

浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 高分子科学与技术全国重点实验室 长春 130022
2.新疆大学化学学院 省部共建碳基能源资源化学与利用国家重点实验室 乌鲁木齐 830017
Received:01 September 2025,
Accepted:20 October 2025,
Published Online:01 December 2025,
Published:20 December 2025
移动端阅览
游江岸, 姜治伟, 唐涛. 高性能聚合物纳米共混泡沫材料研究进展. 高分子学报, 2025, 56(12), 2095-2109
You, J. A.; Jiang, Z. W.; Tang, T. Research progress on high-performance polymer nano-blend foam materials. Acta Polymerica Sinica, 2025, 56(12), 2095-2109
游江岸, 姜治伟, 唐涛. 高性能聚合物纳米共混泡沫材料研究进展. 高分子学报, 2025, 56(12), 2095-2109 DOI: 10.11777/j.issn1000-3304.2025.25229. CSTR: 32057.14.GFZXB.2025.7503.
You, J. A.; Jiang, Z. W.; Tang, T. Research progress on high-performance polymer nano-blend foam materials. Acta Polymerica Sinica, 2025, 56(12), 2095-2109 DOI: 10.11777/j.issn1000-3304.2025.25229. CSTR: 32057.14.GFZXB.2025.7503.
利用共混方法形成多相材料体系是制备新材料、提高其综合性能的有效途径之一. 通过纳米尺度分散形成聚合物纳米共混泡沫可以有效实现多组分性能的协同增效,是轻量化功能材料的重要发展方向. 然而,聚合物发泡材料中实现组分的纳米级分散,一直是制备高性能轻量化聚合物泡沫材料面临的挑战. 本专论围绕“热塑性/热塑性”与“热塑性/热固性”2类聚合物纳米共混泡沫材料体系,系统梳理了该领域的研究发展脉络与前沿进展,并重点介绍了本团队近年来从相态结构调控耦合超临界发泡技术的角度,提出了“增塑—发泡—增强”(PFR)策略,以及该策略在创制高性能聚合物纳米共混泡沫的最新进展,最后对该领域面临的挑战和未来发展趋势进行了分析与展望.
Forming a multiphase material system through blending is one of the effective ways to prepare new materials and improve comprehensive performance. The formation of polymer nanocomposite foams through nanoscale dispersion can effectively achieve synergistic enhancement of multi-component properties
representing an important development direction for lightweight functional materials. However
achieving nanoscale dispersion of components in polymer foam materials has always been a challenge in the preparation of high-performance lightweight polymer foam materials. This feature article focuses on two types of polymer nano-blend systems: "thermoplastic/thermoplastic" polymer blend and "thermoplastic/thermosetting" polymer blend. It systematically reviews the research development trajectory and frontier progress in this field
and highlights the "plasticization-foaming-reinforcement" (PFR) strategy proposed by our team in recent years from the perspective of phase structure regulation coupled with supercritical foaming technology. Additionally
it introduces the latest advancements using this strategy in creating high-performance polymer nano-blend foams. Finally
an analysis and outlook were conducted on the challenges and future development trends faced in this field.
Mao A. R. ; Zhao N. F. ; Liang Y. H. ; Bai H. Mechanically efficient cellular materials inspired by cuttlebone . Adv. Mater. , 2021 , 33 ( 15 ), 2007348 . doi: 10.1002/adma.202007348 http://dx.doi.org/10.1002/adma.202007348
Wicklein B. ; Kocjan A. ; Salazar-Alvarez G. ; Carosio F. ; Camino G. ; Antonietti M. ; Bergström L. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide . Nat. Nanotechnol. , 2015 , 10 ( 3 ), 277 - 283 . doi: 10.1038/nnano.2014.248 http://dx.doi.org/10.1038/nnano.2014.248
Jiang H. Q. ; Qiu J. ; You J. A. ; Wang Y. H. ; Xing H. P. ; Tang T. Striking effect of PbPU multiblock copolymers on the morphology evolution and performance of PP/TPU blends before and after the sc-CO 2 -foaming process . Ind. Eng. Chem. Res. , 2021 , 60 ( 7 ), 2890 - 2897 . doi: 10.1021/acs.iecr.0c05370 http://dx.doi.org/10.1021/acs.iecr.0c05370
Wang Y. H. ; Zhang S. F. ; Jiang H. Q. ; Lin Y. C. ; Xing H. P. ; Tang T. Insight on compatibilization of LLDPE/PS blends from morphology, interfacial state, mechanical properties and melt properties: comb-like copolymer vs diblock copolymer . Polymer , 2021 , 218 , 123540 . doi: 10.1016/j.polymer.2021.123540 http://dx.doi.org/10.1016/j.polymer.2021.123540
Li Y. J. ; Zhang A. L. ; Wang Y. H. ; Fan D. L. ; Lin Y. C. ; Liu J. ; Tang T. Intrinsic flame-retardant flexible polyurethane foam based on phosphorus-containing polyol with Si—O—C segment: simultaneously improving fire safety and mechanical property . Chem. Eng. J. , 2025 , 515 , 163689 . doi: 10.1016/j.cej.2025.163689 http://dx.doi.org/10.1016/j.cej.2025.163689
Lou Z. C. ; Li R. ; Wang P. ; Zhang Y. ; Chen B. ; Huang C. X. ; Wang C. C. ; Han H. ; Li Y. J. Phenolic foam-derived magnetic carbon foams (MCFs) with tunable electromagnetic wave absorption behavior . Chem. Eng. J. , 2020 , 391 , 123571 . doi: 10.1016/j.cej.2019.123571 http://dx.doi.org/10.1016/j.cej.2019.123571
Ling Y. J. ; Yao S. ; Chen Y. C. ; Hu D. D. ; Xi Z. H. ; Zhao L. Synergetic effect between curing reaction and CO 2 diffusion for microcellular epoxy foam preparation in supercritical CO 2 . J. Supercrit. Fluids , 2022 , 180 , 105424 . doi: 10.1016/j.supflu.2021.105424 http://dx.doi.org/10.1016/j.supflu.2021.105424
Fan X. ; Zhang G. C. ; Gao Q. ; Li J. T. ; Shang Z. Y. ; Zhang H. M. ; Zhang Y. ; Shi X. T. ; Qin J. B. Highly expansive, thermally insulating epoxy/Ag nanosheet composite foam for electromagnetic interference shielding . Chem. Eng. J. , 2019 , 372 , 191 - 202 . doi: 10.1016/j.cej.2019.04.069 http://dx.doi.org/10.1016/j.cej.2019.04.069
Liu Z. H. ; Fang Z. Z. ; Zheng N. ; Yang K. X. ; Sun Z. ; Li S. J. ; Li W. ; Wu J. J. ; Xie T. Chemical upcycling of commodity thermoset polyurethane foams towards high-performance 3D photo-printing resins . Nat. Chem. , 2023 , 15 ( 12 ), 1773 - 1779 . doi: 10.1038/s41557-023-01308-9 http://dx.doi.org/10.1038/s41557-023-01308-9
Chen L. M. ; Rende D. ; Schadler L. S. ; Ozisik R. Polymer nanocomposite foams . J. Mater. Chem. A , 2013 , 1 ( 12 ), 3837 . doi: 10.1039/c2ta00086e http://dx.doi.org/10.1039/c2ta00086e
Liu Z. M. ; Dong Z. X. ; Han B. X. ; Wang J. Q. ; He J. ; Yang G. Y. Composites prepared by the polymerization of styrene within supercritical CO 2 -swollen polypropylene . Chem. Mater. , 2002 , 14 ( 11 ), 4619 - 4623 . doi: 10.1021/cm0203215 http://dx.doi.org/10.1021/cm0203215
Pernot H. ; Baumert M. ; Court F. ; Leibler L. Design and properties of co-continuous nanostructured polymers by reactive blending . Nat. Mater. , 2002 , 1 ( 1 ), 54 - 58 . doi: 10.1038/nmat711 http://dx.doi.org/10.1038/nmat711
Zhu R. ; Hoshi T. ; Chishima Y. ; Muroga Y. ; Hagiwara T. ; Yano S. ; Sawaguchi T. Microstructure and mechanical properties of polypropylene/poly(methyl methacrylate) nanocomposite prepared using supercritical carbon dioxide . Macromolecules , 2011 , 44 ( 15 ), 6103 - 6112 . doi: 10.1021/ma2001965 http://dx.doi.org/10.1021/ma2001965
Forest C. ; Chaumont P. ; Cassagnau P. ; Swoboda B. ; Sonntag P. Polymer nano-foams for insulating applications prepared from CO 2 foaming . Prog. Polym. Sci. , 2015 , 41 , 122 - 145 . doi: 10.1016/j.progpolymsci.2014.07.001 http://dx.doi.org/10.1016/j.progpolymsci.2014.07.001
Zhang G. C. ; Wang Y. L. ; Xing H. P. ; Qiu J. ; Gong J. ; Yao K. ; Tan H. Y. ; Jiang Z. W. ; Tang T. Interplay between the composition of LLDPE/PS blends and their compatibilization with polyethylene-graft-polystyrene in the foaming behaviour . RSC Adv. , 2015 , 5 ( 34 ), 27181 - 27189 . doi: 10.1039/c4ra16084c http://dx.doi.org/10.1039/c4ra16084c
Zhai W. T. ; Wang H. Y. ; Yu J. ; Dong J. Y. ; He J. S. Foaming behavior of polypropylene/polystyrene blends enhanced by improved interfacial compatibility . J. Polym. Sci., Part B: Polym. Phys. , 2008 , 46 ( 16 ), 1641 - 1651 . doi: 10.1002/polb.21498 http://dx.doi.org/10.1002/polb.21498
Zhang G. C. ; Zhang S. F. ; Qiu J. ; Jiang Z. W. ; Xing H. P. ; Li M. G. ; Tang T. Insight into the influence of OA-Fe 3 O 4 nanoparticles on the morphology and scCO 2 batch-foaming behavior of cocontinuous LLDPE/PS immiscible blends at semi-solid state . Polymer , 2017 , 129 , 169 - 178 . doi: 10.1016/j.polymer.2017.09.053 http://dx.doi.org/10.1016/j.polymer.2017.09.053
Zhang S. F. ; Zhang G. C. ; Qiu J. ; Jiang Z. W. ; Xing H. P. ; Li M. G. ; Tang T. The effect of nanosized carbon black on the morphology and sc-CO 2 foaming behavior of LLDPE/PS blends at semi-solid state . Compos. Commun. , 2018 , 7 , 30 - 35 . doi: 10.1016/j.coco.2017.12.003 http://dx.doi.org/10.1016/j.coco.2017.12.003
Shi Z. Y. ; Zhang S. F. ; Qiu J. ; Li M. G. ; Xing H. P. ; Tang T. Striking effect of carbon nanotubes on adjusting sc-CO 2 foaming performance of PS/LLDPE blends and forming semi-open cellular structure . Polymer , 2020 , 207 , 122896 . doi: 10.1016/j.polymer.2020.122896 http://dx.doi.org/10.1016/j.polymer.2020.122896
Leibler L. Nanostructured plastics: joys of self-assembling . Prog. Polym. Sci. , 2005 , 30 ( 8-9 ), 898 - 914 . doi: 10.1016/j.progpolymsci.2005.06.007 http://dx.doi.org/10.1016/j.progpolymsci.2005.06.007
Huang H. X. ; Wang J. K. Improving polypropylene microcellular foaming through blending and the addition of nano-calcium carbonate . J. Appl. Polym. Sci. , 2007 , 106 ( 1 ), 505 - 513 . doi: 10.1002/app.26483 http://dx.doi.org/10.1002/app.26483
Sundararaj U. ; Macosko C. W. Drop breakup and coalescence in polymer blends: the effects of concentration and compatibilization . Macromolecules , 1995 , 28 ( 8 ), 2647 - 2657 . doi: 10.1021/ma00112a009 http://dx.doi.org/10.1021/ma00112a009
Tang T. ; Huang B. T. Interfacial behaviour of compatibilizers in polymer blends . Polymer , 1994 , 35 ( 2 ), 281 - 285 . doi: 10.1016/0032-3861(94)90691-2 http://dx.doi.org/10.1016/0032-3861(94)90691-2
Chen G. L. ; Li P. ; Huang Y. J. ; Kong M. Q. ; Lv Y. D. ; Yang Q. ; Li G. X. Hybrid nanoparticles with different surface chemistries show higher efficiency in compatibilizing immiscible polymer blends . Compos. Sci. Technol. , 2014 , 105 , 37 - 43 . doi: 10.1016/j.compscitech.2014.09.013 http://dx.doi.org/10.1016/j.compscitech.2014.09.013
Fortelný I. ; Jůza J. The effects of copolymer compatibilizers on the phase structure evolution in polymer blends-a review . Materials , 2021 , 14 ( 24 ), 7786 . doi: 10.3390/ma14247786 http://dx.doi.org/10.3390/ma14247786
He H. L. ; Liang F. X. Interfacial engineering of polymer blend with Janus particle as compatibilizer . Chinese J. Polym. Sci. , 2023 , 41 ( 4 ), 500 - 515 . doi: 10.1007/s10118-022-2878-y http://dx.doi.org/10.1007/s10118-022-2878-y
Hu G. H. ; Cartier H. ; Plummer C. Reactive extrusion: toward nanoblends . Macromolecules , 1999 , 32 ( 14 ), 4713 - 4718 . doi: 10.1021/ma981924y http://dx.doi.org/10.1021/ma981924y
Wu F. ; Misra M. ; Mohanty A. K. Novel tunable super-tough materials from biodegradable polymer blends: nano-structuring through reactive extrusion . RSC Adv. , 2019 , 9 ( 5 ), 2836 - 2847 . doi: 10.1039/c8ra09596e http://dx.doi.org/10.1039/c8ra09596e
Shimizu H. ; Li Y. J. ; Kaito A. ; Sano H. Formation of nanostructured PVDF/PA11 blends using high-shear processing . Macromolecules , 2005 , 38 ( 19 ), 7880 - 7883 . doi: 10.1021/ma051395f http://dx.doi.org/10.1021/ma051395f
Li Y. J. ; Shimizu H. Fabrication of nanostructured polycarbonate/poly(methyl methacrylate) blends with improved optical and mechanical properties by high-shear processing . Polym. Eng. Sci. , 2011 , 51 ( 7 ), 1437 - 1445 . doi: 10.1002/pen.21879 http://dx.doi.org/10.1002/pen.21879
Wang G. L. ; Zhao J. C. ; Mark L. H. ; Wang G. Z. ; Yu K. J. ; Wang C. D. ; Park C. B. ; Zhao G. Q. Ultra-tough and super thermal-insulation nanocellular PMMA/TPU . Chem. Eng. J. , 2017 , 325 , 632 - 646 . doi: 10.1016/j.cej.2017.05.116 http://dx.doi.org/10.1016/j.cej.2017.05.116
Bernardo V. ; Martin-de Leon J. ; Sanchez-Calderon I. ; Laguna-Gutierrez E. ; Rodriguez-Perez M. A. Nanocellular polymers with a gradient cellular structure based on poly(methyl methacrylate)/thermoplastic polyurethane blends produced by gas dissolution foaming . Macromol. Mater. Eng. , 2020 , 305 ( 1 ), 1900428 . doi: 10.1002/mame.201900428 http://dx.doi.org/10.1002/mame.201900428
Demewoz N. M. ; Yeh S. K. Fabrication and characterization of low-density nanocellular foam based on PMMA/TPU blends . Polymer , 2022 , 240 , 124493 . doi: 10.1016/j.polymer.2021.124493 http://dx.doi.org/10.1016/j.polymer.2021.124493
Spitael P. ; Macosko C. W. ; McClurg R. B. Block copolymer micelles for nucleation of microcellular thermoplastic foams . Macromolecules , 2004 , 37 ( 18 ), 6874 - 6882 . doi: 10.1021/ma049712q http://dx.doi.org/10.1021/ma049712q
Pinto J. ; Dumon M. ; Pedros M. ; Reglero J. ; Rodriguez-Perez M. A. Nanocellular CO 2 foaming of PMMA assisted by block copolymer nanostructuration . Chem. Eng. J. , 2014 , 243 , 428 - 435 . doi: 10.1016/j.cej.2014.01.021 http://dx.doi.org/10.1016/j.cej.2014.01.021
Bernardo V. ; Martin-de Leon J. ; Laguna-Gutierrez E. ; Catelani T. ; Pinto J. ; Athanassiou A. ; Rodriguez-Perez M. A. Understanding the role of MAM molecular weight in the production of PMMA/MAM nanocellular polymers . Polymer , 2018 , 153 , 262 - 270 . doi: 10.1016/j.polymer.2018.08.022 http://dx.doi.org/10.1016/j.polymer.2018.08.022
Coran A. Y. ; Patel R. Rubber-thermoplastic compositions. Part I. EPDM-polypropylene thermoplastic vulcanizates . Rubber Chem. Technol. , 1980 , 53 ( 1 ), 141 - 150 . doi: 10.5254/1.3535023 http://dx.doi.org/10.5254/1.3535023
Ning N. Y. ; Li S. Q. ; Wu H. G. ; Tian H. C. ; Yao P. J. ; Hu G. H. ; Tian M. ; Zhang L. Q. Preparation, microstructure, and microstructure-properties relationship of thermoplastic vulcanizates (TPVs): a review . Prog. Polym. Sci. , 2018 , 79 , 61 - 97 . doi: 10.1016/j.progpolymsci.2017.11.003 http://dx.doi.org/10.1016/j.progpolymsci.2017.11.003
Rainglet B. ; Le Hel C. ; Chalamet Y. ; Bounor-Legaré V. ; Forest C. ; Cassagnau P. Extensional rheology and CO 2 foaming of thermoplastics vulcanizates: influence of the crosslinking chemistry. J. Cell. Plast. , 2022 , 58 ( 3 ), 569 - 582 . doi: 10.1177/0021955x221080677 http://dx.doi.org/10.1177/0021955x221080677
Xu Z. X. ; Zhang Z. ; Guan Y. ; Wei D. F. ; Zheng A. N. Investigation of extensional rheological behaviors of polypropylene for foaming . J. Cell. Plast. , 2013 , 49 ( 4 ), 317 - 334 . doi: 10.1177/0021955x13477431 http://dx.doi.org/10.1177/0021955x13477431
Rainglet B. ; Chalamet Y. ; Bounor-Legaré V. ; Delage K. ; Forest C. ; Cassagnau P. Polypropylene foams under CO 2 conditionsbatch: from formulation and rheological modeling to cell-growth simulation. Polymer , 2021 , 218 , 123496 . doi: 10.1016/j.polymer.2021.123496 http://dx.doi.org/10.1016/j.polymer.2021.123496
Gong Z. ; Wang X. H. ; Chen X. Q. ; Chen Y. K. Biobased foamed thermoplastic vulcanizate with good electromagnetic interference and self-healing performance . ACS Sustainable Chem. Eng. , 2023 , 11 ( 24 ), 9243 - 9254 . doi: 10.1021/acssuschemeng.3c02507 http://dx.doi.org/10.1021/acssuschemeng.3c02507
Zhou W. Y. ; Yu Z. ; Yang L. J. ; Shan T. K. ; Zhang Z. X. Development of propylene butene copolymer/ethylene propylene diene monomer blend foam and the effect of network structure on its reprocessing properties . Polym. Eng. Sci. , 2023 , 63 ( 5 ), 1623 - 1632 . doi: 10.1002/pen.26311 http://dx.doi.org/10.1002/pen.26311
Kim S. G. ; Park C. B. ; Sain M. Foamability of thermoplastic vulcanizates blown with various physical blowing agents . J. Cell. Plast. , 2008 , 44 ( 1 ), 53 - 67 . doi: 10.1177/0021955x07079224 http://dx.doi.org/10.1177/0021955x07079224
L’Abee R. M. A. ; van Duin M. ; Spoelstra A. B. ; Goossens J. G. P. The rubber particle size to control the properties-processing balance of thermoplastic/cross-linked elastomer blends . Soft Matter , 2010 , 6 ( 8 ), 1758 - 1768 . doi: 10.1039/b913458a http://dx.doi.org/10.1039/b913458a
Inoue T. Reaction-induced phase decomposition in polymer blends . Prog. Polym. Sci. , 1995 , 20 ( 1 ), 119 - 153 . doi: 10.1016/0079-6700(94)00032-w http://dx.doi.org/10.1016/0079-6700(94)00032-w
Oh T. ; Cho S. ; Yoo C. ; Yeo W. ; Oh J. ; Seo M. Polymerization‐induced microphase separation of a polymerization mixture into nanostructured block polymer materials . Prog. Polym. Sci. , 2023 , 145 , 101738 . doi: 10.1016/j.progpolymsci.2023.101738 http://dx.doi.org/10.1016/j.progpolymsci.2023.101738
Lee M. J. ; Han J. ; Lee K. ; Lee Y. J. ; Kim B. G. ; Jung K. N. ; Kim B. J. ; Lee S. W. Elastomeric electrolytes for high-energy solid-state lithium batteries . Nature , 2022 , 601 ( 7892 ), 217 - 222 . doi: 10.1038/s41586-021-04209-4 http://dx.doi.org/10.1038/s41586-021-04209-4
Kohlhoff D. ; Nabil A. ; Ohshima M. In situ preparation of cross-linked polystyrene/poly(methyl methacrylate) blend foams with a bimodal cellular structure . Polym. Adv. Technol. , 2012 , 23 ( 10 ), 1350 - 1356 . doi: 10.1002/pat.2053 http://dx.doi.org/10.1002/pat.2053
You J. A. ; Jiang Z. W. ; Jiang H. Q. ; Qiu J. ; Li M. G. ; Xing H. P. ; Xue J. ; Tang T. A “Plasticizing-Foaming-Reinforcing” approach for creating thermally insulating PVC/polyurea blend foams with shape memory function . Chem. Eng. J. , 2022 , 450 , 138071 . doi: 10.1016/j.cej.2022.138071 http://dx.doi.org/10.1016/j.cej.2022.138071
You J. A. ; Cai L. ; Yu R. H. ; Xing H. P. ; Xue J. ; Li Y. ; Jiang Z. W. ; Cui D. M. ; Tang T. High-performance chlorinated polyvinyl chloride/polyurea nanocomposite foam with excellent solvent resistance, flame-triggered shape memory effect and its upcycling . Compos. Part A Appl. Sci. Manuf. , 2024 , 177 , 107931 . doi: 10.1016/j.compositesa.2023.107931 http://dx.doi.org/10.1016/j.compositesa.2023.107931
Wang H. M. ; You J. A. ; Tian M. ; Qiu J. ; Xing H. P. ; Xue J. ; Jiang Z. W. ; Tang T. Preparing flame-retardant poly(phenylene oxide)/polyurea nanocomposite foam with excellent heat-resistance and shape memory performance . Compos. Commun. , 2023 , 40 , 101589 . doi: 10.1016/j.coco.2023.101589 http://dx.doi.org/10.1016/j.coco.2023.101589
Zhao G. ; Wang H. M. ; You J. A. ; Xing H. P. ; Xue J. ; Jiang Z. W. ; Tang T. Superlight flame-retardant poly(aryl ether ketone)/polyurea nanocomposite foam with excellent solvent-resistance and shape memory performance . Compos. Commun. , 2024 , 48 , 101946 . doi: 10.1016/j.coco.2024.101946 http://dx.doi.org/10.1016/j.coco.2024.101946
Tian M. ; You J. A. ; Qiu J. ; Li M. G. ; Xing H. P. ; Xue J. ; Jiang Z. W. ; Tang T. Unexpected super anti-compressive styrene-acrylonitrile copolymer/polyurea nanocomposite foam with excellent solvent resistance, re-processability and shape memory performance . Compos. Part B Eng. , 2023 , 264 , 110908 . doi: 10.1016/j.compositesb.2023.110908 http://dx.doi.org/10.1016/j.compositesb.2023.110908
Jiang Z. W. ; Yao K. ; Du Z. H. ; Xue J. ; Tang T. ; Liu W. B. Rigid cross-linked PVC foams with high shear properties: the relationship between mechanical properties and chemical structure of the matrix . Compos. Sci. Technol. , 2014 , 97 , 74 - 80 . doi: 10.1016/j.compscitech.2014.04.005 http://dx.doi.org/10.1016/j.compscitech.2014.04.005
Jiang Z. W. ; Yao K. ; Du Z. H. ; Xue J. ; Tang T. ; Liu W. B. Preparation and chemical reactions of rigid cross-linked poly(vinyl chloride) foams modified by epoxy compounds . J. Appl. Polym. Sci. , 2014 , 131 ( 15 ), 40567 . doi: 10.1002/app.40567 http://dx.doi.org/10.1002/app.40567
Jiang Z. W. ; Du Z. H. ; Xue J. ; Liu W. B. ; Li M. G. ; Tang T. Hierarchical structure and properties of rigid PVC foam crosslinked by the reaction between anhydride and diisocyanate . J. Appl. Polym. Sci. , 2018 , 135 ( 16 ), 46141 . doi: 10.1002/app.46141 http://dx.doi.org/10.1002/app.46141
Gong J. ; Chen X. C. ; Tang T. Recent progress in controlled carbonization of (waste) polymers . Prog. Polym. Sci. , 2019 , 94 , 1 - 32 . doi: 10.1016/j.progpolymsci.2019.04.001 http://dx.doi.org/10.1016/j.progpolymsci.2019.04.001
Jehanno C. ; Alty J. W. ; Roosen M. ; De Meester S. ; Dove A. P. ; Chen E. Y. ; Leibfarth F. A. ; Sardon H. Critical advances and future opportunities in upcycling commodity polymers . Nature , 2022 , 603 ( 7903 ), 803 - 814 . doi: 10.1038/s41586-021-04350-0 http://dx.doi.org/10.1038/s41586-021-04350-0
Liu H. G. ; Wu S. Q. ; Tian N. ; Yan F. X. ; You C. Y. ; Yang Y. Carbon foams: 3D porous carbon materials holding immense potential . J. Mater. Chem. A , 2020 , 8 ( 45 ), 23699 - 23723 . doi: 10.1039/d0ta08749a http://dx.doi.org/10.1039/d0ta08749a
0
Views
181
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号