

浏览全部资源
扫码关注微信
四川大学高分子研究所 四川大学先进高分子材料全国重点实验室 成都 610065
Xin-xing Zhang, E-mail: xxzwwh@scu.edu.cn
Received:02 September 2025,
Accepted:26 September 2025,
Published Online:12 November 2025,
Published:20 December 2025
移动端阅览
周博, 王之昊, 周鹏, 张新星. 基于共价自适应网络重排的环氧树脂封装材料应力释放研究. 高分子学报, 2025, 56(12), 2441-2451
Zhou, B.; Wang, Z. H.; Zhou, P.; Zhang, X. X. Investigation into stress relief of epoxy resin packaging materials based on covalent adaptable networks rearrangement. Acta Polymerica Sinica, 2025, 56(12), 2441-2451
周博, 王之昊, 周鹏, 张新星. 基于共价自适应网络重排的环氧树脂封装材料应力释放研究. 高分子学报, 2025, 56(12), 2441-2451 DOI: 10.11777/j.issn1000-3304.2025.25231. CSTR: 32057.14.GFZXB.2025.7470.
Zhou, B.; Wang, Z. H.; Zhou, P.; Zhang, X. X. Investigation into stress relief of epoxy resin packaging materials based on covalent adaptable networks rearrangement. Acta Polymerica Sinica, 2025, 56(12), 2441-2451 DOI: 10.11777/j.issn1000-3304.2025.25231. CSTR: 32057.14.GFZXB.2025.7470.
5G时代高功率电子器件的高集成微型化,要求封装材料兼具高导热、强黏附与高效应力释放能力. 然而,传统环氧树脂因高度交联网络易积聚内应力导致器件失效,严重制约了高端设备的发展. 为此,我们基于共价自适应网络(CANs)的动态拓扑重排特性,从分子结构设计出发设计了一种具有应力释放能力的高导热环氧树脂封装材料. 通过将一维碳纳米管与二维三氧化二铝微球进行协同互配,成功构建了三维导热网络,显著提升了材料的导热能力. 体系中引入的动态共价键与多重氢键产生协同效应,在实现环氧树脂内应力有效释放的同时,还大幅增强了其界面粘接强度与再加工性能. 高过载测试及环境老化实验结果表明,该材料在严苛工况下仍具备优异的服役可靠性. 本研究为发展新一代高性能电子封装材料提供了新的设计思路.
In the 5G era
the high integration and miniaturization of high-power electronic devices require packaging materials to possess excellent thermal conductivity
strong adhesion
and efficient stress release capabilities. However
traditional epoxy resins suffer from the problem of internal stress accumulation due to their highly cross-linked network
which leads to device failure and severely restricts the development of high-end equipment. To address this issue
based on the dynamic topological rearrangement characteristics of covalent adaptive networks (CANs)
we designed a high thermal conductivity epoxy resin packaging material with efficient stress release capabilities starting from the molecular structure design. By synergistically matching one-dimensional carbon nanotubes with two-dimensional aluminum oxide microspheres
a three-dimensional thermal conduction network was successfully constructed
significantly enhancing the thermal conductivity of the material. The dynamic covalent bonds and multiple hydrogen bonds introduced in the system produced a synergistic effect
effectively releasing the internal stress of the epoxy resin while significantly enhancing its interface bonding strength and reprocessing performance. The results of high overload tests and environmental aging experiments demonstrated that this material still exhibits excellent service reliability under harsh conditions. This research provides a new design concept for the development of a new generation of high-performance electronic packaging materials.
Wu K. ; Dou Z. L. ; Deng S. B. ; Wu D. ; Zhang B. ; Yang H. B. ; Li R. L. ; Lei C. X. ; Zhang Y. Z. ; Fu Q. ; Yu G. H. Mechanochemistry-mediated colloidal liquid metals for electronic device cooling at kilowatt levels . Nat. Nanotechnol. , 2025 , 20 ( 1 ), 104 - 111 . doi: 10.1038/s41565-024-01793-0 http://dx.doi.org/10.1038/s41565-024-01793-0
Zhao X. L. ; Li L. Y. ; Li Y. D. ; Zeng J. B. Biobased thermoset sandwiched composites enabled by dynamic covalent chemistry for electrical insulation, EMI shielding, and thermal management . SusMat , 2025 , 5 ( 3 ), e 70012 . doi: 10.1002/sus2.70012 http://dx.doi.org/10.1002/sus2.70012
Chen Q. ; Feng J. B. ; Xue Y. J. ; Huo S. Q. ; Dinh T. ; Xu H. ; Shi Y. Q. ; Gao J. F. ; Tang L. C. ; Huang G. B. ; Lei W. W. ; Song P. G. An engineered heterostructured trinity enables fire-safe, thermally conductive polymer nanocomposite films with low dielectric loss . Nanomicro Lett. , 2025 , 17 ( 1 ), 168 . doi: 10.1007/s40820-025-01681-9 http://dx.doi.org/10.1007/s40820-025-01681-9
Zhao C. G. ; Li Y. F. ; Liu Y. C. ; Xie H. Q. ; Yu W. A critical review of the preparation strategies of thermally conductive and electrically insulating polymeric materials and their applications in heat dissipation of electronic devices . Adv. Compos. Hybrid Mater. , 2022 , 6 ( 1 ), 27 . doi: 10.1007/s42114-022-00584-2 http://dx.doi.org/10.1007/s42114-022-00584-2
Hong H. ; Jung Y. H. ; Lee J. S. ; Jeong C. ; Kim J. U. ; Lee S. ; Ryu H. ; Kim H. ; Ma Z. Q. ; Kim T. I. Anisotropic thermal conductive composite by the guided assembly of boron nitride nanosheets for flexible and stretchable electronics . Adv. Funct. Mater. , 2019 , 29 ( 37 ), 1902575 . doi: 10.1002/adfm.201970252 http://dx.doi.org/10.1002/adfm.201970252
Chen Q. ; Ma Z. W. ; Wang M. C. ; Wang Z. Z. ; Feng J. B. ; Chevali V. ; Song P. G. Recent advances in nacre-inspired anisotropic thermally conductive polymeric nanocomposites . Nano Res. , 2023 , 16 ( 1 ), 1362 - 1386 . doi: 10.1007/s12274-022-4824-2 http://dx.doi.org/10.1007/s12274-022-4824-2
Zhou W. Y. ; Wang Y. ; Kong F. R. ; Peng W. W. ; Wang Y. D. ; Yuan M. X. ; Han X. P. ; Liu X. R. ; Li B. Advances in liquid crystal epoxy: molecular structures, thermal conductivity, and promising applications in thermal management . Energy Environmental Mater. , 2024 , 7 ( 4 ), e 12698 . doi: 10.1002/eem2.12698 http://dx.doi.org/10.1002/eem2.12698
Chen Q. ; Huo S. Q. ; Lu Y. X. ; Ding M. M. ; Feng J. B. ; Huang G. B. ; Xu H. ; Sun Z. Q. ; Wang Z. Z. ; Song P. G. Heterostructured graphene@silica@iron phenylphosphinate for fire-retardant, strong, thermally conductive yet electrically insulated epoxy nanocomposites . Small , 2024 , 20 ( 31 ), 2310724 . doi: 10.1002/smll.202310724 http://dx.doi.org/10.1002/smll.202310724
Fan X. R. ; Liu Z. ; Wang S. S. ; Gu J. W. Low dielectric constant and highly intrinsic thermal conductivity fluorine-containing epoxy resins with ordered liquid crystal structures . SusMat , 2023 , 3 ( 6 ), 877 - 893 . doi: 10.1002/sus2.172 http://dx.doi.org/10.1002/sus2.172
Xu S. D. ; Gu S. ; Pu X. L. ; Xiao Y. F. ; Lu J. H. ; Wang Y. Z. ; Chen L. Reaction-induced phase separation towards in situ network in epoxy resins for simultaneously improving thermal conductivity and fire safety . Compos. Part B Eng. , 2022 , 247 , 110326 . doi: 10.1016/j.compositesb.2022.110326 http://dx.doi.org/10.1016/j.compositesb.2022.110326
Du Y. K. ; Shi Z. X. ; Dong S. ; Jin H. ; Ke X. ; Zhao P. ; Jiang B. B. ; You F. Recent progress in fabrication and structural design of thermal conductive polymer composites . Chinese J. Polym. Sci. , 2024 , 42 ( 3 ), 277 - 291 . doi: 10.1007/s10118-023-3057-5 http://dx.doi.org/10.1007/s10118-023-3057-5
Chen Q. ; Wu J. P. ; Wang S. C. ; Zhu K. J. ; Wang Y. X. ; Wang T. L. ; Zeng X. S. ; Xu H. ; Zheng R. H. ; Huang G. B. ; Sun Z. Q. ; Zhao Y. ; Song P. G. Low-cost, scalable, thermally conductive polymer nanocomposite films for dual-mode battery thermal management . J. Mater. Sci. Technol. , 2026 , 254 , 145 - 155 . doi: 10.1016/j.jmst.2025.07.040 http://dx.doi.org/10.1016/j.jmst.2025.07.040
Li M. D. ; Shen X. Q. ; Chen X. ; Gan J. M. ; Wang F. ; Li J. ; Wang X. L. ; Shen Q. D. Thermal management of chips by a device prototype using synergistic effects of 3-D heat-conductive network and electrocaloric refrigeration . Nat. Commun. , 2022 , 13 ( 1 ), 5849 . doi: 10.1038/s41467-022-33596-z http://dx.doi.org/10.1038/s41467-022-33596-z
He Y. F. ; Kuang F. X. ; Che Z. X. ; Sun F. Y. ; Zheng K. ; Zhang J. N. ; Cao X. Y. ; Ma Y. M. Achieving high out-of-plane thermal conductivity for boron nitride nano sheets/epoxy composite films by magnetic orientation . Compos. Part A Appl. Sci. Manuf. , 2022 , 157 , 106933 . doi: 10.1016/j.compositesa.2022.106933 http://dx.doi.org/10.1016/j.compositesa.2022.106933
Li Q. ; Weinell C. E. ; Kiil S. Curing-induced internal stress in epoxy coatings: effects of epoxy binder, curing agent, filler, initial solvent concentration, curing temperature, and relative humidity . Prog. Org. Coat. , 2022 , 173 , 107175 . doi: 10.1016/j.porgcoat.2022.107175 http://dx.doi.org/10.1016/j.porgcoat.2022.107175
Chen Q. ; Wang Z. Z. A copper organic phosphonate functionalizing boron nitride nanosheet for PVA film with excellent flame retardancy and improved thermal conductive property . Compos. Part A Appl. Sci. Manuf. , 2022 , 153 , 106738 . doi: 10.1016/j.compositesa.2021.106738 http://dx.doi.org/10.1016/j.compositesa.2021.106738
Wu K. N. ; An D. X. ; Zhang Z. L. ; Zhao G. ; Cui C. H. ; Zhou F. S. ; Li J. Y. Relief of residual stress in bulk thermosets in the glassy state by local bond exchange . Macromol. Rapid Commun. , 2024 , 45 ( 9 ), 2300735 . doi: 10.1002/marc.202470017 http://dx.doi.org/10.1002/marc.202470017
Abiko K. ; Kato Y. ; Hohjo H. ; Kishida Y. ; Sudo E. Raman imaging of residual stress distribution in epoxy resin and metal interface . J. Raman Spectrosc. , 2020 , 51 ( 1 ), 193 - 200 . doi: 10.1002/jrs.5756 http://dx.doi.org/10.1002/jrs.5756
Wu W. X. ; Feng H. J. ; Xie L. L. ; Zhang A. Y. ; Liu F. ; Liu Z. H. ; Zheng N. ; Xie T. Reprocessable and ultratough epoxy thermosetting plastic . Nat. Sustain. , 2024 , 7 ( 6 ), 804 - 811 . doi: 10.1038/s41893-024-01331-9 http://dx.doi.org/10.1038/s41893-024-01331-9
Wang Y. Y. ; Shu R. ; Zhang X. X. Strong, supertough and self-healing biomimetic layered nanocomposites enabled by reversible interfacial polymer chain sliding . Angew. Chem. Int. Ed. , 2023 , 62 ( 23 ), e 202303446 . doi: 10.1002/anie.202303446 http://dx.doi.org/10.1002/anie.202303446
武彤 , 何柳 , 郑丹丹 , 吴小玲 , 罗伟昂 , 袁丛辉 , 戴李宗 . 动态硼酸酯键管控邻苯二酚基团与功能黏附性高分子设计 . 高分子学报 , 2022 , 53 ( 7 ), 796 - 811 . doi: 10.11777/j.issn1000-3304.2022.22061 http://dx.doi.org/10.11777/j.issn1000-3304.2022.22061
Luo Z. Y. ; Yang B. ; Liu F. Q. ; Pan X. J. ; Zeng Y. N. Recoverable rosin-based epoxy vitrimers with robust mechanical properties and high thermostability . ACS Appl. Polym. Mater. , 2023 , 5 ( 10 ), 8670 - 8678 . doi: 10.1021/acsapm.3c01373 http://dx.doi.org/10.1021/acsapm.3c01373
Zhou B. ; Yang X. ; Liu J. Z. ; Lan L. D. ; Lu H. ; Wang Y. Y. ; Wei Z. B. ; Zhang X. X. Jellyfish-inspired self-healing luminescent elastomers based on borate nanoassemblies for dual-model encryption . Nano Lett. , 2024 , 24 ( 26 ), 8198 - 8207 . doi: 10.1021/acs.nanolett.4c02512 http://dx.doi.org/10.1021/acs.nanolett.4c02512
Li X. K. ; Liu J. Z. ; Guo Q. Q. ; Zhang X. X. ; Tian M. Polymerizable deep eutectic solvent-based skin-like elastomers with dynamic schemochrome and self-healing ability . Small , 2022 , 18 ( 19 ), 2201012 . doi: 10.1002/smll.202201012 http://dx.doi.org/10.1002/smll.202201012
Chen Q. ; Ma Z. W. ; Wang Z. Z. ; Liu L. ; Zhu M. H. ; Lei W. W. ; Song P. G. Scalable, robust, low-cost, and highly thermally conductive anisotropic nanocomposite films for safe and efficient thermal management . Adv. Funct. Mater. , 2022 , 32 ( 8 ), 2110782 . doi: 10.1002/adfm.202110782 http://dx.doi.org/10.1002/adfm.202110782
Zhang C. ; Cui H. Z. ; Guo R. L. ; Chen S. ; Li W. P. ; Han Y. ; Wang S. T. ; Jiang Z. H. ; Zeng X. L. ; Sun R. Adhesion energy-assisted low contact thermal resistance epoxy resin-based composite . Langmuir , 2024 , 40 ( 15 ), 8108 - 8114 . doi: 10.1021/acs.langmuir.4c00111 http://dx.doi.org/10.1021/acs.langmuir.4c00111
Wang X. Q. ; Cai X. X. ; Li J. Y. ; Zhou R. X. ; Gui X. F. ; Hu J. W. ; Lin S. D. Bio-based eco-friendly coatings with multi-mechanism anticorrosion design and advanced thermal conductivity . Corros. Sci. , 2025 , 257 , 113276 . doi: 10.1016/j.corsci.2025.113276 http://dx.doi.org/10.1016/j.corsci.2025.113276
Yue C. E. ; Zhao L. W. ; Guan L. Z. ; Zhang X. R. ; Qu C. Y. ; Wang D. Z. ; Weng L. Vitrimeric silicone composite with high thermal conductivity and high repairing efficiency as thermal interface materials . J. Colloid Interface Sci. , 2022 , 620 , 273 - 283 . doi: 10.1016/j.jcis.2022.04.017 http://dx.doi.org/10.1016/j.jcis.2022.04.017
Zhang X. ; Long C. ; Zhu X. B. ; Zhang X. L. ; Li J. Z. ; Luo J. ; Li J. C. ; Gao Q. Preparation of strong and thermally conductive, spider silk-inspired, soybean protein-based adhesive for thermally conductive wood-based composites . ACS Nano , 2023 , 17 ( 19 ), 18850 - 18863 . doi: 10.1021/acsnano.3c03782 http://dx.doi.org/10.1021/acsnano.3c03782
Kumar R. ; Mohanty S. ; Nayak S. K. Study on epoxy resin-based thermal adhesive filled with hybrid expanded graphite and graphene nanoplatelet . SN Appl. Sci. , 2019 , 1 ( 2 ), 180 . doi: 10.1007/s42452-019-0200-6 http://dx.doi.org/10.1007/s42452-019-0200-6
Wang S. ; Zhang J. H. ; Yang P. ; Zheng W. H. ; Wang R. L. ; Zhang R. Y. ; Bai Y. P. ; Meng L. H. ; Sun S. Thermal interface materials with excellent flexibility and adhesion via chain segment structure design . Polym. Compos. , 2025 , doi: 10.1002/pc. 70140. http://dx.doi.org/10.1002/pc.70140.
Anoop V. ; Sankaraiah S. ; Chakraborty S. ; Mary N. L. Enhanced mechanical, thermal and adhesion properties of addition cured polydimethylsiloxane nanocomposite adhesives . Int. J. Adhes. Adhes. , 2022 , 117 , 103177 . doi: 10.1016/j.ijadhadh.2022.103177 http://dx.doi.org/10.1016/j.ijadhadh.2022.103177
Pashaie R. ; Shokrieh M. M. ; Vahedi M. ; Mirzaei A. H. ; Akbari S. A comparative study of residual stress measurement of laminated composites using FBG sensor, DIC technique, and strain gauge . Opt. Quantum Electron. , 2024 , 56 ( 11 ), 1790 . doi: 10.1007/s11082-024-07676-x http://dx.doi.org/10.1007/s11082-024-07676-x
Huang Z. ; Cui Q. K. ; Yang X. ; Wang F. F. ; Zhang X. X. An evaluation model to predict microplastics generation from polystyrene foams and experimental verification . J. Hazard. Mater. , 2023 , 446 , 130673 . doi: 10.1016/j.jhazmat.2022.130673 http://dx.doi.org/10.1016/j.jhazmat.2022.130673
0
Views
249
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号