org/10.1039/a801821i
Travasso R. D. M. ; Kuksenok O. ; Balazs A. C. Harnessing light to create defect-free, hierarchically structured polymeric materials . Langmuir , 2005 , 21 ( 24 ), 10912 - 10915 . doi: 10.1021/la052511a http://dx.doi.org/10.1021/la052511a
Xu X. W. ; Hao X. Y. ; Hu J. ; Gao W. S. ; Ning N. Y. ; Yu B. ; Zhang L. Q. ; Tian M. Recyclable silicone elastic light-triggered actuator with a reconfigurable Janus structure and self-healable performance . Polym. Chem. , 2022 , 13 ( 6 ), 829 - 837 . doi: 10.1039/d1py01632f http://dx.doi.org/10.1039/d1py01632f
Rüchardt C. ; Beckhaus H. D. Towards an understanding of the carbon-carbon bond . Angew. Chem. Int. Ed. , 1980 , 19 ( 6 ), 429 - 440 . doi: 10.1002/anie.198004291 http://dx.doi.org/10.1002/anie.198004291
Korpela E. J. J. ; Carvalho J. R. ; Lischka H. ; Kertesz M. Extremely long C—C bonds predicted beyond 2.0 Å . J. Phys. Chem. A , 2023 , 127 ( 20 ), 4440 - 4454 . doi: 10.1021/acs.jpca.3c01209 http://dx.doi.org/10.1021/acs.jpca.3c01209
Imato K. ; Nishihara M. ; Kanehara T. ; Amamoto Y. ; Takahara A. ; Otsuka H. Self-healing of chemical gels cross-linked by diarylbibenzofuranone-based trigger-free dynamic covalent bonds at room temperature . Angew. Chem. Int. Ed. , 2012 , 51 ( 5 ), 1138 - 1142 . doi: 10.1002/anie.201104069 http://dx.doi.org/10.1002/anie.201104069
Zhang Z. P. ; Rong M. Z. ; Zhang M. Q. Mechanically robust, self-healable, and highly stretchable “living” crosslinked polyurethane based on a reversible C—C bond . Adv. Funct. Mater. , 2018 , 28 ( 11 ), 1706050 . doi: 10.1002/adfm.201706050 http://dx.doi.org/10.1002/adfm.201706050
Ji S. B. ; Cao W. ; Yu Y. ; Xu H. P. Dynamic diselenide bonds: Exchange reaction induced by visible light without catalysis . Angew. Chem. Int. Ed. , 2014 , 53 ( 26 ), 6781 - 6785 . doi: 10.1002/anie.201403442 http://dx.doi.org/10.1002/anie.201403442
Ji S. B. ; Cao W. ; Yu Y. ; Xu H. P. Visible-light-induced self-healing diselenide-containing polyurethane elastomer . Adv. Mater. , 2015 , 27 ( 47 ), 7740 - 7745 . doi: 10.1002/adma.201503661 http://dx.doi.org/10.1002/adma.201503661
Ji S. B. ; Xia J. H. ; Xu H. P. Dynamic chemistry of selenium: Se—N and Se—Se dynamic covalent bonds in polymeric systems . ACS Macro Lett. , 2016 , 5 ( 1 ), 78 - 82 . doi: 10.1021/acsmacrolett.5b00849 http://dx.doi.org/10.1021/acsmacrolett.5b00849
Liu C. ; Fan Z. Y. ; Tan Y. Z. ; Fan F. Q. ; Xu H. P. Tunable structural color patterns based on the visible-light-responsive dynamic diselenide metathesis . Adv. Mater. , 2020 , 32 ( 12 ), 1907569 . doi: 10.1002/adma.201907569 http://dx.doi.org/10.1002/adma.201907569
Liu X. H. ; Song X. ; Chen B. F. ; Liu J. M. ; Feng Z. Q. ; Zhang W. C. ; Zeng J. J. ; Liang L. Y. Self-healing and shape-memory epoxy thermosets based on dynamic diselenide bonds . React. Funct. Polym. , 2022 , 170 , 105121 . doi: 10.1016/j.reactfunctpolym.2021.105121 http://dx.doi.org/10.1016/j.reactfunctpolym.2021.105121
Otsuka H. ; Nagano S. ; Kobashi Y. ; Maeda T. ; Takahara A. A dynamic covalent polymer driven by disulfidemetathesis under photoirradiation . Chem. Commun. , 2010 , 46 ( 7 ), 1150 - 1152 . doi: 10.1039/b916128g http://dx.doi.org/10.1039/b916128g
Suzuki N. ; Takahashi A. ; Ohishi T. ; Goseki R. ; Otsuka H. Enhancement of the stimuli-responsiveness and photo-stability of dynamic diselenide bonds and diselenide-containing polymers by neighboring aromatic groups . Polymer , 2018 , 154 , 281 - 290 . doi: 10.1016/j.polymer.2018.09.022 http://dx.doi.org/10.1016/j.polymer.2018.09.022
Irigoyen M. ; Fernández A. ; Ruiz A. ; Ruipérez F. ; Matxain J. M. Diselenide bonds as an alternative to outperform the efficiency of disulfides in self-healing materials . J. Org. Chem. , 2019 , 84 ( 7 ), 4200 - 4210 . doi: 10.1021/acs.joc.9b00014 http://dx.doi.org/10.1021/acs.joc.9b00014
Denissen W. ; Winne J. M. ; Du PrezF. E. Vitrimers: permanent organic networks with glass-like fluidity . Chem. Sci. , 2016 , 7 ( 1 ), 30 - 38 . doi: 10.1039/c5sc02223a http://dx.doi.org/10.1039/c5sc02223a
Rowan S. J. ; Cantrill S. J. ; Cousins G. R. L. ; Sanders J. K. M. ; Stoddart J. F. Dynamic covalent chemistry . Angew. Chem. Int. Ed. , 2002 , 41 ( 6 ), 898 - 952 . doi: 10.1002/1521-3773(20020315)41:6<898::aid-anie898>3.0.co;2-e http://dx.doi.org/10.1002/1521-3773(20020315)41:6<898::aid-anie898>3.0.co;2-e
Cheng Z. R. ; Huang K. M. ; Wang C. ; Chen L. L. ; Li X. Y. ; Hu Z. B. ; Shan X. Y. ; Cao P. F. ; Sun H. F. ; Chen W. ; Li C. H. ; Zhang Z. Y. ; Tan H. ; Jiang X. ; Zhang G. K. ; Zhang Z. Y. ; Lin M. ; Wang L. ; Zheng A. M. ; Xia C. J. ; Wang T. ; Song S. ; Shu X. T. ; Jiao N. Catalytic remodeling of complex alkenes to oxonitriles through C=C double bond deconstruction . Science , 2025 , 387 ( 6738 ), 1083 - 1090 . doi: 10.1126/science.adq8918 http://dx.doi.org/10.1126/science.adq8918
Liu X. ; Keun L. ; Ho Y. ; R , K . Characterization of diene monomers as healing agents for autonomic damage repair . J. Appl. Polym. Sci. , 2006 , 101 ( 3 ), 1266 - 1272 . doi: 10.1002/app.23245 http://dx.doi.org/10.1002/app.23245
Lu Y. X. ; Guan Z. B. Olefin metathesis for effective polymer healing via dynamic exchange of strong carbon-carbon double bonds . J. Am. Chem. Soc. , 2012 , 134 ( 34 ), 14226 - 14231 . doi: 10.1021/ja306287s http://dx.doi.org/10.1021/ja306287s
Mauldin T. C. ; Rule J. D. ; Sottos N. R. ; White S. R. ; Moore J. S. Self-healing kinetics and the stereoisomers of dicyclopentadiene . J. R. Soc. Interface , 2007 , 4 ( 13 ), 389 - 393 . doi: 10.1098/rsif.2006.0200 http://dx.doi.org/10.1098/rsif.2006.0200
Leitgeb A. ; Wappel J. ; Slugovc C. The ROMP toolbox upgraded . Polymer , 2010 , 51 ( 14 ), 2927 - 2946 . doi: 10.1016/j.polymer.2010.05.002 http://dx.doi.org/10.1016/j.polymer.2010.05.002
Capelot M. ; Montarnal D. ; Tournilhac F. ; Leibler L. Metal-catalyzed transesterification for healing and assembling of thermosets . J. Am. Chem. Soc. , 2012 , 134 ( 18 ), 7664 - 7667 . doi: 10.1021/ja302894k http://dx.doi.org/10.1021/ja302894k
Erel O. ; Neselioglu S. A novel and automated assay for thiol/disulphide homeostasis . Clin. Biochem. , 2014 , 47 ( 18 ), 326 - 332 . doi: 10.1016/j.clinbiochem.2014.09.026 http://dx.doi.org/10.1016/j.clinbiochem.2014.09.026
Kim S. M. ; Jeon H. ; Shin S. H. ; Park S. A. ; Jegal J. ; Hwang S. Y. ; Oh D. X. ; Park J. Superior toughness and fast self-healing at room temperature engineered by transparent elastomers . Adv. Mater. , 2018 , 30 ( 1 ), 1705145 . doi: 10.1002/adma.201870001 http://dx.doi.org/10.1002/adma.201870001
Sun B. J. ; Luo C. ; Yu H. ; Zhang X. B. ; Chen Q. ; Yang W. Q. ; Wang M. L. ; Kan Q. M. ; Zhang H. T. ; Wang Y. J. ; He Z. G. ; Sun J. Disulfide bond-driven oxidation- and reduction-responsive prodrug nanoassemblies for cancer therapy . Nano Lett. , 2018 , 18 ( 6 ), 3643 - 3650 . doi: 10.1021/acs.nanolett.8b00737 http://dx.doi.org/10.1021/acs.nanolett.8b00737
Xu Y. W. ; Zhou S. ; Wu Z. H. ; Yang X. Y. ; Li N. ; Qin Z. H. ; Jiao T. F. Room-temperature self-healing and recyclable polyurethane elastomers with high strength and superior robustness based on dynamic double-crosslinked structure . Chem. Eng. J. , 2023 , 466 , 143179 . doi: 10.1016/j.cej.2023.143179 http://dx.doi.org/10.1016/j.cej.2023.143179
Li X. Y. ; Yu B. ; Bai J. ; Guo B. C. ; Tian M. ; Chen F. Recycling polyurethane with properties maintained in multiple reprocessing realized via dynamic polysulfide bond . Macromolecules , 2025 , 58 ( 13 ), 6607 - 6616 . doi: 10.1021/acs.macromol.5c00670 http://dx.doi.org/10.1021/acs.macromol.5c00670
Hao X. Y. ; Yu B. ; Li L. ; Ju H. ; Tian M. ; Cao P. F. Semi-interpenetrating polyurethane network with fatigue elimination and upcycled mechanical performance . Macromolecules , 2024 , 57 ( 10 ), 5063 - 5072 . doi: 10.1021/acs.macromol.4c00389 http://dx.doi.org/10.1021/acs.macromol.4c00389
Altinbasak I. ; Arslan M. ; Sanyal R. ; Sanyal A. Pyridyl disulfide-based thiol-disulfide exchange reaction: shaping the design of redox-responsive polymeric materials . Polym. Chem. , 2020 , 11 ( 48 ), 7603 - 7624 . doi: 10.1039/d0py01215g http://dx.doi.org/10.1039/d0py01215g
Xiang H. P. ; Qian H. J. ; Lu Z. Y. ; Rong M. Z. ; Zhang M. Q. Crack healing and reclaiming of vulcanized rubber by triggering the rearrangement of inherent sulfur crosslinked networks . Green Chem. , 2015 , 17 ( 8 ), 4315 - 4325 . doi: 10.1039/c5gc00754b http://dx.doi.org/10.1039/c5gc00754b
Xiang H. P. ; Rong M. Z. ; Zhang M. Q. Self-healing, reshaping, and recycling of vulcanized chloroprene rubber: a case study of multitask cyclic utilization of cross-linked polymer . ACS Sustainable Chem. Eng. , 2016 , 4 ( 5 ), 2715 - 2724 . doi: 10.1021/acssuschemeng.6b00224 http://dx.doi.org/10.1021/acssuschemeng.6b00224
Takahashi A. ; Goseki R. ; Ito K. ; Otsuka H. Thermally healable and reprocessable Bis(hindered amino)disulfide-Cross-Linked polymethacrylate networks . ACS Macro Lett. , 2017 , 6 ( 11 ), 1280 - 1284 . doi: 10.1021/acsmacrolett.7b00762 http://dx.doi.org/10.1021/acsmacrolett.7b00762
Guo X. R. ; Liu F. ; Lv M. ; Chen F. B. ; Gao F. ; Xiong Z. H. ; Chen X. J. ; Shen L. ; Lin F. M. ; Gao X. L. Self-healable covalently adaptable networks based on disulfide exchange . Polymers , 2022 , 14 ( 19 ), 3953 . doi: 10.3390/polym14193953 http://dx.doi.org/10.3390/polym14193953
Guggari S. ; Magliozzi F. ; Malburet S. ; Graillot A. ; Destarac M. ; Guerre M. Vanillin-based epoxy vitrimers: looking at the cystamine hardener from a different perspective . ACS Sustainable Chem. Eng. , 2023 , 11 ( 15 ), 6021 - 6031 . doi: 10.1021/acssuschemeng.3c00379 http://dx.doi.org/10.1021/acssuschemeng.3c00379
Luo J. C. ; Zhao X. ; Ju H. ; Chen X. J. ; Zhao S. ; Demchuk Z. ; Li B. R. ; Bocharova V. ; Carrillo J. Y. ; Keum J. K. ; Xu S. ; Sokolov A. P. ; Chen J. Y. ; Cao P. F. Highly recyclable and tough elastic vitrimers from a defined polydimethylsiloxane network . Angew. Chem. Int. Ed. , 2023 , 62 ( 47 ), e 202310989 . doi: 10.1002/anie.202310989 http://dx.doi.org/10.1002/anie.202310989
Takahashi A. ; Goseki R. ; Otsuka H. Thermally adjustable dynamic disulfide linkages mediated by highly air-stable 2,2,6,6-tetramethylpiperidine-1-sulfanyl (TEMPS) radicals . Angew. Chem. Int. Ed. , 2017 , 56 ( 8 ), 2016 - 2021 . doi: 10.1002/anie.201611049 http://dx.doi.org/10.1002/anie.201611049
Qin J. J. ; Wang D. S. ; Li W. Y. ; Liang L. Y. ; Yang C. L. Preparation of self-healing and degradable high-performance epoxy thermosets containing disulfide bonds and hindered urea bonds . Polym. Degrad. Stabil. , 2025 , 239 , 111410 . doi: 10.1016/j.polymdegradstab.2025.111410 http://dx.doi.org/10.1016/j.polymdegradstab.2025.111410
Zhang Y. F. ; Ying H. Z. ; Hart K. R. ; Wu Y. X. ; Hsu A. J. ; Coppola A. M. ; Kim T. A. ; Yang K. ; Sottos N. R. ; White S. R. ; Cheng J. J. Malleable and recyclable poly(urea-urethane) thermosets bearing hindered urea bonds . Adv. Mater. , 2016 , 28 ( 35 ), 7646 - 7651 . doi: 10.1002/adma.201601242 http://dx.doi.org/10.1002/adma.201601242
Zhang L. H. ; Rowan S. J. Effect of sterics and degree of cross-linking on the mechanical properties of dynamic poly(alkylurea-urethane) networks . Macromolecules , 2017 , 50 ( 13 ), 5051 - 5060 . doi: 10.1021/acs.macromol.7b01016 http://dx.doi.org/10.1021/acs.macromol.7b01016
Zhang Q. ; Wang S. J. ; Rao B. ; Chen X. X. ; Ma L. ; Cui C. H. ; Zhong Q. Y. ; Li Z. ; Cheng Y. L. ; Zhang Y. F. Hindered urea bonds for dynamic polymers: an overview . React. Funct. Polym. , 2021 , 159 , 104807 . doi: 10.1016/j.reactfunctpolym.2020.104807 http://dx.doi.org/10.1016/j.reactfunctpolym.2020.104807
Feng H. J. ; Zheng N. ; Peng W. J. ; Ni C. J. ; Song H. J. ; Zhao Q. ; Xie T. Upcycling of dynamic thiourea thermoset polymers by intrinsic chemical strengthening . Nat. Commun. , 2022 , 13 ( 1 ), 397 . doi: 10.1038/s41467-022-28085-2 http://dx.doi.org/10.1038/s41467-022-28085-2
Lu X. Y. ; Zhang L. ; Zhang J. H. ; Wang C. ; Zhang A. M. Facile preparation of dual functional wearable devices based on hindered urea bond-integrated reprocessable polyurea and AgNWs . ACS Appl. Mater. Interfaces , 2022 , 14 ( 36 ), 41421 - 41432 . doi: 10.1021/acsami.2c11875 http://dx.doi.org/10.1021/acsami.2c11875
Wang F. Z. ; Gao W. T. ; Li C. H. A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers . Chin. Chem. Lett. , 2024 , 35 ( 5 ), 109305 . doi: 10.1016/j.cclet.2023.109305 http://dx.doi.org/10.1016/j.cclet.2023.109305
Obadia M. M. ; Mudraboyina B. P. ; Serghei A. ; Montarnal D. ; Drockenmuller E. Reprocessing and recycling of highly cross-linked ion-conducting networks through transalkylation exchanges of C—N bonds . J. Am. Chem. Soc. , 2015 , 137 ( 18 ), 6078 - 6083 . doi: 10.1021/jacs.5b02653 http://dx.doi.org/10.1021/jacs.5b02653
Obadia M. M. ; Jourdain A. ; Cassagnau P. ; Montarnal D. ; Drockenmuller E. Tuning the viscosity profile of ionic vitrimers incorporating 1,2,3-triazolium cross-links . Adv. Funct. Mater. , 2017 , 27 ( 45 ), 1703258 . doi: 10.1002/adfm.201703258 http://dx.doi.org/10.1002/adfm.201703258
Scheutz G. ; Lessard J. J. ; Sims M. B. ; Sumerlin B. S. Adaptable crosslinks in polymeric materials: resolving the intersection of thermoplastics and thermosets . J. Am. Chem. Soc. , 2019 , 141 ( 41 ), 16181 - 16196 . doi: 10.1021/jacs.9b07922 http://dx.doi.org/10.1021/jacs.9b07922
Acosta-Guzmán P. ; Mateus-Gómez A. ; Gamba-Sánchez D. Direct transamidation reactions: mechanism and recent advances . Molecules , 2018 , 23 ( 9 ), 2382 . doi: 10.3390/molecules23092382 http://dx.doi.org/10.3390/molecules23092382
Nguyen L. T. ; Maes S. ; Du PrezF. E. Enabling the reprocessability and debonding of epoxy thermosets using dynamic poly( β -amino amide) curing agents . Adv. Funct. Mater. , 2025 , 35 ( 19 ), 2419240 . doi: 10.1002/adfm.202419240 http://dx.doi.org/10.1002/adfm.202419240
Baruah R. ; Kumar A. ; Ujjwal R. R. ; Kedia S. ; Ranjan A. ; Ojha U. Recyclable thermosets based on dynamic amidation and aza-Michael addition chemistry . Macromolecules , 2016 , 49 ( 20 ), 7814 - 7824 . doi: 10.1021/acs.macromol.6b01807 http://dx.doi.org/10.1021/acs.macromol.6b01807
Chen Y. J. ; Zhang H. Y. ; Majumdar S. ; van Benthem R. A. T. M. ; Heuts J. P. A. ; Sijbesma R. P. Dynamic polyamide networks via amide-imide exchange . Macromolecules , 2021 , 54 ( 20 ), 9703 - 9711 . doi: 10.1021/acs.macromol.1c01389 http://dx.doi.org/10.1021/acs.macromol.1c01389
Van Lijsebetten F. ; Spiesschaert Y. ; Winne J. M. ; Du PrezF. E. Reprocessing of covalent adaptable polyamide networks through internal catalysis and ring-size effects . J. Am. Chem. Soc. , 2021 , 143 ( 38 ), 15834 - 15844 . doi: 10.1021/jacs.1c07360 http://dx.doi.org/10.1021/jacs.1c07360
Mah J. J. Q. ; Surat’man N. E. B. ; Li B. F. ; Wang S. ; Li Z. B. Recent advances of dynamic covalent chemistry polymers aligning with principles of green chemistry . ChemSusChem , 2025 , 18 ( 14 ), e 202500480 . doi: 10.1002/cssc.202500480 http://dx.doi.org/10.1002/cssc.202500480
Belowich M. E. ; Stoddart , J. F. Dynamic imine chemistry . Chem. Soc. Rev. , 2012 , 41 ( 6 ), 2003 . doi: 10.1039/c2cs15305j http://dx.doi.org/10.1039/c2cs15305j
Feng Z. B. ; Yu B. ; Hu J. ; Zuo H. L. ; Li J. P. ; Sun H. B. ; Ning N. Y. ; Tian M. ; Zhang L. Q. Multifunctional vitrimer-like polydimethylsiloxane (PDMS): recyclable, self-healable, and water-driven malleable covalent networks based on dynamic imine bond . Ind. Eng. Chem. Res. , 2019 , 58 ( 3 ), 1212 - 1221 . doi: 10.1021/acs.iecr.8b05309 http://dx.doi.org/10.1021/acs.iecr.8b05309
王胜 . 基于亚胺键的高性能动态共价聚合物网络的研究及应用 . 中国科学院大学(中国科学院宁波材料技术与工程研究所)博士学位论文 , 2021 .
Liguori A. ; Hakkarainen M. Designed from biobased materials for recycling: imine-based covalent adaptable networks . Macromol. Rapid Commun. , 2022 , 43 ( 13 ), 2100816 . doi: 10.1002/marc.202100816 http://dx.doi.org/10.1002/marc.202100816
Luo Z. Y. ; Guo Z. ; Wu Y. J. ; Li C. J. ; Guo Z. X. Rapi d self-healing, reprocessable, and degradable epoxy resins via imine-disulfide dynamic bonds for electrical insulation . ACS Appl. Polym. Mater. , 2025 , 7 ( 14 ), 9399 - 9409 . doi: 10.1021/acsapm.5c01857 http://dx.doi.org/10.1021/acsapm.5c01857
Kar G. P. ; Saed M. O. ; Terentjev E. M. Scalable upcycling of thermoplastic polyolefins into vitrimers through transesterification . J. Mater. Chem. A , 2020 , 8 ( 45 ), 24137 - 24147 . doi: 10.1039/d0ta07339c http://dx.doi.org/10.1039/d0ta07339c
Hernández A. ; Maiheu T. ; Drockenmuller E. ; Montarnal D. ; Winne J. M. ; Du PrezF. E. Design and continuous (Re)processing of thermally resilient poly(styrene -co- Maleic maleate)-based covalent adaptable networks . Chem. Mater. , 2024 , 36 ( 15 ), 7487 - 7503 . doi: 10.1021/acs.chemmater.4c01464 http://dx.doi.org/10.1021/acs.chemmater.4c01464
Wang S. ; Ma S. Q. ; Qiu J. F. ; Tian A. P. ; Li Q. ; Xu X. W. ; Wang B. B. ; Lu N. ; Liu Y. L. ; Zhu J. Upcycling of post-consumer polyolefin plastics to covalent adaptable networks via in situ continuous extrusion cross-linking . Green Chem. , 2021 , 23 ( 8 ), 2931 - 2937 . doi: 10.1039/d0gc04337k http://dx.doi.org/10.1039/d0gc04337k
Tran H. T. T. ; Nisha S. S. ; Radjef R. ; Nikzad M. ; Bjekovic R. ; Fox B. Recyclable and biobased vitrimers for carbon fibre-reinforced composites-a review . Polymers , 2024 , 16 ( 8 ), 1025 . doi: 10.3390/polym16081025 http://dx.doi.org/10.3390/polym16081025
Fadlallah S. ; Van Lijsebetten F. ; Debsharma T. ; Scholiers V. ; Allais F. ; Du PrezF. E. Exploring the dual dynamic synergy of transesterification and siloxane exchange in vitrimers . Eur. Polym. J. , 2024 , 213 , 113117 . doi: 10.1016/j.eurpolymj.2024.113117 http://dx.doi.org/10.1016/j.eurpolymj.2024.113117
Tretbar C. ; Neal J. A. ; Guan Z. B. Direct silyl ether metathesis for vitrimers with exceptional thermal stability . J. Am. Chem. Soc. , 2019 , 141 ( 42 ), 16595 - 16599 . doi: 10.1021/jacs.9b08876 http://dx.doi.org/10.1021/jacs.9b08876
Islam M. S. ; Kedziora G. ; Lee J. ; Stafford A. ; Varshney V. ; Nepal D. ; Baldwin L. A. ; Roy A. K. Efficiency and mechanism of catalytic siloxane exchange in vitrimer polymers: modeling and density functional theory investigations . J. Phys. Chem. A , 2024 , 128 ( 28 ), 5627 - 5636 . doi: 10.1021/acs.jpca.4c01394 http://dx.doi.org/10.1021/acs.jpca.4c01394
Tretbar C. ; Castro J. ; Yokoyama K. ; Guan Z. B. Fluoride-catalyzed siloxane exchange as a robust dynamic chemistry for high-performance vitrimers . Adv. Mater. , 2023 , 35 ( 28 ), 2303280 . doi: 10.1002/adma.202303280 http://dx.doi.org/10.1002/adma.202303280
Nishimura Y. ; Chung J. ; Muradyan H. ; Guan Z. B. Silyl ether as a robust and thermally stable dynamic covalent motif for malleable polymer design . J. Am. Chem. Soc. , 2017 , 139 ( 42 ), 14881 - 14884 . doi: 10.1021/jacs.7b08826 http://dx.doi.org/10.1021/jacs.7b08826
Purwanto N. S. ; Wang T. ; Liu X. Y. ; Broadbelt L. J. ; Debsharma T. ; Torkelson J. M. Covalent adaptable networks with associative siloxane exchange enabled by amide-based internal catalysis: designing for reprocessability and extrudability by increasing the cross-link density . Adv. Funct. Mater. , 2025 , 35 ( 43 ), 2507313 .
Liu W. X. ; Yang S. J. ; Huang L. ; Xu J. ; Zhao N. Dynamic covalent polymers enabled by reversible isocyanate chemistry . Chem. Commun. , 2022 , 58 ( 89 ), 12399 - 12417 . doi: 10.1039/d2cc04747k http://dx.doi.org/10.1039/d2cc04747k
Zheng N. ; Hou J. J. ; Xu Y. ; Fang Z. Z. ; Zou W. K. ; Zhao Q. ; Xie T. Catalyst-free thermoset polyurethane with permanent shape reconfigurability and highly tunable triple-shape memory performance . ACS Macro Lett. , 2017 , 6 ( 4 ), 326 - 330 . doi: 10.1021/acsmacrolett.7b00037 http://dx.doi.org/10.1021/acsmacrolett.7b00037
Maisonneuve L. ; Lamarzelle O. ; Rix E. ; Grau E. ; Cramail H. Isocyanate-free routes to polyurethanes and poly(hydroxy urethane)s . Chem. Rev. , 2015 , 115 ( 22 ), 12407 - 12439 . doi: 10.1021/acs.chemrev.5b00355 http://dx.doi.org/10.1021/acs.chemrev.5b00355
Bakkali-Hassani C. ; Berne D. ; Ladmiral V. ; Caillol S. Transcarbamoylation in polyurethanes: underestimated exchange reactions? Macromolecules , 2022 , 55 ( 18 ), 7974 - 7991 . doi: 10.1021/acs.macromol.2c01184 http://dx.doi.org/10.1021/acs.macromol.2c01184
Zhang L. Z. ; You Z. W. Dynamic oxime-urethane bonds, a versatile unit of high performance self-healing polymers for diverse applications . Chinese J. Polym. Sci. , 2021 , 39 ( 10 ), 1281 - 1291 . doi: 10.1007/s10118-021-2625-9 http://dx.doi.org/10.1007/s10118-021-2625-9
Liu W. X. ; Zhang C. ; Zhang H. ; Zhao N. ; Yu Z. X. ; Xu J. Oxime-based and catalyst-free dynamic covalent polyurethanes . J. Am. Chem. Soc. , 2017 , 139 ( 25 ), 8678 - 8684 . doi: 10.1021/jacs.7b03967 http://dx.doi.org/10.1021/jacs.7b03967
He C. F. ; Shi S. W. ; Wang D. ; Helms B. A. ; Russell T. P. Poly(oxime-ester) vitrimers with catalyst-free bond exchange . J. Am. Chem. Soc. , 2019 , 141 ( 35 ), 13753 - 13757 . doi: 10.1021/jacs.9b06668 http://dx.doi.org/10.1021/jacs.9b06668
Zhang L. Z. ; Liu Z. H. ; Wu X. L. ; Guan Q. B. ; Chen S. ; Sun L. J. ; Guo Y. F. ; Wang S. L. ; Song J. C. ; Jeffries E. M. ; He C. L. ; Qing F. L. ; Bao X. G. ; You Z. W. A highly efficient self-healing elastomer with unprecedented mechanical properties . Adv. Mater. , 2019 , 31 ( 23 ), 1901402 . doi: 10.1002/adma.201901402 http://dx.doi.org/10.1002/adma.201901402
Fu D. H. ; Pu W. L. ; Wang Z. H. ; Lu X. L. ; Sun S. J. ; Yu C. J. ; Xia H. S. A facile dynamic crosslinked healable poly(oxime-urethane) elastomer with high elastic recovery and recyclability . J. Mater. Chem. A , 2018 , 6 ( 37 ), 18154 - 18164 . doi: 10.1039/c8ta06059b http://dx.doi.org/10.1039/c8ta06059b
Liu Z. H. ; Zhang L. Z. ; Guan Q. B. ; Guo Y. F. ; Lou J. M. ; Lei D. ; Wang S. L. ; Chen S. ; Sun L. J. ; Xuan H. X. ; Jeffries E. M. ; He C. L. ; Qing F. L. ; You Z. W. Biomimetic materials with multiple protective functionalities . Adv. Funct. Mater. , 2019 , 29 ( 28 ), 1901058 . doi: 10.1002/adfm.201901058 http://dx.doi.org/10.1002/adfm.201901058
Lou J. M. ; Liu Z. H. ; Yang L. ; Guo Y. F. ; Lei D. ; You Z. W. A new strategy of discretionarily reconfigurable actuators based on self-healing elastomers for diverse soft robots . Adv. Funct. Mater. , 2021 , 31 ( 11 ), 2008328 . doi: 10.1002/adfm.202008328 http://dx.doi.org/10.1002/adfm.202008328
Shi J. X. ; Zheng T. Z. ; Zhang Y. ; Guo B. H. ; Xu J. Cross-linked polyurethane with dynamic phenol-carbamate bonds: properties affected by the chemical structure of isocyanate . Polym. Chem. , 2021 , 12 ( 16 ), 2421 - 2432 . doi: 10.1039/d1py00157d http://dx.doi.org/10.1039/d1py00157d
Jia Y. J. ; Guan Q. B. ; Zhang L. Z. ; Neisiany R. E. ; Yan N. N. ; Li Y. ; You Z. W. A fluorine-rich phenolic polyurethane elastomer with excellent self-healability and reprocessability and its applications for wearable electronics . Sci. China Mater. , 2022 , 65 ( 9 ), 2553 - 2564 . doi: 10.1007/s40843-022-1985-3 http://dx.doi.org/10.1007/s40843-022-1985-3
Qin J. J. ; Liu X. H. ; Chen B. F. ; Liu J. M. ; Wu M. Q. ; Tan L. Q. ; Yang C. L. ; Liang L. Y. Thermo-healing and recyclable epoxy thermosets based on dynamic phenol-carbamate bonds . React. Funct. Polym. , 2022 , 180 , 105411 . doi: 10.1016/j.reactfunctpolym.2022.105411 http://dx.doi.org/10.1016/j.reactfunctpolym.2022.105411
Liu Y. ; Zhang Z. T. ; Fan W. W. ; Yang K. F. ; Li Z. J. Preparation of renewable Gallic acid-based self-healing waterborne polyurethane with dynamic phenol-carbamate network: toward superior mechanical properties and shape memory function . J. Mater. Sci. , 2022 , 57 ( 9 ), 5679 - 5696 . doi: 10.1007/s10853-022-07000-6 http://dx.doi.org/10.1007/s10853-022-07000-6
Liu Y. ; Zhang Z. T. ; Yang X. H. ; Li F. F. ; Liang Z. ; Yong Y. ; Dai S. B. ; Li Z. J. A stretchable, environmentally stable, and mechanically robust nanocomposite polyurethane organohydrogel with anti-freezing, anti-dehydration, and electromagnetic shielding properties for strain sensors and magnetic actuators . J. Mater. Chem. A , 2023 , 11 ( 12 ), 6603 - 6614 . doi: 10.1039/d2ta09205k http://dx.doi.org/10.1039/d2ta09205k
Qin J. J. ; Liang L. Y. ; Liu X. H. ; Liu J. M. ; Wang D. S. ; Shi M. ; Yang C. L. Dynamic reversible mechanism of phenol-carbamate bonds and their potential for the development of thermo-healing, recyclable and high-performance epoxy thermosets . React. Funct. Polym. , 2024 , 195 , 105805 . doi: 10.1016/j.reactfunctpolym.2023.105805 http://dx.doi.org/10.1016/j.reactfunctpolym.2023.105805
Wicks D. A. ; Wicks Z. J. Blocked isocyanates III part B: uses and applications of blocked isocyanates . Prog. Org. Coat. , 2001 , 41 : 1 - 83 . doi: 10.1016/s0300-9440(00)00164-8 http://dx.doi.org/10.1016/s0300-9440(00)00164-8
Bautista-Anguís D. ; Reiner L. ; Röper F. ; Maar S. ; Wolfahrt M. ; Wolfberger A. ; Schlögl S. Synthesis and characterization of rebondable polyurethane adhesives relying on thermo-activated transcarbamoylation . Polymers , 2024 , 16 ( 19 ), 2799 . doi: 10.3390/polym16192799 http://dx.doi.org/10.3390/polym16192799
Jiang C. B. ; Wang C. ; Zhang S. L. ; Bi H. Z. ; Wu Y. D. ; Wang J. F. ; Zhu Y. L. ; Qin J. B. ; Zhao Y. S. ; Shi X. T. ; Zhang G. C. Reprocessable and self-healable boronic-ester based poly(styrene-b-isoprene-b-styrene) vitrimeric elastomer with improved thermo-mechanical property and adhesive performance . React. Funct. Polym. , 2024 , 198 , 105893 . doi: 10.1016/j.reactfunctpolym.2024.105893 http://dx.doi.org/10.1016/j.reactfunctpolym.2024.105893
Wu Q. ; Liu H. ; Xiong H. ; Hou Y. J. ; Peng Y. ; Zhao L. J. ; Wu J. R. Thermomechanically stable supramolecular elastomers inspired by heat shock proteins . Mater. Horiz. , 2024 , 11 ( 4 ), 1014 - 1022 . doi: 10.1039/d3mh01737k http://dx.doi.org/10.1039/d3mh01737k
Demchuk Z. ; Zhao X. ; Shen Z. Q. ; Zhao S. ; Sokolov A. P. ; Cao P. F. Tuning the mechanical and dynamic properties of elastic vitrimers by tailoring the substituents of boronic ester . ACS Mater. Au , 2024 , 4 ( 2 ), 185 - 194 . doi: 10.1021/acsmaterialsau.3c00074 http://dx.doi.org/10.1021/acsmaterialsau.3c00074
Bapat A. P. ; Roy D. ; Ray J. G. ; Savin D. A. ; Sumerlin B. S. Dynamic-covalent macromolecular stars with boronic ester linkages . J. Am. Chem. Soc. , 2011 , 133 ( 49 ), 19832 - 19838 . doi: 10.1021/ja207005z http://dx.doi.org/10.1021/ja207005z
郭书畅 , 薄采颖 , 胡立红 , 张猛 , 贾普友 , 周永红 . 基于动态硼酸酯键聚合物的构筑和应用研究进展 . 生物质化学工程 , 2023 , 57 ( 1 ), 49 - 61 .
Mah J. J. Q. ; Feng H. Z. ; Surat’man N. E. B. ; Li B. F. ; Wang S. ; Li Z. B. Water-resistant boronic ester vitrimer with hydrophobic side chain protection . Chem. Commun. , 2024 , 60 ( 96 ), 14220 - 14223 . doi: 10.1039/d4cc04981k http://dx.doi.org/10.1039/d4cc04981k
Cash J. J. ; Kubo T. ; Bapat A. P. ; Sumerlin B. S. Room-temperature self-healing polymers based on dynamic-covalent boronic esters . Macromolecules , 2015 , 48 ( 7 ), 2098 - 2106 . doi: 10.1021/acs.macromol.5b00210 http://dx.doi.org/10.1021/acs.macromol.5b00210
Kang H. F. ; Wei W. Y. ; Sun L. S. ; Yu R. ; Yang E. K. ; Wu X. P. ; Dai H. L. Modular design and bonding mechanism of internal boron-nitrogen coordinated boronic ester hydrogels with alkaline pH responsiveness and tunable gelation pH . Chem. Mater. , 2023 , 35 ( 6 ), 2408 - 2420 . doi: 10.1021/acs.chemmater.2c03550 http://dx.doi.org/10.1021/acs.chemmater.2c03550
Zhu Y. ; Gao J. L. ; Zhang L. J. ; Peng Y. ; Wang H. ; Ling F. W. ; Huang G. S. ; Wu J. R. An interfacial dynamic crosslinking approach toward catalyst-free and mechanically robust elastomeric vitrimer with a segregated structure . Chinese J. Polym. Sci. , 2021 , 39 ( 2 ), 201 - 210 . doi: 10.1007/s10118-020-2479-6 http://dx.doi.org/10.1007/s10118-020-2479-6
李花婷 , 赵天琪 , 陈名行 . 绿色轮胎与橡胶新材料 . 科学通报 , 2016 , 61 ( 31 ), 3297 - 3303 .
李雪雨 , 宋万诚 , 王经逸 , 贾红兵 . 动态硫化热塑性弹性体研究进展 . 合成橡胶工业 , 2021 , 44 ( 5 ), 407 - 411 .
刘鹤 , 崔燕 , 王乾达 . 我国废旧轮胎回收行业飞速发展的17年及前景展望 . 中国资源综合利用 , 2023 , 41 ( 10 ), 64 - 68 .
刘畅 , 菅国栋 , 吕鑫海 , 董建蓉 , 陈红祥 , 周瑜 . 共价可适聚合物网络中动态共价键的可逆性研究进展 . 热固性树脂 , 2022 , 37 ( 4 ), 65 - 69 .
Wen J. ; Wu H. T. ; Kong L. M. ; Huang Y. ; Bi X. Y. ; Wu C. W. ; Wang C. ; Wu J. R. ; Xie Z. T. A strong, tough, and recyclable styrene-butadiene rubber achieved through multiple network synergies of N -acetyl-l-cysteine . Ind. Eng. Chem. Res. , 2025 , 64 ( 7 ), 3810 - 3819 . doi: 10.1021/acs.iecr.4c04135 http://dx.doi.org/10.1021/acs.iecr.4c04135
谭捷 , 刘博超 , 吴成美 , 吴明杨 , 黄文涛 . 国内聚丁二烯橡胶生产技术进展及市场分析 . 弹性体 , 2018 , 28 ( 1 ), 80 - 86 .
朱寒 , 张树 , 吴一弦 . 绿色轮胎用高性能丁二烯基橡胶合成技术进展 . 科学通报 , 2016 , 61 ( 31 ), 3326 - 3337 . doi: 10.1360/N972015-01369 http://dx.doi.org/10.1360/N972015-01369
崔小明 . 我国聚异戊二烯橡胶生产技术进展 . 橡胶科技 , 2019 , 17 ( 11 ), 605 - 611 .
Alonso Pastor L. E. ; Nuñez Carrero K. C. ; González M. ; Araujo-Morera J. ; Peters G. ; Pastor J. M. ; Hernández Santana M. Life cycle assessment applied to a self-healing elastomer filled with ground tire rubber . J. Clean. Prod. , 2023 , 419 , 138207 . doi: 10.1016/j.jclepro.2023.138207 http://dx.doi.org/10.1016/j.jclepro.2023.138207
刘超豪 . 环氧化溶聚丁苯橡胶/纳米填料复合材料的制备及性能研究 . 北京化工大学博士学位论文 , 2022 .
王郡余 , 钟铧钧 , 翟继芹 , 雷军玉 , 尹金云 , 蒋慧丹 , 余雄 , 王进 . 合成异戊二烯橡胶改性和网络结构设计 . 特种橡胶制品 , 2024 , 45 ( 6 ), 74 - 81 .
赵兴波 , 张秋禹 , 尹常杰 , 尹德忠 , 郑聚成 . 丁苯橡胶接枝改性的研究进展及应用 . 现代化工 , 2011 , 31 ( 1 ), 24 - 27 .
Serrano E. ; Tercjak A. ; Kortaberria G. ; Pomposo J. A. ; Mecerreyes D. ; Zafeiropoulos N. E. ; Stamm M. ; Mondragon I. Nanostructured thermosetting systems by modification with epoxidized Styrene-Butadiene star block copolymers. effect of epoxidation degree . Macromolecules , 2006 , 39 ( 6 ), 2254 - 2261 . doi: 10.1021/ma0515477 http://dx.doi.org/10.1021/ma0515477
何丽霞 . 马来酸酐接枝改性稀土异戊橡胶的制备及性能 . 高分子材料科学与工程 , 2019 , 35 ( 2 ), 165 - 170 .
李超凡 , 杨凤 , 李龙 , 方庆红 . 环氧度对异戊橡胶/环氧化杜仲胶并用胶性能的影响 . 高分子材料科学与工程 , 2022 , 38 ( 5 ), 50 - 57 .
Chen Y. ; Tang Z. H. ; Liu Y. J. ; Wu S. W. ; Guo B. C. Mechanically robust, self-healable, and reprocessable elastomers enabled by dynamic dual cross-links . Macromolecules , 2019 , 52 ( 10 ), 3805 - 3812 . doi: 10.1021/acs.macromol.9b00419 http://dx.doi.org/10.1021/acs.macromol.9b00419
Bernal-Ortega P. ; Anyszka R. ; di Ronza R. ; Aurisicchio C. ; Blume A. Dynamic imine bonds in tire tread compounds: a pathway to a circular economy and reduced waste . ACS Sustainable Chem. Eng. , 2025 , 13 ( 8 ), 3209 - 3221 . doi: 10.1021/acssuschemeng.4c09344 http://dx.doi.org/10.1021/acssuschemeng.4c09344
张文琪 , 范雯雯 , 张若涵 , 彭倩倩 , 李祥亮 , 雷岚 , 李辉 . 高强度二硫键/氢键双动态交联丁苯橡胶的设计及可回收、形状记忆性能研究 . 高分子学报 , 2025 , 56 ( 5 ), 845 - 860 .
Wu C. W. ; Xie Z. T. ; Wen J. ; Bi X. Y. ; Lv P. F. ; Dou Y. Y. ; Wang C. ; Wu J. R. Mechanically robust and recyclable styrene-butadiene rubber realized by ion cluster dynamic cross-link . Ind. Eng. Chem. Res. , 2025 , 64 ( 11 ), 6025 - 6033 . doi: 10.1021/acs.iecr.5c00310 http://dx.doi.org/10.1021/acs.iecr.5c00310
Ezzeddine D. ; Barzycki D. C. ; Ricarte R. G. Impact of cross-link density on polybutadiene permanent and vitrimer networks . ACS Macro Lett. , 2025 , 14 ( 7 ), 1011 - 1018 . doi: 10.1021/acsmacrolett.5c00267 http://dx.doi.org/10.1021/acsmacrolett.5c00267
Yang S. G. ; Wang Y. ; Wang F. ; Zhang K. Y. ; Lv X. X. ; Teng H. ; Zheng R. ; Luo F. L. ; Xing Q. Recyclable high-strength polybutadiene-based rubber with self-healing and shape memory properties via dynamic boronic ester and Diels-Alder chemistry . Express Polym. Lett. , 2025 , 19 ( 1 ), 94 - 106 . doi: 10.3144/expresspolymlett.2025.7 http://dx.doi.org/10.3144/expresspolymlett.2025.7
Bhaumik S. ; Ntetsikas K. ; Patelis N. ; Peponaki K. ; Vlassopoulos D. ; Hadjichristidis N. Model polyisoprene vitrimers . Macromolecules , 2024 , 57 ( 4 ), 1751 - 1760 . doi: 10.1021/acs.macromol.3c01983 http://dx.doi.org/10.1021/acs.macromol.3c01983
Xie M. J. ; He Y. ; Cao J. ; Zhang R. ; Wang C. C. ; Tang M. Z. ; Xu Y. X. Fabrication of recyclable polyisoprene elastomers with tuneable mechanical properties by incorporating dynamic bonds and separated polystyrene phase . Ind. Eng. Chem. Res. , 2024 , 63 ( 9 ), 4176 - 4187 . doi: 10.1021/acs.iecr.3c04238 http://dx.doi.org/10.1021/acs.iecr.3c04238
Li S. Q. ; Tan P. ; Cao J. ; Yao Y. F. ; Ren X. C. ; Xu Y. X. High performance, self-healing and recyclable polyisoprene rubbers enabled by modulating sulfide bond structures . Polymer , 2025 , 332 , 128570 . doi: 10.1016/j.polymer.2025.128570 http://dx.doi.org/10.1016/j.polymer.2025.128570
Yu S. J. ; Li F. Z. ; Fang S. F. ; Yin X. C. ; Wu S. W. ; Tang Z. H. ; Zhang L. Q. ; Guo B. C. Extrudable vitrimeric rubbers enabled via heterogeneous network design . Macromolecules , 2022 , 55 ( 8 ), 3236 - 3248 . doi: 10.1021/acs.macromol.2c00016 http://dx.doi.org/10.1021/acs.macromol.2c00016
Yang Y. X. ; Huang L. Y. ; Wu R. Y. ; Niu Z. ; Fan W. F. ; Dai Q. Q. ; Cui L. ; He J. Y. ; Bai C. X. Self-strengthening, self-welding, shape memory, and recyclable polybutadiene-based material driven by dual-dynamic units . ACS Appl. Mater. Interfaces , 2022 , 14 ( 2 ), 3344 - 3355 . doi: 10.1021/acsami.1c23007 http://dx.doi.org/10.1021/acsami.1c23007
Zhao X. Y. ; Xiang P. ; Tian M. ; Fong H. ; Jin R. G. ; Zhang L. Q. Nitrile butadiene rubber/hindered phenol nanocomposites with improved strength and high damping performance . Polymer , 2007 , 48 ( 20 ), 6056 - 6063 . doi: 10.1016/j.polymer.2007.08.011 http://dx.doi.org/10.1016/j.polymer.2007.08.011
廖俊杰 , 陈福林 , 岑兰 , 陈广汉 . 丁腈橡胶的应用研究进展 . 特种橡胶制品 , 2007 , 28 ( 5 ), 41 - 46 .
Zheng S. Y. ; Liu G. F. Polymeric emissive materials based on dynamic covalent bonds . Molecules , 2022 , 27 ( 19 ), 6635 . doi: 10.3390/molecules27196635 http://dx.doi.org/10.3390/molecules27196635
曾凤娟 , 刘作华 , 左赵宏 , 杜军 , 陶长元 . 氯丁橡胶的改性研究进展 . 化工进展 , 2013 , 32 ( 6 ), 1347 - 1351 .
Schüssele A. C. ; Nübling F. ; Thomann Y. ; Carstensen O. ; Bauer G. ; Speck T. ; Mülhaupt R. Self-healing rubbers based on NBR blends with hyperbranched polyethylenimines . Macromol. Mater. Eng. , 2012 , 297 ( 5 ), 411 - 419 . doi: 10.1002/mame.201100162 http://dx.doi.org/10.1002/mame.201100162
潘昌欧 . 烯烃复分解反应制备功能化丁腈橡胶及其复合材料 . 兰州大学博士学位论文 , 2024 .
Araujo-Morera J. ; Utrera-Barrios S. ; Doral Olivares R. ; de los Reyes Verdugo Manzanares , M .; López-Manchado, M. Á.; Verdejo, R.; Hernández Santana, M. Solving the dichotomy between self-healing and mechanical properties in rubber composites by combining reinforcing and sustainable fillers . Macromol. Mater. Eng. , 2022 , 307 ( 10 ), 2200261 . doi: 10.1002/mame.202200261 http://dx.doi.org/10.1002/mame.202200261
Wang X. P. ; Xue K. X. ; Wu H. J. Reprocessable nitrile rubber enabled by thermoreversible alkoxyamine cross-linked networks . Ind. Eng. Chem. Res. , 2024 , 63 ( 22 ), 9779 - 9789 . doi: 10.1021/acs.iecr.4c00493 http://dx.doi.org/10.1021/acs.iecr.4c00493
Jiang J. L. ; Zhai J. X. ; Chen Y. Q. ; Zhao D. Q. ; Feng Y. K. A novel reprocessable chloroprene rubber based on dynamic disulfide metathesis . Int. J. Smart Nano Mater. , 2024 , 15 ( 1 ), 42 - 61 . doi: 10.1080/19475411.2023.2258830 http://dx.doi.org/10.1080/19475411.2023.2258830
Zhang G. G. ; Zhou X. X. ; Liang K. ; Guo B. C. ; Li X. L. ; Wang Z. ; Zhang L. Q. Mechanically robust and recyclable EPDM rubber composites by a green cross-linking strategy . ACS Sustainable Chem. Eng. , 2019 , 7 ( 13 ), 11712 - 11720 . doi: 10.1021/acssuschemeng.9b01875 http://dx.doi.org/10.1021/acssuschemeng.9b01875
Tian C. R. ; Zhang G. G. ; Liu J. ; Zhang L. Q. Catalyst-free and green crosslinking of epoxy-functionalized EPDM with dicarboxylic acids: insights into curing mechanism, recyclability and thermal stability . Macromol. Rapid Commun. , 2025 , 46 ( 20 ), e 00502 . doi: 10.1002/marc.202500502 http://dx.doi.org/10.1002/marc.202500502
Yu S. J. ; Wu S. W. ; Fang S. F. ; Tang Z. H. ; Zhang L. Q. ; Guo B. C. Skeletal network enabling new-generation thermoplastic vulcanizates . Adv. Mater. , 2023 , 35 ( 24 ), 2300856 . doi: 10.1002/adma.202300856 http://dx.doi.org/10.1002/adma.202300856
Aziz B. ; Maji P. ; Parathodika A. R. ; Naskar K. Exploring green route of cross-linking for bio-based ethylene propylene diene rubber: a step toward circular economy . ACS Sustainable Chem. Eng. , 2024 , 12 ( 31 ), 11578 - 11589 . doi: 10.1021/acssuschemeng.4c02047 http://dx.doi.org/10.1021/acssuschemeng.4c02047
Wang X. L. ; Yang K. ; Zhang P. Evaluation of the aging coefficient and the aging lifetime of carbon black-filled styrene-isoprene-butadiene rubber after thermal-oxidative aging . Compos. Sci. Technol. , 2022 , 220 , 109258 . doi: 10.1016/j.compscitech.2021.109258 http://dx.doi.org/10.1016/j.compscitech.2021.109258
何宗科 . 动态共价键交联乙丙橡胶的设计合成及性能 . 大连理工大学博士学位论文 , 2021 .
赵小平 , 史铁钧 , 王申生 . 丁基橡胶与卤化丁基橡胶的结构、性能及发展状况 . 安徽化工 , 2008 , 34 ( 4 ), 8 - 13 .
梁滔 , 胡杰 , 李树毅 , 魏绪玲 . 丁基橡胶的发展现状及发展建议 . 高分子通报 , 2014 ( 2 ), 41 - 45 .
张林军 . 高性能自修复溴化丁基橡胶离聚物的制备和研究 . 四川大学博士学位论文 , 2021 .
Das A. ; Sallat A. ; Böhme F. ; Suckow M. ; Basu D. ; Wießner S. ; Stöckelhuber K. W. ; Voit B. ; Heinrich G. Ionic modification turns commercial rubber into a self-healing material . ACS Appl. Mater. Interfaces , 2015 , 7 ( 37 ), 20623 - 20630 . doi: 10.1021/acsami.5b05041 http://dx.doi.org/10.1021/acsami.5b05041
Lin Z. Q. ; Jin H. ; Deng H. Y. ; Zu Z. J. ; Huang H. Q. ; Zhang L. Y. ; Xiang H. P. Robust, self-healable, recyclable and thermally conductive silicone composite as intelligent thermal interface material . Compos. Struct. , 2024 , 332 , 117932 . doi: 10.1016/j.compstruct.2024.117932 http://dx.doi.org/10.1016/j.compstruct.2024.117932
岳尚志 , 于中振 , 杨丹 . 自修复介电弹性体致动器的研究进展 . 高分子学报 , 2025 , 56 ( 6 ), 881 - 902 .
董甜甜 , 张建军 , 柴敬超 , 贾庆明 , 崔光磊 . 聚碳酸酯基固态聚合物电解质的研究进展 . 高分子学报 , 2017 , 48 ( 6 ), 906 - 921 .
Gu J. W. ; Zhang Q. Y. ; Dang J. ; Xie C. Thermal conductivity epoxy resin composites filled with boron nitride . Polym. Adv. Technol. , 2012 , 23 ( 6 ), 1025 - 1028 . doi: 10.1002/pat.2063 http://dx.doi.org/10.1002/pat.2063
Chen J. ; Huang X. Y. ; Sun B. ; Jiang P. K. Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability . ACS Nano , 2019 , 13 ( 1 ), 337 - 345 . doi: 10.1021/acsnano.8b06290 http://dx.doi.org/10.1021/acsnano.8b06290
Song F. ; Li Z. S. ; Jia P. Y. ; Zhang M. ; Bo C. Y. ; Feng G. D. ; Hu L. H. ; Zhou Y. H. Tunable “soft and stiff”, self-healing, recyclable, thermadapt shape memory biomass polymers based on multiple hydrogen bonds and dynamic imine bonds . J. Mater. Chem. A , 2019 , 7 ( 21 ), 13400 - 13410 . doi: 10.1039/c9ta03872h http://dx.doi.org/10.1039/c9ta03872h
Li J. ; Viveros J. A. ; Wrue M. H. ; Anthamatten M. Shape-memory effects in polymer networks containing reversibly associating side-groups . Adv. Mater. , 2007 , 19 ( 19 ), 2851 - 2855 . doi: 10.1002/adma.200602260 http://dx.doi.org/10.1002/adma.200602260
Wu J. N. ; Chen L. ; Fu T. ; Zhao H. B. ; Guo D. M. ; Wang X. L. ; Wang Y. Z. New application for aromatic Schiff base: high efficient flame-retardant and anti-dripping action for polyesters . Chem. Eng. J. , 2018 , 336 , 622 - 632 . doi: 10.1016/j.cej.2017.12.047 http://dx.doi.org/10.1016/j.cej.2017.12.047
Yang J. ; Tian M. ; Jia Q. X. ; Shi J. H. ; Zhang L. Q. ; Lim S. H. ; Yu Z. Z. ; Mai Y. W. Improved mechanical and functional properties of elastomer/graphite nanocomposites prepared by latex compounding . Acta Mater. , 2007 , 55 ( 18 ), 6372 - 6382 . doi: 10.1016/j.actamat.2007.07.043 http://dx.doi.org/10.1016/j.actamat.2007.07.043
Lei Z. P. ; Chen H. X. ; Huang S. F. ; Wayment L. J. ; Xu Q. C. ; Zhang W. New advances in covalent network polymers via dynamic covalent chemistry . Chem. Rev. , 2024 , 124 ( 12 ), 7829 - 7906 . doi: 10.1021/acs.chemrev.3c00926 http://dx.doi.org/10.1021/acs.chemrev.3c00926
Ricarte R. G. ; Shanbhag S. A tutorial review of linear rheology for polymer chemists: basics and best practices for covalent adaptable networks . Polym. Chem. , 2024 , 15 ( 9 ), 815 - 846 . doi: 10.1039/d3py01367g http://dx.doi.org/10.1039/d3py01367g
李莉 , 周彦豪 , 胡丽萍 , 陈福林 , 曾繁森 . 聚合物反应性加工的一些进展 . 特种橡胶制品 , 1998 , 19 ( 3 ), 20 - 27 .
Ragaert K. ; Delva L. ; Geem K. V. Mechanical and chemical recycling of solid plastic waste . Waste Manag. , 2017 , 69 , 24 - 58 . doi: 10.1016/j.wasman.2017.07.044 http://dx.doi.org/10.1016/j.wasman.2017.07.044
Deng J. X. ; Bai R. X. ; Zhao J. ; Liu G. Q. ; Zhang Z. M. ; You W. ; Yu W. ; Yan X. Z. Insights into the correlation of cross-linking modes with mechanical properties for dynamic polymeric networks . Angew. Chem. Int. Ed. , 2023 , 62 ( 37 ), e 202309058 . doi: 10.1002/anie.202309058 http://dx.doi.org/10.1002/anie.202309058
Zhang Z. ; Luo J. C. ; Zhao S. ; Ge S. R. ; Carrillo J. Y. ; Keum J. K. ; Do C. ; Cheng S. W. ; Wang Y. Y. ; Sokolov A. P. ; Cao P. F. Surpassing the stiffness-extensibility trade-off of elastomers via mastering the hydrogen-bonding clusters . Matter , 2022 , 5 ( 1 ), 237 - 252 . doi: 10.1016/j.matt.2021.11.007 http://dx.doi.org/10.1016/j.matt.2021.11.007
Yao Y. ; Xu Z. Y. ; Liu B. ; Xiao M. ; Yang J. H. ; Liu W. G. Multiple H-bonding chain extender-based ultrastiff thermoplastic polyurethanes with autonomous self-healability, solvent-free adhesiveness, and AIE fluorescence . Adv. Funct. Mater. , 2021 , 31 ( 4 ), 2006944 . doi: 10.1002/adfm.202006944 http://dx.doi.org/10.1002/adfm.202006944
Engels H. W. ; Pirkl H. G. ; Albers R. ; Albach R. W. ; Krause J. ; Hoffmann A. ; Casselmann H. ; Dormish J. Polyurethanes: versatile materials and sustainable problem solvers for today’s challenges . Angew. Chem. Int. Ed. , 2013 , 52 ( 36 ), 9422 - 9441 . doi: 10.1002/anie.201302766 http://dx.doi.org/10.1002/anie.201302766
Liu J. ; Wang S. ; Tang Z. H. ; Huang J. ; Guo B. C. ; Huang G. S. Bioinspired engineering of two different types of sacrificial bonds into chemically cross-linked cis-1,4-polyisoprene toward a high-performance elastomer . Macromolecules , 2016 , 49 ( 22 ), 8593 - 8604 . doi: 10.1021/acs.macromol.6b01576 http://dx.doi.org/10.1021/acs.macromol.6b01576
Liu W. F. ; Fang C. ; Wang S. Y. ; Huang J. H. ; Qiu X. Q. High-performance lignin-containing polyurethane elastomers with dynamic covalent polymer networks . Macromolecules , 2019 , 52 ( 17 ), 6474 - 6484 . doi: 10.1021/acs.macromol.9b01413 http://dx.doi.org/10.1021/acs.macromol.9b01413
Masten-Davies J. ; Ngoc Tran L. Q. ; Zhang J. ; Varley R. J. Investigating the welding and healing of epoxy anhydride vitrimer carbon fibre composites . Compos. Part A Appl. Sci. Manuf. , 2025 , 196 , 108956 . doi: 10.1016/j.compositesa.2025.108956 http://dx.doi.org/10.1016/j.compositesa.2025.108956
Shi Q. ; Yu K. ; Dunn M. L. ; Wang T. J. ; Qi H. J. Solvent assisted pressure-free surface welding and reprocessing of malleable epoxy polymers . Macromolecules , 2016 , 49 ( 15 ), 5527 - 5537 . doi: 10.1021/acs.macromol.6b00858 http://dx.doi.org/10.1021/acs.macromol.6b00858
Bai J. ; Guo B. C. ; Tian M. ; Chen F. ; Zhang L. Q. Dynamic crosslinked elastomers and rubbers . Prog. Mater. Sci. , 2026 , 155 , 101536 . doi: 10.1016/j.pmatsci.2025.101536 http://dx.doi.org/10.1016/j.pmatsci.2025.101536
Liu C. L. ; Fang W. H. ; Cheng Q. Q. ; Qiu B. W. ; Shangguan Y. G. ; Shi J. G. Revolutionizing elastomer technology: advances in reversible crosslinking, reprocessing, and self-healing applications . Polym. Rev. , 2025 , 65 ( 2 ), 483 - 526 . doi: 10.1080/15583724.2024.2405904 http://dx.doi.org/10.1080/15583724.2024.2405904
Taheri S. ; Bao G. Y. ; He Z. X. ; Mohammadi S. ; Ravanbakhsh H. ; Lessard L. ; Li J. Y. ; Mongeau L. Injectable, pore-forming, perfusable double-network hydrogels resilient to extreme biomechanical stimulations . Adv. Sci. , 2022 , 9 ( 2 ), 2102627 . doi: 10.1002/advs.202102627 http://dx.doi.org/10.1002/advs.202102627
Cao Y. ; Zhu M. ; Rong M. Z. ; Zhang M. Q. Injection moldable, self-healable, and recyclable rubber-bonded NdFeB magnets with the magnetic particulates content up to 90 wt% . Adv. Compos. Hybrid Mater. , 2023 , 6 ( 1 ), 38 . doi: 10.1007/s42114-023-00623-6 http://dx.doi.org/10.1007/s42114-023-00623-6
Jia Y. C. ; Xie H. D. ; Qian J. J. ; Zhang Y. S. ; Zheng H. J. ; Wei F. C. ; Li Y. L. ; Zhao Z. W. Recent progress on the 3D printing of dynamically cross-linked polymers . Adv. Funct. Mater. , 2024 , 34 ( 2 ), 2307279 . doi: 10.1002/adfm.202307279 http://dx.doi.org/10.1002/adfm.202307279
Stansbury J. W. ; Idacavage M. J. 3D printing with polymers: challenges among expanding options and opportunities . Dent. Mater. , 2016 , 32 ( 1 ), 54 - 64 . doi: 10.1016/j.dental.2015.09.018 http://dx.doi.org/10.1016/j.dental.2015.09.018
Ning F. D. ; Cong W. L. ; Hu Y. B. ; Wang H. Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: effects of process parameters on tensile properties . J. Compos. Mater. , 2017 , 51 ( 4 ), 451 - 462 . doi: 10.1177/0021998316646169 http://dx.doi.org/10.1177/0021998316646169
Qiu J. F. ; Ma S. Q. ; Wang S. ; Tang Z. B. ; Li Q. ; Tian A. P. ; Xu X. W. ; Wang B. B. ; Lu N. ; Zhu J. Upcycling of polyethylene terephthalate to continuously reprocessable vitrimers through reactive extrusion . Macromolecules , 2021 , 54 ( 2 ), 703 - 712 . doi: 10.1021/acs.macromol.0c02359 http://dx.doi.org/10.1021/acs.macromol.0c02359
Maaz M. ; Riba-Bremerch A. ; Guibert C. ; Van Zee N. J. ; Nicolaÿ R. Synthesis of polyethylene vitrimers in a single step: consequences of graft structure, reactive extrusion conditions, and processing aids . Macromolecules , 2021 , 54 ( 5 ), 2213 - 2225 . doi: 10.1021/acs.macromol.0c02649 http://dx.doi.org/10.1021/acs.macromol.0c02649
Röttger M. ; Domenech T. ; van der Weegen R. ; Breuillac A. ; Nicolaÿ R. ; Leibler L. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis . Science , 2017 , 356 ( 6333 ), 62 - 65 . doi: 10.1126/science.aah5281 http://dx.doi.org/10.1126/science.aah5281
Li Z. ; Cao Z. W. ; Zhao Q. L. ; Mei S. X. ; Zhang Y. C. ; Zhao W. ; Li X. ; Zhang X. M. ; Cui Z. ; Fu P. ; Pang X. C. ; Liu M. Y. Self-Healing and shape memory reconfigurable Poly(urethane-urea-amide) elastomers containing multiple dynamic bonds for improving performance of 4D printout . Chem. Eng. J. , 2024 , 485 , 149933 . doi: 10.1016/j.cej.2024.149933 http://dx.doi.org/10.1016/j.cej.2024.149933
Yan T. Z. ; Li X. L. ; Xu H. H. ; Li Y. J. Vitrimer-like transparent blend films based on reactive blending of PC and PMMA with catalysis of Mg(TFSI) 2 . Compos. Commun. , 2022 , 36 , 101394 . doi: 10.1016/j.coco.2022.101394 http://dx.doi.org/10.1016/j.coco.2022.101394
Taplan C. ; Guerre M. ; Winne J. M. ; Du PrezF. E. Fast processing of highly crosslinked, low-viscosity vitrimers . Mater. Horiz. , 2020 , 7 ( 1 ), 104 - 110 . doi: 10.1039/c9mh01062a http://dx.doi.org/10.1039/c9mh01062a
Sheppard D. T. ; Jin K. L. ; Hamachi L. S. ; Dean W. ; Fortman D. J. ; Ellison C. J. ; Dichtel W. R. Reprocessing postconsumer polyurethane foam using carbamate exchange catalysis and twin-screw extrusion . ACS Cent. Sci. , 2020 , 6 ( 6 ), 921 - 927 . doi: 10.1021/acscentsci.0c00083 http://dx.doi.org/10.1021/acscentsci.0c00083
Formon G. J. M. ; Storch S. ; Delplanque A. Y. G. ; Bresson B. ; Van Zee N. J. ; Nicolaÿ R. Overcoming the tradeoff between processability and mechanical performance of elastomeric vitrimers . Adv. Funct. Mater. , 2023 , 33 ( 52 ), 2306065 . doi: 10.1002/adfm.202306065 http://dx.doi.org/10.1002/adfm.202306065
Joosten L. M. A. ; Cassagnau P. ; Drockenmuller E. ; Montarnal D. Synthesis, recycling and high-throughput reprocessing of phase-separated vitrimer-thermoplastic blends . Adv. Funct. Mater. , 2024 , 34 ( 1 ), 2306882 . doi: 10.1002/adfm.202306882 http://dx.doi.org/10.1002/adfm.202306882
Jia Y. C. ; Li H. Y. ; Liu H. ; Li C. Y. ; Li Y. L. ; Wei F. C. Extrudable thermosets based on dynamic covalent polymers . Chem. , 2025 , 31 ( 31 ), e 202501165 . doi: 10.1002/chem.202501165 http://dx.doi.org/10.1002/chem.202501165
Maes S. ; Badi N. ; Winne J. M. ; Du PrezF. E. Taking dynamic covalent chemistry out of the lab and into reprocessable industrial thermosets . Nat. Rev. Chem. , 2025 , 9 ( 3 ), 144 - 158 . doi: 10.1038/s41570-025-00686-7 http://dx.doi.org/10.1038/s41570-025-00686-7
Soto-Oviedo M. A. ; De Paoli M. A. Dynamic vulcanization of thermoplastic elastomers based on poly(epichlorohydrin- co -ethylene oxide) and polypropylene . Polym. Bull. , 2006 , 56 ( 1 ), 75 - 85 . doi: 10.1007/s00289-005-0459-1 http://dx.doi.org/10.1007/s00289-005-0459-1
Ning N. Y. ; Li S. Q. ; Wu H. G. ; Tian H. C. ; Yao P. J. ; Hu G. H. ; Tian M. ; Zhang L. Q. Preparation, microstructure, and microstructure-properties relationship of thermoplastic vulcanizates (TPVs): a review . Prog. Polym. Sci. , 2018 , 79 , 61 - 97 . doi: 10.1016/j.progpolymsci.2017.11.003 http://dx.doi.org/10.1016/j.progpolymsci.2017.11.003
Lv C. ; Wang J. K. ; Li Z. X. ; Zhao K. F. ; Zheng J. P. Degradable, reprocessable, self-healing PDMS/CNTs nanocomposite elastomers with high stretchability and toughness based on novel dual-dynamic covalent sacrificial system . Compos. Part B Eng. , 2019 , 177 , 107270 . doi: 10.1016/j.compositesb.2019.107270 http://dx.doi.org/10.1016/j.compositesb.2019.107270
Zheng J. ; Png Z. M. ; Ng S. H. ; Tham G. X. ; Ye E. Y. ; Goh S. S. ; Loh X. J. ; Li Z. B. Vitrimers: current research trends and their emerging applications . Mater. Today , 2021 , 51 , 586 - 625 . doi: 10.1016/j.mattod.2021.07.003 http://dx.doi.org/10.1016/j.mattod.2021.07.003
Hu S. M. ; Chen X. ; Torkelson J. M. Biobased reprocessable polyhydroxyurethane networks: full recovery of crosslink density with three concurrent dynamic chemistries . ACS Sustainable Chem. Eng. , 2019 , 7 ( 11 ), 10025 - 10034 . doi: 10.1021/acssuschemeng.9b01239 http://dx.doi.org/10.1021/acssuschemeng.9b01239
Susa A. ; Vogelzang W. ; Teunissen W. ; Molenveld K. ; Maaskant E. ; Post W. A direct comparison of the thermal reprocessing potential of associative and dissociative reversible bonds in thermosets . RSC Appl. Polym. , 2024 , 2 ( 5 ), 945 - 956 . doi: 10.1039/d3lp00242j http://dx.doi.org/10.1039/d3lp00242j
Karatrantos A. V. ; Couture O. ; Hesse C. ; Schmidt D. F. Molecular simulation of covalent adaptable networks and vitrimers: a review . Polymers , 2024 , 16 ( 10 ), 1373 . doi: 10.3390/polym16101373 http://dx.doi.org/10.3390/polym16101373
Hayashi M. ; Suzuki M. ; Kito T. Understanding the topology freezing temperature of vitrimer-like materials through complementary structural and rheological analyses for phase-separated network . ACS Macro Lett. , 2025 , 14 ( 2 ), 182 - 187 . doi: 10.1021/acsmacrolett.4c00783 http://dx.doi.org/10.1021/acsmacrolett.4c00783
0
Views
348
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号