

浏览全部资源
扫码关注微信
中山大学化学学院 聚合物复合材料及功能材料教育部重点实验室 广州 510275
Ze-ping Zhang, E-mail: zhangzp8@mail.sysu.edu.cn
Received:06 September 2025,
Accepted:30 September 2025,
Published Online:20 November 2025,
Published:20 December 2025
移动端阅览
庞小燕, 张泽平, 容敏智. 基于剥离-吸附协同效应的氮化硼/液晶环氧复合材料导热性能研究. 高分子学报, 2025, 56(12), 2452-2468
Pang, X. Y.; Zhang, Z. P.; Rong, M. Z. Thermal conductivity of boron nitride/liquid crystal epoxy composites via synergistic exfoliation-adsorption effects. Acta Polymerica Sinica, 2025, 56(12), 2452-2468
庞小燕, 张泽平, 容敏智. 基于剥离-吸附协同效应的氮化硼/液晶环氧复合材料导热性能研究. 高分子学报, 2025, 56(12), 2452-2468 DOI: 10.11777/j.issn1000-3304.2025.25235. CSTR: 32057.14.GFZXB.2025.7484.
Pang, X. Y.; Zhang, Z. P.; Rong, M. Z. Thermal conductivity of boron nitride/liquid crystal epoxy composites via synergistic exfoliation-adsorption effects. Acta Polymerica Sinica, 2025, 56(12), 2452-2468 DOI: 10.11777/j.issn1000-3304.2025.25235. CSTR: 32057.14.GFZXB.2025.7484.
随着电子器件向微型化、高频化方向发展,开发兼具高导热性和优异力学性能的聚合物基复合材料成为热管理领域的研究重点. 六方氮化硼(h-BN)因其层状结构和超高面内热导率被视为理想填料,但其易团聚和界面相容性差的问题极大限制了其应用. 本工作提出一种剥离-吸附协同策略,通过原位球磨工艺制备h-BN/液晶环氧树脂复合材料,以增加h-BN的长径比、比表面积和界面相容性. 实验结果表明,球磨剥离显著提高了h-BN的长径比和比表面积,促进了其在基体中的分散和其表面对液晶分子的有序吸附. 当h-BN含量为20 wt%时,复合材料的面内和面外热导率分别达到7.30和1.64 W·m
-1
·K
-1
,较简单共混样品提高22.7%和82.2%. 分子动力学模拟和有限元分析进一步揭示了h-BN剥离分层的增效机制:低含量时,剥离通过增大比表面积和长径比增强界面吸附并形成导热通路;高含量时,h-BN由于相互搭接削弱了球磨剥离的导热增强效果. 此外,增强的界面相互作用也赋予了原位球磨复材更高的弯曲强度和弯曲模量. 本工作为开发高导热和高机械强度的h-BN/液晶环氧复合材料提供了理论依据.
With the miniaturization and high-frequency development of electronic devices
polymer-based composites with high thermal conductivity and excellent mechanical properties have become a research priority in thermal management. Hexagonal boron nitride (h-BN)
with its layered structure and ultrahigh in-plane thermal conductivity
is considered an ideal filler; however
its agglomeration and poor interface compatibility severely limit its practical applications. This study proposed a synergistic exfoliation-adsorption strategy to fabricate h-BN/LC epoxy composites
via in situ
ball milling
aiming to enhance the aspect ratio
specific surfa
ce area
and interfacial compatibility of h-BN. The experimental results demonstrated that ball-milling exfoliation significantly enhanced the aspect ratio and specific surface area of h-BN
improving its dispersion and promoting the ordered adsorption of liquid crystal molecules. At 20 wt% h-BN loading
the composites achieved in-plane and through-plane thermal conductivities of 7.30 and 1.64 W·m
-1
·K
-1
representing 22.7% and 82.2% improvements over conventional blended samples
respectively. Molecular dynamics simulations and finite element analysis further revealed the enhancement mechanisms: at low filler content
exfoliation amplified interfacial adsorption and constructs thermal pathways by increasing the surface area and aspect ratio
whereas spontaneous h-BN stacking at high content diminished these benefits. Additionally
the strengthened interfacial interactions endowed the ball-milled composites with superior flexural strength and modulus at 20 wt% loading. This study provides theoretical guidance for developing h-BN/LC epoxy composites with high thermal conductivity and mechanical strength.
Sun Q. D. ; Zhi G. ; Zhou S. ; Dong X. ; Shen Q. Y. ; Tao R. ; Qi J. F. Advanced design and manufacturing approaches for structures with enhanced thermal management performance: a review . Adv. Mater. Technol. , 2024 , 9 ( 15 ), 2400263 . doi: 10.1002/admt.202400263 http://dx.doi.org/10.1002/admt.202400263
Xiao H. ; Huang Z. X. ; Zhang Z. P. ; Rong M. Z. ; Zhang M. Q. Highly thermally conductive flexible copper clad laminates based on sea-island structured boron nitride/polyimide composites . Compos. Sci. Technol. , 2022 , 230 , 109087 . doi: 10.1016/j.compscitech.2021.109087 http://dx.doi.org/10.1016/j.compscitech.2021.109087
Moore A. L. ; Shi L. Emerging challenges and materials for thermal management of electronics . Mater. Today , 2014 , 17 ( 4 ), 163 - 174 . doi: 10.1016/j.mattod.2014.04.003 http://dx.doi.org/10.1016/j.mattod.2014.04.003
Ma H. Q. ; Gao B. ; Wang M. Y. ; Yuan Z. Y. ; Shen J. B. ; Zhao J. Q. ; Feng Y. K. Strategies for enhancing thermal conductivity of polymer-based thermal interface materials: a review . J. Mater. Sci. , 2021 , 56 ( 2 ), 1064 - 1086 . doi: 10.1007/s10853-020-05279-x http://dx.doi.org/10.1007/s10853-020-05279-x
Shtein M. ; Nadiv R. ; Buzaglo M. ; Kahil K. ; Regev O. Thermally conductive graphene-polymer composites: size, percolation, and synergy effects . Chem. Mater. , 2015 , 27 ( 6 ), 2100 - 2106 . doi: 10.1021/cm504550e http://dx.doi.org/10.1021/cm504550e
李俊伟 , 张泽平 , 容敏智 , 章明秋 . 基于图案化方法制备高导热氮化硼/液晶环氧复合材料 . 高分子学报 , 2025 , 56 ( 2 ), 306 - 321 .
Gu J. W. ; Ruan K. P. Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics . Nano Micro Lett. , 2021 , 13 ( 1 ), 110 . doi: 10.1007/s40820-021-00640-4 http://dx.doi.org/10.1007/s40820-021-00640-4
Wang Z. F. ; Wu Z. J. ; Weng L. ; Ge S. B. ; Jiang D. W. ; Huang M. N. ; Mulvihill D. M. ; Chen Q. G. ; Guo Z. H. ; Jazzar A. ; He X. M. ; Zhang X. H. ; Xu B. B. A roadmap review of thermally conductive polymer composites: critical factors, progress, and prospects . Adv. Funct. Mater. , 2023 , 33 ( 36 ), 2301549 . doi: 10.1002/adfm.202301549 http://dx.doi.org/10.1002/adfm.202301549
Yang W. ; Wang Y. F. ; Li Y. ; Gao C. ; Tian X. J. ; Wu N. ; Geng Z. S. ; Che S. ; Yang F. ; Li Y. F. Three-dimensional skeleton assembled by carbon nanotubes/boron nitride as filler in epoxy for thermal management materials with high thermal conductivity and electrical insulation . Compos. Part B Eng. , 2021 , 224 , 109168 . doi: 10.1016/j.compositesb.2021.109168 http://dx.doi.org/10.1016/j.compositesb.2021.109168
Xiao H. ; Chen F. ; Zhang Z. P. ; Rong M. Z. ; Zhang M. Q. Dihydromyricetin modification of boron nitride micro-sheets and construction of multilayer thermal conduction pathways in glass fiber reinforced epoxy composites . Compos. Part B Eng. , 2021 , 215 , 108770 . doi: 10.1016/j.compositesb.2021.108770 http://dx.doi.org/10.1016/j.compositesb.2021.108770
Jiang H. B. ; Cai Q. R. ; Mateti S. ; Bhattacharjee A. ; Yu Y. L. ; Zeng X. L. ; Sun R. ; Huang S. M. ; Chen Y. I. Recent research advances in hexagonal boron nitride/polymer nanocomposites with isotropic thermal conductivity . Adv. Nanocomposites , 2024 , 1 ( 1 ), 144 - 156 . doi: 10.1016/j.adna.2024.03.004 http://dx.doi.org/10.1016/j.adna.2024.03.004
Zha J. W. ; Wang F. ; Wan B. Q. Polymer composites with high thermal conductivity: theory, simulation, structure and interfacial regulation . Prog. Mater. Sci. , 2025 , 148 , 101362 . doi: 10.1016/j.pmatsci.2024.101362 http://dx.doi.org/10.1016/j.pmatsci.2024.101362
Xiao H. ; Zhang Z. P. ; Huang Z. X. ; Rong M. Z. ; Zhang M. Q. Highly thermally conductive, superior flexible and surface metallisable boron nitride paper fabricated by a facile and scalable approach . Compos. Commun. , 2021 , 23 , 100584 . doi: 10.1016/j.coco.2020.100584 http://dx.doi.org/10.1016/j.coco.2020.100584
Guo J. X. ; Cai S. Y. ; Han X. ; Sun Y. ; Li C. L. ; Zheng K. ; Xu Y. Z. ; Li R. G. ; Li C. J. Recyclable, flexible and highly thermally conductive phase change composites with dynamic networks for thermal management . Chinese J. Polym. Sci. , 2025 , 43 ( 4 ), 625 - 639 . doi: 10.1007/s10118-025-3299-5 http://dx.doi.org/10.1007/s10118-025-3299-5
Yu C. P. ; Zhang J. ; Li Z. ; Tian W. ; Wang L. J. ; Luo J. ; Li Q. L. ; Fan X. D. ; Yao Y. G. Enhanced through-plane thermal conductivity of boron nitride/epoxy composites . Compos. Part A Appl. Sci. Manuf. , 2017 , 98 , 25 - 31 . doi: 10.1016/j.compositesa.2017.03.012 http://dx.doi.org/10.1016/j.compositesa.2017.03.012
Yang G. ; Zhang X. D. ; Pan D. ; Zhang W. ; Shang Y. ; Su F. M. ; Ji Y. X. ; Liu C. T. ; Shen C. Y. Highly thermal conductive poly(vinyl alcohol) composites with oriented hybrid networks: silver nanowire bridged boron nitride nanoplatelets . ACS Appl. Mater. Interfaces , 2021 , 13 ( 27 ), 32286 - 32294 . doi: 10.1021/acsami.1c08408 http://dx.doi.org/10.1021/acsami.1c08408
Han Y. X. ; Ruan K. P. ; Gu J. W. Multifunctional thermally conductive composite films based on fungal tree-like heterostructured silver Nanowires@Boron nitride nanosheets and aramid nanofibers . Angew. Chem. Int. Ed. , 2023 , 62 ( 5 ), e 202216093 . doi: 10.1002/anie.202216093 http://dx.doi.org/10.1002/anie.202216093
Cai Q. R. ; Scullion D. ; Gan W. ; Falin A. ; Zhang S. Y. ; Watanabe K. ; Taniguchi T. ; Chen Y. ; Santos E. J. G. ; Li L. H. High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion . Sci. Adv. , 2019 , 5 ( 6 ), eaav 0129 . doi: 10.1126/sciadv.aav0129 http://dx.doi.org/10.1126/sciadv.aav0129
Lindsay L. ; Broido D. A. ; Mingo N. Flexural phonons and thermal transport in multilayer graphene and graphite . Phys. Rev. B , 2011 , 83 ( 23 ), 235428 . doi: 10.1103/physrevb.83.235428 http://dx.doi.org/10.1103/physrevb.83.235428
Lindsay L. ; Broido D. A. Theory of thermal transport in multilayer hexagonal boron nitride and nanotubes . Phys. Rev. B , 2012 , 85 ( 3 ), 035436 . doi: 10.1103/physrevb.85.035436 http://dx.doi.org/10.1103/physrevb.85.035436
Zhou Y. C. ; Xu L. S. ; Liu M. S. ; Qi Z. ; Wang W. B. ; Zhu J. Y. ; Chen S. H. ; Yu K. ; Su Y. ; Ding B. F. ; Qiu L. ; Cheng H. M. Viscous solvent-assisted planetary ball milling for the scalable production of large ultrathin two-dimensional materials . ACS Nano , 2022 , 16 ( 7 ), 10179 - 10187 . doi: 10.1021/acsnano.1c11097 http://dx.doi.org/10.1021/acsnano.1c11097
Yu C. P. ; Gong W. B. ; Tian W. ; Zhang Q. C. ; Xu Y. C. ; Lin Z. Y. ; Hu M. ; Fan X. D. ; Yao Y. G. Hot-pressing induced alignment of boron nitride in polyurethane for composite films with thermal conductivity over 50 W·m -1 ·K -1 . Compos. Sci. Technol. , 2018 , 160 , 199 - 207 . doi: 10.1016/j.compscitech.2018.03.028 http://dx.doi.org/10.1016/j.compscitech.2018.03.028
Chen F. ; Xiao H. ; Peng Z. Q. ; Zhang Z. P. ; Rong M. Z. ; Zhang M. Q. Thermally conductive glass fiber reinforced epoxy composites with intrinsic self-healing capability . Adv. Compos. Hybrid Mater. , 2021 , 4 ( 4 ), 1048 - 1058 . doi: 10.1007/s42114-021-00303-3 http://dx.doi.org/10.1007/s42114-021-00303-3
Zhang J. L. ; Dang L. ; Zhang F. Y. ; Zhang K. ; Kong Q. Q. ; Gu J. W. Effect of the structure of epoxy monomers and curing agents: toward making intrinsically highly thermally conductive and low-dielectric epoxy resins . JACS Au , 2023 , 3 ( 12 ), 3424 - 3435 . doi: 10.1021/jacsau.3c00582 http://dx.doi.org/10.1021/jacsau.3c00582
Jeong I. ; Kim C. B. ; Kang D. G. ; Jeong K. U. ; Jang S. G. ; You N. H. ; Ahn S. ; Lee D. S. ; Goh M. Liquid crystalline epoxy resin with improved thermal conductivity by intermolecular dipole-dipole interactions . J. Polym. Sci. Part A Polym. Chem. , 2019 , 57 ( 6 ), 708 - 715 . doi: 10.1002/pola.29315 http://dx.doi.org/10.1002/pola.29315
Akatsuka M. ; Takezawa Y. Study of high thermal conductive epoxy resins containing controlled high-order structures . J. Appl. Polym. Sci. , 2003 , 89 ( 9 ), 2464 - 2467 . doi: 10.1002/app.12489 http://dx.doi.org/10.1002/app.12489
Cai Z. Q. ; Qi D. M. ; Sun J. Z. ; Ren H. ; Zhao Q. ; Zhou Q. Y. Studies on cure kinetics of diglycidyl ether of 4 , 4 '-bisphenol/4, 4 '-diaminobiphenyl using the advanced isoconversional method . Polym. Plast. Technol. Eng., 2008, 47 ( 11 ), 1105 - 1108 . doi: 10.1080/03602550802391359 http://dx.doi.org/10.1080/03602550802391359
Zhang Y. X. ; Vyazovkin S. Curing of diglycidyl ether of bisphenol P with nitro derivatives of amine compounds, 1 . Macromol. Chem. Phys. , 2005 , 206 ( 3 ), 342 - 348 . doi: 10.1002/macp.200400396 http://dx.doi.org/10.1002/macp.200400396
Luo X. ; Yu X. Y. ; Ma Y. H. ; Naito K. ; Zhang Q. X. Preparation and cure kinetics of epoxy with nanodiamond modified with liquid crystalline epoxy . Thermochim. Acta , 2018 , 663 , 1 - 8 . doi: 10.1016/j.tca.2018.03.003 http://dx.doi.org/10.1016/j.tca.2018.03.003
Yeom Y. S. ; Cho K. Y. ; Seo H. Y. ; Lee J. S. ; Im D. H. ; Nam C. Y. ; Yoon H. G. Unprecedentedly high thermal conductivity of carbon/epoxy composites derived from parameter optimization studies . Compos. Sci. Technol. , 2020 , 186 , 107915 . doi: 10.1016/j.compscitech.2019.107915 http://dx.doi.org/10.1016/j.compscitech.2019.107915
Pang X. Y. ; Zhang Z. P. ; Liang F. ; Liu S. L. ; Rong M. Z. ; Zhang M. Q. Reducing the interfacial thermal resistance between liquid crystal epoxy and hexagonal boron nitride: an investigation from molecular dynamics simulations at the atomic level to macroscopic properties . Compos. Part A Appl. Sci. Manuf. , 2025 , 192 , 108766 . doi: 10.1016/j.compositesa.2025.108766 http://dx.doi.org/10.1016/j.compositesa.2025.108766
Yang X. T. ; Zhu J. H. ; Yang D. ; Zhang J. L. ; Guo Y. Q. ; Zhong X. ; Kong J. ; Gu J. W. High-efficiency improvement of thermal conductivities for epoxy composites from synthesized liquid crystal epoxy followed by doping BN fillers . Compos. Part B Eng. , 2020 , 185 , 107784 . doi: 10.1016/j.compositesb.2020.107784 http://dx.doi.org/10.1016/j.compositesb.2020.107784
Zhang J. ; Wang X. N. ; Yu C. P. ; Li Q. L. ; Li Z. ; Li C. W. ; Lu H. F. ; Zhang Q. C. ; Zhao J. X. ; Hu M. ; Yao Y. G. A facile method to prepare flexible boron nitride/poly(vinyl alcohol) composites with enhanced thermal conductivity . Compos. Sci. Technol. , 2017 , 149 , 41 - 47 . doi: 10.1016/j.compscitech.2017.06.008 http://dx.doi.org/10.1016/j.compscitech.2017.06.008
Zhang R. H. ; Shi X. T. ; Tang L. ; Liu Z. ; Zhang J. L. ; Guo Y. Q. ; Gu J. W. Thermally conductive and insulating epoxy composites by synchronously incorporating Si-sol functionalized glass fibers and boron nitride fillers . Chinese J. Polym. Sci. , 2020 , 38 ( 7 ), 730 - 739 . doi: 10.1007/s10118-020-2391-0 http://dx.doi.org/10.1007/s10118-020-2391-0
Shi X. T. ; Zhang R. H. ; Ruan K. P. ; Ma T. B. ; Guo Y. Q. ; Gu J. W. Improvement of thermal conductivities and simulation model for glass fabrics reinforced epoxy laminated composites via introducing hetero-structured BNN-30@BNNS fillers . J. Mater. Sci. Technol. , 2021 , 82 , 239 - 249 . doi: 10.1016/j.jmst.2021.01.018 http://dx.doi.org/10.1016/j.jmst.2021.01.018
Zhao J. ; Rui Z. L. ; Hu Z. W. ; Shangguan Z. ; Yin S. ; Peng H. Flexible phase change materials based on hexagonal boron nitride (hBN) surface modification and styrene-butadiene-styrene (SBS)/low-density polyethylene (LDPE) crosslinking for battery thermal management applications . Chem. Eng. J. , 2024 , 485 , 150110 . doi: 10.1016/j.cej.2024.150110 http://dx.doi.org/10.1016/j.cej.2024.150110
Muratov D. S. ; Vanyushin V. O. ; Luchnikov L. O. ; Degtyaryov M. Y. ; Kolesnikov E. A. ; Stepashkin A. A. ; Kuznetsov D. V. Improved thermal conductivity of polypropylene filled with exfoliated hexagonal boron nitride (hBN) particles . Mater. Res. Express , 2021 , 8 ( 3 ), 035010 . doi: 10.1088/2053-1591/abed0f http://dx.doi.org/10.1088/2053-1591/abed0f
Han G. J. ; Zhao X. Y. ; Feng Y. Z. ; Ma J. M. ; Zhou K. Q. ; Shi Y. Q. ; Liu C. T. ; Xie X. L. Highly flame-retardant epoxy-based thermal conductive composites with functionalized boron nitride nanosheets exfoliated by one-step ball milling . Chem. Eng. J. , 2021 , 407 , 127099 . doi: 10.1016/j.cej.2020.127099 http://dx.doi.org/10.1016/j.cej.2020.127099
Li X. F. ; Chen L. Y. ; Han W. F. ; Ge C. H. ; Guan H. Y. ; Zhang R. ; Zhang X. D. Preparation and thermal properties of shape-stabilized paraffin/NPGDMA/BN composite for phase change energy storage . Chin. J. Chem. , 2020 , 38 ( 12 ), 1737 - 1742 . doi: 10.1002/cjoc.202000191 http://dx.doi.org/10.1002/cjoc.202000191
Toberer E. S. ; Baranowski L. L. ; Dames C. Advances in thermal conductivity . Annu. Rev. Mater. Res. , 2012 , 42 , 179 - 209 . doi: 10.1146/annurev-matsci-070511-155040 http://dx.doi.org/10.1146/annurev-matsci-070511-155040
Muhammad Firdaus S. ; Mariatti M. Nano-sized boron nitride epoxy composites for underfill application: effect of diluent and filler loading . J. Mater. Sci. Mater. Electron. , 2015 , 26 ( 2 ), 774 - 783 . doi: 10.1007/s10854-014-2463-4 http://dx.doi.org/10.1007/s10854-014-2463-4
Muhammad Firdaus S. ; Mariatti M. Properties of nano-sized synthetic diamond and boron nitride filled different types of epoxy resin . J. Mater. Sci. Mater. Electron. , 2016 , 27 ( 1 ), 245 - 254 . doi: 10.1007/s10854-015-3746-0 http://dx.doi.org/10.1007/s10854-015-3746-0
Weng L. ; Wang H. B. ; Zhang X. R. ; Liu L. Z. ; Zhang H. X. Preparation and properties of boron nitride/epoxy composites with high thermal conductivity and electrical insulation . J. Mater. Sci. Mater. Electron. , 2018 , 29 ( 16 ), 14267 - 14276 . doi: 10.1007/s10854-018-9560-8 http://dx.doi.org/10.1007/s10854-018-9560-8
Han Y. X. ; Shi X. T. ; Wang S. S. ; Ruan K. P. ; Lu C. Y. ; Guo Y. Q. ; Gu J. W. Nest-like hetero-structured BNNS@SiCnws fillers and significant improvement on thermal conductivities of epoxy composites . Compos. Part B Eng. , 2021 , 210 , 108666 . doi: 10.1016/j.compositesb.2021.108666 http://dx.doi.org/10.1016/j.compositesb.2021.108666
0
Views
227
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号