

浏览全部资源
扫码关注微信
大连理工大学 精细化工全国重点实验室 大连 116024
Hui Zhou, E-mail: zhouhui@dlut.edu.cn
Received:16 September 2025,
Accepted:24 October 2025,
Published Online:18 December 2025,
Published:20 January 2026
移动端阅览
韩帅, 温朗奇, 乐天俊, 周辉, 吕小兵. 氮杂环烯基膦/三乙基硼协同催化环氧烷烃与苯酐交替共聚. 高分子学报, 2026, 57(1), 259-267.
Han, S.; Wen, L. Q.; Yue, T. J.; Zhou, H.; Lu, X. B. N-heterocyclic olefin-phosphines/triethylboron synergisticly catalytic copolymerization of epoxides and phthalic anhydride. Acta Polymerica Sinica (in Chinese), 2026, 57(1), 259-267.
韩帅, 温朗奇, 乐天俊, 周辉, 吕小兵. 氮杂环烯基膦/三乙基硼协同催化环氧烷烃与苯酐交替共聚. 高分子学报, 2026, 57(1), 259-267. DOI: 10.11777/j.issn1000-3304.2025.25243. CSTR: 32057.14.GFZXB.2025.7506.
Han, S.; Wen, L. Q.; Yue, T. J.; Zhou, H.; Lu, X. B. N-heterocyclic olefin-phosphines/triethylboron synergisticly catalytic copolymerization of epoxides and phthalic anhydride. Acta Polymerica Sinica (in Chinese), 2026, 57(1), 259-267. DOI: 10.11777/j.issn1000-3304.2025.25243. CSTR: 32057.14.GFZXB.2025.7506.
设计并合成一系列新型氮杂环烯功能化有机膦试剂(NHO-P),并通过
1
H-、
13
C-、
31
P-核磁共振波谱及高分辨质谱进行结构表征. 构建NHO-P/三乙基硼(Et
3
B)双组份有机催化聚合体系,用于环氧丙烷(PO)或环氧环己烷(CHO)与邻苯二甲酸酐(苯酐,PA)开环交替共聚反应. 实验结果表明,在PO:PA:NHO-P:Et
3
B = 2000:800:1:1 (摩尔比)、60 ℃条件下,富电子
NHO-P4
可定量转化酸酐,所制备聚酯数均分子量可达126.3 kg·mol
-1
(聚合物分散度=1.25),呈完全交替结构. 进一步,通过核磁共振波谱和基质辅助激光解吸电离飞行时间质谱对共聚反应机理进行深入研究,证明了NHO-P作为有机碱经历离子对聚合路径引发开环交替聚合反应,高效制备完全交替结构聚酯材料.
A series of novel
N
-heterocyclic olefin-functionalized phosphines (NHO-P) were successfully designed and synthesized. The chemical structures of NHO-P were thoroughly characterized using
1
H-
13
C-
and
31
P-nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry. Binary organic systems consisting of NHO-P and triethyl boron (Et
3
B) were constructed to catalyze the ring-opening alternating copolymerization of propylene oxide (PO) and phthalic anhydride (PA). The results showed that under the conditions of PO:PA:NHO-P:Et
3
B = 2000:800:1:1 (molar ratio)
at 60 ℃
the electron-rich
NHO-P4
could quantitatively convert the anhydride. The resulting polyester exhibited a high molecular weight of up to 126.3 kg·mol
-1
a polymer dispersity index of 1.25
and more than 99% ester units. Furthermore
the alternating copolymerization reaction mechanism was thoroughly investigated using NMR spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The results demonstrated that NHO-P
acting as an organic base
followed an anionic polymerization pathway to initiate the ring-opening alternating copolymerization reaction
enabling the efficient preparation of polyester materials with a perfectly alternating structure.
Albertsson A. C. ; Varma I. K. Aliphatic polyesters: synthesis, properties and applications . Degradable Aliphatic Polyesters. Berlin, Heidelberg : Springer , 2002 , 1 - 40 . doi: 10.1007/3-540-45734-8_1 http://dx.doi.org/10.1007/3-540-45734-8_1
Farah S. ; Anderson D. G. ; Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications: a comprehensive review . Adv. Drug Deliv. Rev. , 2016 , 107 , 367 - 392 . doi: 10.1016/j.addr.2016.06.012 http://dx.doi.org/10.1016/j.addr.2016.06.012
Zhu Y. Q. ; Romain C. ; Williams C. K. Sustainable polymers from renewable resources . Nature , 2016 , 540 ( 7633 ), 354 - 362 . doi: 10.1038/nature21001 http://dx.doi.org/10.1038/nature21001
Rabnawaz M. ; Wyman I. ; Auras R. ; Cheng S. A roadmap towards green packaging: the current status and future outlook for polyesters in the packaging industry . Green Chem. , 2017 , 19 ( 20 ), 4737 - 4753 . doi: 10.1039/c7gc02521a http://dx.doi.org/10.1039/c7gc02521a
Ye H. Y. ; Zhang K. Y. ; Kai D. ; Li Z. B. ; Loh X. J. Polyester elastomers for soft tissue engineering . Chem. Soc. Rev. , 2018 , 47 ( 12 ), 4545 - 4580 . doi: 10.1039/c8cs00161h http://dx.doi.org/10.1039/c8cs00161h
Shi C. X. ; Quinn E. C. ; Diment W. T. ; Chen E. Y. X. Recyclable and (bio)degradable polyesters in a circular plastics economy . Chem. Rev. , 2024 , 124 ( 7 ), 4393 - 4478 . doi: 10.1021/acs.chemrev.3c00848 http://dx.doi.org/10.1021/acs.chemrev.3c00848
Longo J. M. ; Sanford M. J. ; Coates G. W. Ring-opening copolymerization of epoxides and cyclic anhydrides with discrete metal complexes: structure-property relationships . Chem. Rev. , 2016 , 116 ( 24 ), 15167 - 15197 . doi: 10.1021/acs.chemrev.6b00553 http://dx.doi.org/10.1021/acs.chemrev.6b00553
华正江 , 陈上 , 方佐 , 戚国荣 . 双金属氰化络合物催化环氧丙烷和邻苯二甲酸酐共聚 . 高分子学报 , 2004 ( 4 ), 551 - 555 .
李帅 , 王昱博 , 季鹤源 , 陈崇民 , 陈晓璐 , 潘莉 , 王彬 . (Salen)Ti Ⅳ Cl 2 配合物催化环氧化物和环酸酐开环交替共聚 . 高分子学报 , 2020 , 51 ( 9 ), 1039 - 1066 .
王彬 . 联吡啶双酚铝催化开环(共)聚合制备聚酯材料 . 高分子学报 , 2023 , 54 ( 6 ), 778 - 790 . doi: 10.11777/j.issn1000-3304.2022.22433 http://dx.doi.org/10.11777/j.issn1000-3304.2022.22433
胥洋洋 , 乐天俊 , 赵金卓 , 任伟民 . 异核双金属协同催化环氧环己烷与邻苯二甲酸酐无规共聚 . 高分子学报 , 2024 , 55 ( 8 ), 1001 - 1008 .
Yang G. W. ; Zhang Y. Y. ; Wu G. P. Modular organoboron catalysts enable transformations with unprecedented reactivity . Acc. Chem. Res. , 2021 , 54 ( 23 ), 4434 - 4448 . doi: 10.1021/acs.accounts.1c00620 http://dx.doi.org/10.1021/acs.accounts.1c00620
马钰琨 , 刘绍峰 , 李志波 . 有机催化CO 2 /环氧/酸酐交替共聚合成聚碳酸酯/聚酯及其共聚物 . 高分子学报 , 2022 , 53 ( 9 ), 1041 - 1056 . doi: 10.11777/j.issn1000-3304.2022.22112 http://dx.doi.org/10.11777/j.issn1000-3304.2022.22112
Naumann S. Borane catalysis for epoxide (co)polymerization . Polym. Chem. , 2023 , 14 ( 16 ), 1834 - 1862 . doi: 10.1039/d3py00018d http://dx.doi.org/10.1039/d3py00018d
Zhang C. J. ; Geng X. W. ; Zhang X. H. ; Gnanou Y. ; Feng X. S. Alkyl borane-mediated metal-free ring-opening (co)polymerizations of oxygenated monomers . Prog. Polym. Sci. , 2023 , 136 , 101644 . doi: 10.1016/j.progpolymsci.2022.101644 http://dx.doi.org/10.1016/j.progpolymsci.2022.101644
Zhang Y. Y. ; Yang G. W. ; Lu C. J. ; Zhu X. F. ; Wang Y. H. ; Wu G. P. Organoboron-mediated polymerizations . Chem. Soc. Rev. , 2024 , 53 ( 7 ), 3384 - 3456 . doi: 10.1039/d3cs00115f http://dx.doi.org/10.1039/d3cs00115f
Zhao H. Y. ; Hu C. Y. ; Pang X. ; Chen X. S. Recent progress of heterocycle ring-opening (co)polymerization for the synthesis of sequence-controlled block polyesters and polycarbonates . Smart Mol. , 2024 , e 20240057 . doi: 10.1002/smo.20240057 http://dx.doi.org/10.1002/smo.20240057
陈烨 , 刘珊 , 赵俊鹏 . 环氧单体的有机/无金属催化开环聚合与共聚 . 高分子学报 , 2020 , 51 ( 10 ), 1067 - 1082 . doi: 10.11777/j.issn1000-3304.2020.20088 http://dx.doi.org/10.11777/j.issn1000-3304.2020.20088
王彬 , 季鹤源 , 李悦生 . Lewis pairs催化环酯开环聚合与环酐/环氧化物开环交替共聚 . 高分子学报 , 2020 , 51 ( 10 ), 1104 - 1120 . doi: 10.11777/j.issn1000-3304.2020.20035 http://dx.doi.org/10.11777/j.issn1000-3304.2020.20035
Fischer R. F. Polyesters from epoxides and anhydrides . Ind. Eng. Chem. , 1960 , 52 ( 4 ), 321 - 323 . doi: 10.1021/ie50604a039 http://dx.doi.org/10.1021/ie50604a039
Zhao J. P. ; Pahovnik D. ; Gnanou Y. ; Hadjichristidis N. Phosphazene-promoted metal-free ring-opening polymerization of ethylene oxide initiated by carboxylic acid . Macromolecules , 2014 , 47 ( 5 ), 1693 - 1698 . doi: 10.1021/ma500067j http://dx.doi.org/10.1021/ma500067j
Hošťálek Z. ; Trhlíková O. ; Walterová Z. ; Martinez T. ; Peruch F. ; Cramail H. ; Merna J. Alternating copolymerization of epoxides with anhydrides initiated by organic bases . Eur. Polym. J. , 2017 , 88 , 433 - 447 . doi: 10.1016/j.eurpolymj.2017.01.002 http://dx.doi.org/10.1016/j.eurpolymj.2017.01.002
Li H. ; Zhao J. P. ; Zhang G. Z. Self-buffering organocatalysis tailoring alternating polyester . ACS Macro Lett. , 2017 , 6 ( 10 ), 1094 - 1098 . doi: 10.1021/acsmacrolett.7b00654 http://dx.doi.org/10.1021/acsmacrolett.7b00654
Hu L. F. ; Zhang C. J. ; Wu H. L. ; Yang J. L. ; Liu B. ; Duan H. Y. ; Zhang X. H. Highly active organic Lewis pairs for the copolymerization of epoxides with cyclic anhydrides: metal-free access to well-defined aliphatic polyesters . Macromolecules , 2018 , 51 ( 8 ), 3126 - 3134 . doi: 10.1021/acs.macromol.8b00499 http://dx.doi.org/10.1021/acs.macromol.8b00499
Kummari A. ; Pappuru S. ; Chakraborty D. Fully alternating and regioselective ring-opening copolymerization of phthalic anhydride with epoxides using highly active metal-free Lewis pairs as a catalyst . Polym. Chem. , 2018 , 9 ( 29 ), 4052 - 4062 . doi: 10.1039/c8py00715b http://dx.doi.org/10.1039/c8py00715b
Patil N. G. ; Boopathi S. K. ; Alagi P. ; Hadjichristidis N. ; Gnanou Y. ; Feng X. S. Carboxylate salts as ideal initiators for the metal-free copolymerization of CO 2 epoxideswith: synthesis of well-defined polycarbonates diols and polyols. Macromolecules , 2019 , 52 ( 6 ), 2431 - 2438 . doi: 10.1021/acs.macromol.9b00122 http://dx.doi.org/10.1021/acs.macromol.9b00122
Xie R. ; Zhang Y. Y. ; Yang G. W. ; Zhu X. F. ; Li B. ; Wu G. P. Record productivity and unprecedented molecular weight for ring-opening copolymerization of epoxides and cyclic anhydrides enabled by organoboron catalysts . Angew. Chem. Int. Ed. , 2021 , 60 ( 35 ), 19253 - 19261 . doi: 10.1002/anie.202104981 http://dx.doi.org/10.1002/anie.202104981
Wu C. L. ; Song X. Y. ; Han Q. Q. ; Zhong R. L. ; Wang X. W. ; Li Z. B. ; Liu Y. L. Evolving cyclopropenium derivatives into highly active and air-stable bifunctional organoborane catalysts towards ring-opening alternating copolymerization . CCS Chem. , 2025 , 1 - 14 . doi: 10.31635/ccschem.025.202505613 http://dx.doi.org/10.31635/ccschem.025.202505613
Wang J. Q. ; Zhu Y. N. ; Li M. S. ; Wang Y. C. ; Wang X. H. ; Tao Y. H. Tug-of-war between two distinct catalytic sites enables fast and selective ring-opening copolymerizations . Angew. Chem. Int. Ed. , 2022 , 61 ( 36 ), e 202208525 . doi: 10.1002/anie.202208525 http://dx.doi.org/10.1002/anie.202208525
Xie Z. B. ; Yang Z. J. ; Hu C. Y. ; Bai F. Q. ; Li N. N. ; Wang Z. W. ; Ku S. T. ; Pang X. ; Chen X. S. ; Wang X. H. Record-high-molecular-weight polyesters from ring-opening copolymerization of epoxides and cyclic anhydrides catalyzed by hydrogen-bond-functionalized imidazoles . J. Am. Chem. Soc. , 2025 , 147 ( 14 ), 12115 - 12126 . doi: 10.1021/jacs.5c00426 http://dx.doi.org/10.1021/jacs.5c00426
Chu B. ; Liu X. ; Xiong Z. P. ; Zhang Z. T. ; Liu B. ; Zhang C. J. ; Sun J. Z. ; Yang Q. ; Zhang H. K. ; Tang B. Z. ; Zhang X. H. Enabling nonconjugated polyesters emit full-spectrum fluorescence from blue to near-infrared . Nat. Commun. , 2024 , 15 , 366 . doi: 10.1038/s41467-023-44505-3 http://dx.doi.org/10.1038/s41467-023-44505-3
Chu B. ; Liu X. ; Li X. ; Zhang Z. T. ; Sun J. Z. ; Yang Q. ; Liu B. ; Zhang H. K. ; Zhang C. J. ; Zhang X. H. Phosphine-capped effects enable full-color clusteroluminescence in nonconjugated polyesters . J. Am. Chem. Soc. , 2024 , 146 ( 15 ), 10889 - 10898 . doi: 10.1021/jacs.4c01568 http://dx.doi.org/10.1021/jacs.4c01568
Hu L. F. ; Chen D. J. ; Yang J. L. ; Zhang X. H. ; Hu L. F. ; Chen D. J. ; Yang J. L. ; Zhang X. H. An investigation of the organoborane/Lewis base pairs on the copolymerization of propylene oxide with succinic anhydride . Molecules , 2020 , 25 ( 2 ), 253 . doi: 10.3390/molecules25020253 http://dx.doi.org/10.3390/molecules25020253
Bai Y. ; He J. H. ; Zhang Y. T. Ultra-high-molecular-weight polymers produced by the immortal phosphine-based catalyst system . Angew. Chem. Int. Ed. , 2018 , 57 ( 52 ), 17230 - 17234 . doi: 10.1002/anie.201811946 http://dx.doi.org/10.1002/anie.201811946
Rotering P. ; Wilm L. F. B. ; Werra J. A. ; Dielmann F. Pyridinylidenaminophosphines: facile access to highly electron-rich phosphines . Chem. , 2020 , 26 ( 2 ), 406 - 411 . doi: 10.1002/chem.201904621 http://dx.doi.org/10.1002/chem.201904621
Lu S. Y. ; Chen W. ; Wen L. Q. ; Zhou H. Pyridinylidenaminophosphines as versatile organocatalysts for CO 2 transformations into value-added chemicals . Asian J. Org. Chem. , 2022 , 11 ( 7 ), e 202200143 . doi: 10.1002/ajoc.202200143 http://dx.doi.org/10.1002/ajoc.202200143
Scherpf T. ; Schwarz C. ; Scharf L. T. ; Zur J. A. ; Helbig A. ; Gessner V. H. Ylide-functionalized phosphines: strong donor ligands for homogeneous catalysis . Angew. Chem. Int. Ed. , 2018 , 57 ( 39 ), 12859 - 12864 . doi: 10.1002/anie.201805372 http://dx.doi.org/10.1002/anie.201805372
Lapointe S. ; Sarbajna A. ; Gessner V. H. Ylide-substituted phosphines: a platform of strong donor ligands for gold catalysis and palladium-catalyzed coupling reactions . Acc. Chem. Res. , 2022 , 55 ( 5 ), 770 - 782 . doi: 10.1021/acs.accounts.1c00797 http://dx.doi.org/10.1021/acs.accounts.1c00797
Wei X. J. ; Xue B. X. ; Handelmann J. ; Hu Z. Y. ; Darmandeh H. ; Gessner V. H. ; Gooßen L. J. Ylide-functionalized diisopropyl phosphine (prYPhos): a ligand for selective suzuki-miyaura couplings of aryl chlorides . Adv. Synth. Catal. , 2025
Buß F. ; Mehlmann P. ; Mück-Lichtenfeld C. ; Bergander K. ; Dielmann F. Reversible carbon dioxide binding by simple lewis base adducts with electron-rich phosphines . J. Am. Chem. Soc. , 2016 , 138 ( 6 ), 1840 - 1843 . doi: 10.1021/jacs.5b13116 http://dx.doi.org/10.1021/jacs.5b13116
Wen L. Q. ; Chen W. ; Ren W. M. ; Lu X. B. ; Zhou H. N , N ′-bis(imidazolyl)guanidinylphosphines: powerful initiators for conjugate-addition polymerization of Michael-type monomers . Polym. Chem. , 2024 , 15 ( 18 ), 1877 - 1883 . doi: 10.1039/d3py01231j http://dx.doi.org/10.1039/d3py01231j
Wen L. Q. ; Zhou H. ; Ren W. M. ; Lu X. B. Electron-rich phosphines catalyzed head-to-tail dimerization of renewable alkyl crotonates . Chem. , 2025 , 20 ( 4 ), e 202401227 . doi: 10.1002/asia.202401227 http://dx.doi.org/10.1002/asia.202401227
Paisley N. R. ; Lui M. W. ; McDonald R. ; Ferguson M. J. ; Rivard E. Structurally versatile phosphine and amine donors constructed from N -heterocyclic olefin units . Dalton Trans. , 2016 , 45 ( 24 ), 9860 - 9870 . doi: 10.1039/c6dt00299d http://dx.doi.org/10.1039/c6dt00299d
Lui M. W. ; Shynkaruk O. ; Oakley M. S. ; Sinelnikov R. ; McDonald R. ; Ferguson M. J. ; Meldrum A. ; Klobukowski M. ; Rivard E. Engaging dual donor sites within an N -heterocyclic olefin phosphine ligand . Dalton Trans. , 2017 , 46 ( 18 ), 5946 - 5954 . doi: 10.1039/c7dt00398f http://dx.doi.org/10.1039/c7dt00398f
Wang Y. B. ; Wang Y. M. ; Zhang W. Z. ; Lu X. B. Fast CO 2 sequestration, activation, and catalytic transformation using N-heterocyclic olefins. J. Am. Chem. Soc. , 2013 , 135 ( 32 ), 11996 - 12003 . doi: 10.1021/ja405114e http://dx.doi.org/10.1021/ja405114e
Zhang P. ; Zhou H. ; Lu X. B. Living and chemoselective (co)polymerization of polar divinyl monomers mediated by bulky lewis pairs . Macromolecules , 2019 , 52 ( 12 ), 4520 - 4525 . doi: 10.1021/acs.macromol.9b00652 http://dx.doi.org/10.1021/acs.macromol.9b00652
0
Views
79
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号